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Aiming at the problem of the low bearing faults identi�cation accuracy of the method based on the deep neural network under
small samples and multiple working conditions, a novel bearing fault identi�cation method combined with the coordinate delay
phase space reconstruction method (CDPSR), residual network, meta-SGD algorithm, and the AdaBoost technology was
proposed. ­e proposed method �rstly calculates the high-dimensional space coordinates of bearing vibration signals using the
CDPSR method and uses these coordinates to construct a training set, then learns and updates the parameters of classi�er
networks using the meta-SGD algorithm with the train set, iteratively trains multiple classi�ers, and �nally integrates those
classi�ers to form a strong classi�er by AdaBoost technology. ­e 4-way and 20-shot experiments of arti�cial and natural bearing
faults show that the proposed method can identify the fault samples and nonfault samples with 100% accuracy, and the fault
location accuracy is over 90%. Compared with some state-of-the-art methods such as WDCNN and CNN-SVM, the proposed
method improves the fault identi�cation accuracy and stability to a certain extent. ­e proposed method has high fault
identi�cation accuracy under small samples and multiworking conditions, which makes it applicable in some practical areas of
complex working conditions and di�culty obtaining bearing fault signals.

1. Introduction

From the perspective of the application, the bearing fault
identi�cation can be divided into two types, which include
single work conditions and multiworking conditions.
Bearing fault identi�cation of small samples under multi-
working conditions refers to the problem of predicting
which fault type the test bearing samples belong to under a
few fault training samples collected from complex work
conditions. ­e problem is also called N-way and K-shot
multiworking bearing fault identi�cation problem, where
the training data include N classes, each class only has K
samples, and the K is no more than 20.­e movement of the
faulty bearing is nonlinear. In order to �t the nonlinear
features included in the rolling bearing vibration signals,
many studies used the neural network to learn bearing vi-
bration signal features and got good results in bearing fault
identi�cation by establishing the mappings between the fault

feature and fault. For example, literature [1] and literature
[2] used convolution neural networks (CNNs) to repeatedly
learn the time-frequency features of a large number of
original bearing vibration signals and realized the precise
classi�cation of bearing faults. ­e fault identi�cation
method based on the deep neural network usually requires a
large amount of training data, and it is hard to play its ability
to �t nonlinear features under small samples. Literature [3]
and literature [4] show that the common problem of small
sample learning is that the feature extraction e�ect is not
very high and the identi�cation accuracy is poor. Literature
[5] shows that the bearing fault identi�cation accuracy based
on rolling bearing vibration signal analysis is a�ected by the
bearing conditions. Rotation, load, and faults are the key
factors a�ecting the motion state of the bearing rotor. When
the speed of bearing continues to increase, due to the failure
occurring in bearing such as touching, the nonlinear features
of the rotor will further intensify, and the movement will

Hindawi
Mobile Information Systems
Volume 2022, Article ID 1016954, 13 pages
https://doi.org/10.1155/2022/1016954

mailto:yuhuiwu2121@yeah.net
https://orcid.org/0000-0003-3838-7557
https://orcid.org/0000-0003-3399-2117
https://orcid.org/0000-0002-4766-5291
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1016954


even evolve into chaotic motion. *e bearing fault identi-
fication under multiworking conditions is more difficult
than the identification in a single working condition. To
improve the identification accuracy of the method based on
deep neural networks for multiworking bearing faults, lit-
erature [6] and literature [7] used attention, label smooth-
ness, and other auxiliary algorithms to optimize the training
processes of the neural network. Under the limited training
data condition, the identification performance of the opti-
mized deep CNN has been improved, but the number of
each class of training sample still exceeds 20. At present, the
bearing fault identification of small samples under multi-
working conditions is one of the research hotspots in deep
neural network applications.

In recent years, some scholars have conducted research
on bearing fault identification under small samples and
multiworking conditions from different viewpoints. Liter-
ature [8] used CNN to extract the early bearing fault of the
motor, and literature [9] used CNN to extract the features in
the spectrum image of the bearing vibration signal. Different
neural network structures have different capabilities for
extracting bearing fault features, and the study of network
structures to improve bearing vibration performance has
received widespread attention. *e training strategy of
neural networks has also been the main direction of deep
neural network research. MAML and SAMME are out-
standing works in this area. Data preprocessing technology
generates new training samples through geometric trans-
formation, which was widely applied to prevent the neural
network from overfitting in the process of learning small
samples. Literature [10] researched data preprocessing
methods based on the sparse autoencoder, and literature [11]
used sliding sampling to enhance bearing vibration data.
Now, fault identification of small samples based on learning
strategies and data preprocessing is one of the important
research directions for bearing fault diagnosis. In this paper,
the fault signals collected from multiple working conditions
with different speeds, different loads, and different fault
degrees were used as the research objects. We first employed
the coordinate delay phase space reconstruction (CDPSR)
method to process bearing vibration signals, then designed a
deep bearing fault identification neural network based on
CNN and residual network to produce some classifiers and
finally, through the Adaboost method, implemented an
integrating multiply classifiers algorithm for training and
integrating these bearing fault classifiers to form a stronger
bearing fault classifier.

*e rest of this paper is organized as follows. Section 2
introduces related technologies such as the CDPSR method,
residual network, meta-SGD algorithm, and the Adaboost
technology. Section 3 details our bearing fault identification
method, Section 3.1 presents the processes of the data
preprocessing and building new training set, Section 3.2
designs the network structure of the bearing fault classifier
and its training method, and Section 3.3 develops the in-
tegrating step of multiple bearing fault classifiers; Section 4
describes the steps of conducting validation experiments
using the artificial bearing fault dataset and the natural
bearing fault dataset and discusses the experiment results;

Finally, Section 5 concludes this paper and highlights the
significance of the proposed method.

2. Related Work

2.1. Phase Space Reconstruction. *e coordinate delay
method [12] is a specific implementation of the phase space
reconstruction technology, which can be used to calculate
the phase space coordinates of the bearing vibration time-
series signals. Suppose x(t){ } is a one-dimensional time-
series signal, 0τ, 1τ, . . . , (m − 1)τ are delay time, and M is
the embedded dimension of high-dimensional phase space.
According to the coordinate delay method, the phase space
coordinates of M-dimensional can be represented as
equation (1), where i� 0, . . ., M − 1.
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(1)

Solving the phase space coordinates of the time sequence
requires τ and M. Calculating delay time τ has a variety of
methods such as correlation coefficients and other methods
based on mutual information judgment. *e related func-
tion method for solving τ is simple and effective. *e au-
tocorrelation function of the time sequence
R(τ) � (1/N)􏽐

N− τ
i�1 x(i) · x(i + τ) is a function that changes

with τ. When R(τ) drops to the R(0)∗ (1 − e− 1)1 − e− 1, the
time is the best delay time τ for reconstructing phase space
[13].

When the delay time τ is known, the Cao algorithm [14]
can be used to solve the embedding dimensionM, and it can
calculate the embedding dimension with a small amount of
data. Denote the i-th d-dimensional reconstruction vector as
yi(d) � xi, xi+τ , . . . , xi+(d− 1)τ􏽮 􏽯, i � 1, . . . , N − (d − 1)τ, and
define a(i, d) � ((‖yi(d + 1) − yn(i,d)(d + 1)‖)/(

����yi(d) −

yn(i,d)(d)
����)), i � 1, . . . , N − τ, where yi(d + 1) is the re-

construction vector of the i-th (d+ 1) dimension. Since
n(i, d) ∈ 1, . . . , n − dτ{ }, yn(i,d)(d) is in the d-dimensional
phase space, the mean of a(i, d) is
E(d) � (1/N − dτ)􏽐

N− dr
i�1 a(i, d), and E1(d) � E(d + 1)/

E(d). If E1(d) stops changing from a certain d0, then d0 + 1
is the minimum embedding dimension to be found.

2.2. Convolution Neural Network. Convolution Neural
Network [15] is made up of neurons that have learnable
weights and biases; it uses the convolution layer and non-
linear activation functions to abstract the original data layer
by layer as features required for specific tasks to achieve
mapping of features and targets. *e CNN is a sequence of
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layers that mainly includes the convolution layer, the
pooling layer, and the fully connected layer. We can stack
these layers to form a full CNN architecture. Since CNN has
good nonlinear �tting capabilities, it was widely used in
�elds such as image feature extraction and voice feature
analysis. ­ere are many excellent CNN applications in the
�eld of bearing fault identi�cation [16, 17].

2.3.ResidualNetwork. ­e residual refers to the gap between
the observed value and the prediction value; literature [18]
applied it to the neural network and proposed the concept of
the residual block whose structure is shown in Figure 1.

Here, xl and xl represent the input and output of the
residual blocks, h(x) represents the observed value, and the

residual block can be expressed as yl � h(xl) + F(xl, wl)
xl+1 � f(yl)

{ .

If h(·) and f(·) are directly mapping functions, for ex-
ample, h(x) � x andf(yl) � ReLU(yl), the gradient of the L-
layer can pass to any layer that is shallower than it [19].
­erefore, as the number of network layers increases, the
residual network will not degenerate, and the ability of �tting
nonlinear features becomes stronger. So far, many studies were
using residual networks to extract features of business data. For
example, literature [20] studied using the SELU activation
function to optimize the deep residual network, used the deep
residual network model to analyze information dissemination
in wireless networks, and obtained a complete media infor-
mation dissemination prediction of wireless networks.

Resnet is a residual network structure stacked by the
residual blocks, which has performed well in image classi�-
cation applications [21, 22]. Literature [23] researched the
advantage of Resnet-18 by comparing Resnet-18/50, VGG-19,
and Googlenet and found that Resnet-18 has the advantages
of short training time and high accuracy, developed a deep
learning model base on ResNet-18 to diagnose the fan blade
surface damage, and got good recognition e�ect. Literature
[24] proposed a dual attention residual network that uses a
residual module from Resnet18 to detect oil spills of various
shapes and scales. Resnet-18 is an implementation of the
Resnet model, and it consists of �ve parts including Conv1_x,
Conv2_x, Conv3_x, Conv4_x, and Conv5_x. Each part has a
convolution and constant block. Resnet-18 was designed for
the classi�cation of thousands of pictures, its network
structure is complicated, and it needs to take a long time to
train. Compared to the classi�cation of thousands of pictures,
the task of bearing fault identi�cation under dozens of
working conditions is small. ­erefore, this paper deleted the
Conv4_x and Conv5_x network structures in the Resnet-18,
modi�ed the size of the convolution kernel, reduced the
complexity of the Resnet-18, and still retained the advantages
of the residual network.

2.4. Meta-SGD Algorithm. ­e Model-Agnostic Meta-
Learning (MAML) algorithm [25] proposed by Finn et al.
can be used to train the model that can be optimized by
gradient descent algorithm; it is an excellent algorithm in the
�eld of meta-learning. ­e di�erence between the MAML

and other optimization algorithms such as the stochastic
gradient descent (SGD) algorithm [26] is that the optimi-
zation process in MAML is divided into two steps, which
�rst assumes that n tasks (Ti, i � 1, . . . , n) are selected from
the supporting dataset and each task is used to calculate the
gradient based on the current neural network parameter θ(t)
to get n updated neural network parameter sets θ1′, . . . , θn′,
θi′ � θ(t) − α∇θ(t)L(θ

(t), DSupport
Ti

), second calculates the up-
date gradient on the query dataset, and determines the new
neural network parameter θ(t+1) according to
θ(t+1) � θ(t) − β∑Ti ∼ T∇θ(t)L(θi′, D

Query
Ti

).
As the α and β hyperparameters are �xed in the MAML,

they cannot be adjusted with the change of the network,
which makes the training process ªuctuate. ­e Meta-SGD
algorithm [27] automatically adjusts the α parameter to
increase the stability, whose execution steps are as follows.

Meta-SGD can learn task-agnostic features rather than
simply adapt to task-speci�c features [28]. Literature [29]
used the learning rate of the meta-learning SGD to predict
streaming time-series data online and achieved good results.

2.5. Multiclass AdaBoost Method. AdaBoost [30] is a mul-
timodel integration method, and its �nal output is the
weighted sum of the results of the integrated multiple
classi�ers. AdaBoost was originally raised by Freund to
research the binary classi�cation problem. By introducing
multiclassi�cation index loss in the front-directional model,
AdaBoost also can be applied to the multiclass problem. ­e
sample weight is constantly updated in subsequent Ada-
Boost training, and samples that have not been identi�ed
correctly will be set up with greater weights. ­is process of
AdaBoost training is shown in Figure 2.

SAMME [31] is an implementation algorithm of the
multiclass AdaBoost, its speci�c implementation steps are as
shown in Algorithm1.

Literature [32] hybridized the AdaBoost with a linear
support vector machine model and developed a diagnostic
system to predict hepatitis disease; the results demonstrate
that the strength of a conventional support vector machine
model is improved by 6.39%. Literature [33] studied the use

Neural Networks

x1

yl

xl+1

F(x1 , wl)

+

f

h(x)

Figure 1: Structure of residual block.
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of the AdaBoost framework to integrate other methods and
proposed a wind turbine fault feature extraction method
based on the AdaBoost framework and SGMD-CS. Exper-
iments show that AdaBoost is an e�ective multimodal in-
tegration framework. To realize bearing fault identi�cation,
this paper studied the use of the AdaBoost framework to
integrate multiple fault identi�cation classi�er models
designed based on CNN and residual networks.

3. Our Method

3.1. Data Preprocessing and Building New Feature Set.
Use min-max normalization (2) to handle the training
samples including N_Train samples and test samples
including N_Test samples. Divide the training samples
into a training set and veri�cation set according to the
ratio of 5 : 1. Select one sample separately from the
training set, veri�cation set, and test set as an input of
Algorithm 2 to calculate the best value of time delay τ and
phase space dimension M. Assume that the training
sample has L data points. According to (1), we can get
(5/6)N_Train (L − M + τF/τFM) coordinates for the
training set, (1/6)N_Train(L − M + τF/τFM) coordinates
for the veri�cation set, and N_Test(L − M + τF/τFM)
coordinates for the test set, when the sampling frequency
of the bearing vibration signal is F and the phase space
vector is not reused.

x
− �

x − min(x)
max(x) − min(x)

. (2)

Combine the reconstructed phase space coordinates with
the labels of the original signals to build new training samples.
Since the phase space has the same topological properties as
the original bearing vibration signal system, the regularity of
the bearing time-series signal in the high-dimensional space is
restored in the coordinates. ­erefore, any coordinate in
phase space represents the state of the original bearing vi-
bration signal system and contains corresponding features.
Compared with the features included in the original signals,
the features in the phase space coordinates are more obvious
and easier to be identi�ed by the classi�er.

3.2. Bearing Fault Classi�er and Its Training. Our bearing
fault classi�er is designed based on CNN and the residual
block. ­e classi�er uses 7 network layers, of which the
Conv_x network consists of convolutional layers and ReLU
activation operations. ­e full connection layer used 100
neurons, and the output layer used 4 neurons. ­e �rst layer
of our network uses a larger convolution kernel and then
reduces the size of the convolution kernel. ­e detailed
structure is shown in Figure 3.

Our bearing fault classi�er takes the phase space coor-
dinates of the bearing vibration signal as input. In the
classi�er, the input matrix �rst ªows through the Conv1_x

W1,...,N
(1)

W1,...,N
(2) W1,...,N

(M)

Train the first
classifier f(1)

f(1),err(1),α(1)

f(2),err(2),α(2)

f(M),err(M),α(M)

output(x) = arg max
k

M

Σ
m=1

α(m).I(f (x)
(M) = k)

Train the second
classifier f(2)

... Train the last
classifier f(M)

Figure 2: AdaBoost model structure.

Input: M classi�ers, training samples, and test samples.
Output: A strong classi�er and the test sample prediction values.
(1) Initialize the observation weights wi � 1/n, i � 1, 2, . . . , n;
(2) for m� 1 to M:
(3) Fit a classi�er f(m)(x) to the training data using weights wi;
(4) Compute err(m) � ∑ni�1 wiΙ(ci ≠f(m)(xi))/∑

n
i�1 wi

(5) Compute α(m) � log(1 − err(m)/err(m)) + log(K − 1)
Where K is the total number of sample classi�cations;

(6) Setwi⟵wi · e(α
(m) ·Ι(ci ≠f(m)(xi))), i � 1, . . . , n;

(7) Renormalize wi;
(8) end

Output(x) � argmaxk ∑
M
m�1 α

(m) · I(f(m) � k)
(9) Output
End

ALGORITHM 1: SAMME.
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and then through Conv2_x, Conv3_x, the fully connected
layer, and the output layer in sequence. In the Conv1_x
module, the input matrix performed convolution operations
according to (3) using 64 di�erent convolution kernels with
a size of 7 ∗ 7. To avoid the deviation of the result distri-
bution after the convolution operation, the batch normal-
ization (BN) technique is used to standardize the
convolution result, so that the convolution result obeys a
normal distribution with a mean of 0 and a variance of 1.
­en, the result of BN is nonlinearly transformed using the
ReLU activation function (f(x) � max(0, x)). Di�erent
from the Conv1_x module, the Conv2_x module �rst uses
the maximum pooling technique that takes the maximum
value in a �xed-size sliding window to reduce the density of
data features and then uses two convolution layers with
smaller kernels to perform convolution operations on the
input. After the second BN operation, Conv2_x uses the sum
of the result of max-pooling (as the observed value of re-
sidual block) and the result of BN as the input to the
nonlinear activation function. Conv3_x also has two con-
volution layers, the di�erence is that to make the observed
value of the residual block of Conv3_x own the same shape
as the second convolution result of Con3_x, the observed
value is processed with a convolution of size 1 ∗ 1. In the
fully connected layer and the output layer, the input is
processed in the same way as equation (4).

y(l+1)u,μ � ∑
K

n�1
∑
K

m�1
x(l)[n + u,m + μ] × w(l)i [n,m]{ } + b(l), (3)

y(l+1)i � ReLU ∑
J

j�1
x(l)j × w(l)i,j + b

(l)
i

 . (4)

In (3), x(l) represents the input matrix of the l-th layer, K
is the size of the convolution kernel, and w(l)i and b(l)

represent the connection weight and activation parameter of
the i-th convolution kernel of l-th layer (all convolution
kernels of the same convolution layer shared the same ac-
tivation value). In equation (4), i represents the serial
number of neurons in the full connection layer, j means the

Input: ­e task distribution Ρ(T), learning rate β.
Output: θ
(1) Initialize θ and α;
(2) while not done do
(3) Sample batch of tasks Ti ∼ Ρ(T)
(4) for all Tido
(5) LSupport(Ti)(θ

(t))⟵ (1/|Support(Ti)|)∑(x,y)∈Support(Ti)l(y, fθ(t) (x))
(6) θi′ � θ(t) − α∇θ(t)LSupport(Ti)(D

Support
Ti

)
(7) LQuery(Ti)(θi′)⟵ 1/|Query(Ti)|∑(x,y)∈Query(Ti)l(y, fθi′(x))
(8) end
(9) (θ(t+1), α(t+1))⟵ (θ(t), α(t)) − β∇(θ(t) ,α(t)) ∑TiLQuery(Τi)(θi′)

End

ALGORITHM 2: Mata-SG D.

Input

Conv1_X

Conv2_X

Conv3_X

Con (64, 7*7, 2)
BN

ReLU

Con (64, 3*3, 1)
BN

ReLU

Con (32, 1*1, 1)
BN

ReLU
Con (32, 1*1, 2)

Con (64, 3*3, 1)
BN

+

+

Max Pooling 2D
(3*3, 2)

ReLU

Con (32, 3*3, 2)
BN

ReLU

Flatten

Dense (100)

Full
connect

Output
Dense (4)

Figure 3: ­e detailed structure of the bearing fault classi�er.
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position number of the input matrix, w
(l)
i,j represents the

weight of the i-th neurons to the j-th value of the input, and
b

(l)
i is the bias of the i-th neurons of l-th layer.

To prevent overfitting in the training process, we added
the following judgment statements after step 9 of Algorithm
2 and used the modified Algorithm 2 to update the network
parameters of our bearing fault classifier.

If Acc_of_Train≥ 0.9 and Acc_of_Train − Acc_of_
Validation> 0.1:
Number_of_ Overfitting ++;
else:
Number_of_ Overfitting� 0;
If Number_of_ Overfitting> 5:
break;

3.3. 9e Integrating Step of Multiple Bearing Fault Classifiers.
Combining multiple weak bearing fault identification clas-
sifiers designed in Section 3.2 can generate a stronger
bearing fault identification classifier using the AdaBoost
algorithm; however, unlike the SAMME, our method divides
the training data into a support set and a query set, calculates
each sample weight of the support and query set, and up-
dates the classification error with the sample weights. *e
integrating steps of our bearing fault classifiers are shown in
Algorithm 3.

*is algorithm uses the Meta-SGD learning strategy to
decrease the value of the objective loss function and update
the network parameters; it not only has the characteristics of
the meta-learning strategy to quickly converge but also
adjusts the learning rate based on the learning task. *e
initialization of neural network parameters has an important
impact on training. In order to make the network get good
initialization parameters, the algorithm initializes the pa-
rameters of the next classifier in the parameters of the
previous classifier during the iterative training process.

*e algorithm needs to determine 2 hyperparameters
in advance.*ey are the learning rate β of Algorithm 2 and
the number of data points of the training sample. *e two
parameters have a great influence on the algorithm. First,
the learning rate β will affect the learning speed of meta-
SGD; second, the number of data points of the training
sample determines the shape of the classifier input data,
and the execution effect of the coordinate delay method
algorithm will be affected by this parameter. If it is too
large, it will increase the interference data, and if it is too
small, the high-dimensional phase space of the bearing
vibration time-series signal cannot be accurately estab-
lished. In this paper, we set β with 0.001, and the number
of the data points is 1024.

4. Experiment

*e fault identification accuracy under different working
conditions is an important indicator for measuring the
rolling bearing fault identification method. *is paper
verified the effectiveness of the proposed method by cal-
culating the test accuracies of bearing fault identification on

the artificial and natural bearing fault dataset collected from
different loads, different speeds, and different fault
conditions.

*e experiments were conducted on the Tensorflow
CPU 2.7 platform programming with python. *e hardware
and software environments included core i7-4790K 4.0GHz
processor, 16G memory, and Windows Server 2018 oper-
ating system.

To eliminate the impact of accidentality, each experi-
ment in this paper was performed 5 times independently,
and the average value of 5 test accuracy was used as the
experimental results.

4.1. Experiments on the CWRU Dataset. Artificial bearing
fault data set CRWU [34] consists of bearing vibration time
serial signals in the state of normal, internal circle fault, outer
circle fault, and rolling bodies fault. *e CWRU dataset is a
representative data set in the field of bearing fault diagnosis.
Many scholars got positive results when they used the
CWRU to perform simulation experiments [35, 36].

4.1.1. Experimental Data. *e bearing vibration signals used
in this case were sampled from the 6205-2RSJEM SKF rolling
bearings at a sampling frequency of 12 kHz. *e fault types
of these signals are associated with 4 different bearing
damage diameters, recorded as A (0), B (0.007 inches), C
(0.014 inches), and D (0.021 inches). *ese signals were cut
into several segments. Each contained 1024 data points and
was used as an experimental sample. *e experiment
samples are selected from the 16 kinds of work conditions
described in Table 1 and are used to carry out three groups of
small sample experiments. *ree groups of experiments
randomly selected 10 samples per class for testing, and these
testing samples have the same labels and same working
conditions as training samples.

4.1.2. Experiment and Result Analysis. According to Algo-
rithm 3, three group experiments were conducted. *e first
group experiment was a variable power experiment. *e
samples of normal, inner circle fault, outer circle fault, and
rolling element fault are randomly selected from 8 working
conditions numbered 1, 5, 9, 13, 2, 6, 10, and 14 in Table 1 to
carry out 4-way and 20-shot experiments. Similar to the first
group experiment, the second group experiment was a
variable fault degree experiment, in which samples were
randomly selected under four operating conditions num-
bered 1, 2, 3, and 4. *e third group of experiments was the
variable power and fault degree experiments, and samples of
five operating conditions of 1, 3, 4, 5, 10, and 14 were
randomly selected. *e sample distribution of the three
experiments is shown in Table 2. Calculated the test accuracy
and the test results are shown in Table 3.

In the three groups of experiments, the test accuracies of
the proposed method are greater than 95% and the standard
deviations of the accuracy of the three experiments are
within 3 when the number of training samples of normal,
inner ring fault, outer ring fault, and rolling element fault is
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20 and in a variety of working conditions composed of three
different factors of bearing fault degree, speed, and load.
Figure 4 is the convergence process of loss value and vali-
dation accuracy under the 4-way and 20-shot experiments
with variable power and fault degree.

During the training process of the first classifier, the
value of the target loss function continued to decrease, the
test accuracy rate continued to increase, and the value of the
network parameters was continuously optimized. *e test
accuracy of this classifier exceeded 90%. After the first
classifier, the four classifiers were fine-tuned according to the
training dataset with different sample weights in the training
of the second, third, fourth, and fifth four classifiers. Finally,
five different classifiers were obtained, which complemented
each other, their test accuracy was all above 90%, and the
final test accuracy of our method reached 100%.

*e above N-way and K-shot experiments show that the
proposed method can filter the influence of the three factors
of speed, load, and fault degree on the bearing fault iden-
tification to a certain extent whether it is applied in the
constant or variable condition. *e proposed method has
good accuracy and stability for the fault identification of
small sample bearings with different speeds, loads, and fault
degrees.

4.2. Experiments on XJTU-SY Dataset. To further verify the
effectiveness of the proposed method, the natural bearing
fault data set, XJTU-SY [37], was used for our experiments.

4.2.1. Experimental Data. *e sampling frequency is
25.6 kHz in the XJTU-SY experiment, and the XJTU-SY
dataset also includes the faults raised in the outer circle,
inner circle, and rolling bodies.*e bearing vibration signals

sampled from eight different conditions were randomly
selected to form training sets and test sets. Every experiment
sample has 1024 data points, and its type and its labels are
shown in Table 4.

4.2.2. Experimental Results and Analysis. *e 4-way and 20-
shot experiment (experiment 4) is carried out by randomly
selecting normal, inner fault, outer fault, and rolling element
fault samples from the working condition numbered 18 in
Table 4. *e test results are shown in Table 5.

*e results of experiment 4 show that the identification
accuracy of the proposed method for natural bearing fault is
still high under the small number of training samples, and
the test accuracy of the 4-way and 20-shot is more than 96%
when the training samples and test samples are in the same
working condition. Figure 5 shows the confusionmatrixes of
the predicted value of the test sample in the 5 experiments.

From the confusion matrix, the predicted values of label
0 were always consistent with the actual values, and the
prediction accuracy was 100%; the prediction accuracy of
other labels fluctuated slightly, and the error mainly came
from the wrong prediction of label 1 as a label 3. In the end,
the prediction results of each classifier were excellent. *e
prediction accuracies of label 1 were above 90% for 4
consecutive times, the prediction accuracies of label 2
exceeded 99%, and the prediction accuracies of label 3
exceeded 90% four times. *e recognition rate of 100% fault
samples and nonfault samples means that the proposed
method can accurately distinguish between fault samples
and nonfault samples, and the fault location accuracy rate of
94.7% shows that the method also has a good ability to
identify natural bearing faults under known working
conditions.

Inputs: Number of classifiers, training and test samples composed of rolling bearing vibration signals, and the sample labels.
Outputs: Bearing fault identification classifier and the prediction values of the test samples.
(1) Set β with 0.001 for Algorithm 2;
(2) For all classifiers do:
(3) Decompose the bearing vibration signals and construct the new training set, verification set, and test set according to the data

preprocessing step described in Section 3.1;
(4) Divide the training set into support and query sets with the ratio of 1 :1;
(5) Initialize the sample weight of the support and query set with w

support
i � (1/Num S), i � 0, . . . ,Num s − 1; w

query
ji � (1/Num_q),

j � 0, . . . ,Num q − 1, where Num s and Num q are the numbers of the sample of the support set and query set;
(6) Set the target loss function with the cross-entropy (lCE(p, q) � − 􏽐(p(x)log(q(x)) + (1 − p(x)log(1 − q(x))) × w(x)), where p

is the predictive value, q is the true value, and w is the sample weight);
(7) Update the parameters of the first classifier using the support set and query set according to the modified Meta-SGD;
(8) Calculate the identification error rate of the training set according to equation (2);
(9) Calculate the weight coefficient of the classifier according to equation (3);
(10) Update the sample weight of the training sample, and normalize these weights according to (4);
(11) Use the network parameters of the previous classifier to initialize the network parameters of the next classifier;
(12) Train the next classifier using the training set updated with the new weights according to the modified Meta-SGD;
(13) end
(14) Calculate the prediction values of the test sample according to equation (5), output the prediction values and the integrated

classifier.
End

ALGORITHM 3: Our bearing fault identification algorithm.
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Our method can be viewed as a combination of CDPSR
data preprocessing, residual network, Meta-SGD, and
AdaBoost, which is insensitive to changes in bearing load,
rotational speed, and failure degree. To analyze each part in
the proposed method, we performed the ablation experi-
ments. First, we analyzed the contribution of the residual
network designed in Section 3.2 by comparing two different
types of combinations of CNN+CDPSR+Meta-SGD+
AdaBoost and ResNet +CDPSR+Meta-SGD+AdaBoost, in
which CNN consisted of a stack of simple convolutional
layers and max-pooling layers. Second, the effect of the
Meta-SGD learning strategy method is analyzed by com-
paring ResNet +CDPSR+Meta-SGD+AdaBoost and
ResNet +CDPSR+ SGD+AdaBoost, and the use of SGD
was described in reference [23]. *en, by comparing
Resnet +Meta-SGD+AdaBoost and ResNet +CDPSR+
Meta-SGD+AdaBoost, we discussed the influence of the
reconstructed bearing vibration timing signal on the
method. Finally, the influence of AdaBoost on this method
was analyzed by comparing ResNet +CDPSR+Meta-SGD
and ResNet +CDPSR+Meta-SGD+AdaBoost. *e test re-
sults of the ablation experiment are shown in Figure 6.

From the results in Figure 6, the bearing fault recog-
nition accuracy of the classifier using the residual network
was 6% higher than that of the CNN classifier, Meta-SGD
had a greater improvement in bearing fault recognition than
SGD, and the CDPSR method played a positive influence on
the fault identification. From the variance of the test ac-
curacy of ResNet +Meta-SGD+CDPSR and ResNet +Meta-
SGD+CDPSR+AdaBoost, we can see that AdaBoost also
played a positive role as a stabilizer for the proposed method.
Hence, the four parts of CDPSR, residual network, Meta-
SGD, and AdaBoost had made positive contributions to the
proposed method. Residual network and Meta-SGD can
effectively improve the test accuracy; CDPSR data pre-
processing and Adaboost have significant impacts on the
stability of the method.

To analyze the advantages of our method, the com-
parison experiment was carried out under the same con-
ditions as experiment 4. *e test accuracy of the proposed
method, the WDCNN method [16], and the CNN-SVM
method [17] would be compared.

*e WDCNN method proposed by Zhang et al. in 2017
included a specific deep network (WDCNN network), which

Table 1: Work conditions of the CWRU experiment.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Load (hp) 1 2 3 0
Motor speed (rpm) 1772 1750 1730 1797
Damage degree A B C D A B C D A B C D A B C D

Table 2: *e bearing status, label, and quantity of the experimental samples.

No. Condition no.
Normal Inner fault Outer fault Rolling fault

Label Quantity Label Quantity Label Quantity Label Quantity

1

1 0 5
5 0 5
9 0 5
13 0 5
2 1 5 2 5 3 5
6 1 5 2 5 3 5
10 1 5 2 5 3 5
14 1 5 2 5 3 5

2

1 0 20
2 1 7 2 7 3 7
3 1 7 2 7 3 7
4 1 6 2 6 3 6

3

1 0 10
5 0 10
10 1 5 2 5 3 5
14 1 5 2 5 3 5
3 1 5 2 5 3 5
4 1 5 2 5 3 5

Table 3: Results of the three group experiments.

Experiment number
4-way and 20-shot

Test accuracy Standard deviation
1 (92.5 + 97.0 + 95.0 + 100 + 97.5)/5� 96.4 2.5
2 (97.5 + 92.5 + 100 + 92.5 + 95.0)/5� 95.5 2.9
3 (92.5 + 100 + 95.0 + 92.0 + 95.0)/5� 95.0 2.7
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takes the wide kernels in the �rst as convolutional layers and
small convolutional kernels in the preceding layers. ­e
method slices the training samples with overlap to obtain
huge amounts of data, then uses raw vibration signals as

input, and trains the WDCNN network using the back-
propagation algorithm detailed in reference [16].

­e CNN-SVM method combines both the merits of
CNN and SVM, which �rstly uses the 2D representation of
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Figure 4: Convergence process of loss value and validation accuracy metrics in one training session. (a) Convergence process of loss value.
(b) Convergence process of veri�cation accuracy.
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raw vibration signals as input, then trains the original CNN
with the output layer for several epochs until the training
process converges using stochastic gradient descent, and
�nally replaces the output layer with the SVM, which in-
cluded the radial basis function (RBF) kernel. ­e optimum
scheme used in this method was elaborated in reference [17].

­e WDCNN and the CNN-SVM method are typical
methods in the application of fault-bearing recognition. ­e
fault identi�cation results of the comparison experiment are
shown in Figure 7.

In the comparison, the residual network designed for our
method and the network used in the WDCNN method have
the same number of network layers and the same scale of
learning parameters.­e average result of the �ve CNN-SVM
experiments was 82.5%, and the average result of the
WDCNNwas 90.5%.­e test accuracies of both theWDCNN
and our method were above 90%, and our result was 96%.
Compared with the test accuracy of CNN-SVM and
WDCNN, the test accuracy of our method was higher.
Moreover, the test results of our method were 95 to 97.5, the
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Figure 5: Confusion matrix of test samples in 4-way and 20-shot of experiment 4.

Table 4: Bearing fault state and its label of XJTU-SY dataset.

Condition no. Load (kN) Rotating speed (rpm)
Bearing state

Normal Inner fault Outer fault Rolling element fault
17 10 (h3) 2400 1 2
18 11 (h2) 2250 0 1 2 3
19 12 (h1) 2100 0 3

Table 5: Test results of experiment 4.

Test accuracy Standard deviation
(95 + 96.25 + 97.5 + 96.5 + 95)/5� 96.05 1.2
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value range was relatively narrow, while the value range of the
other two methods was relatively much wider. ­erefore, the
proposed method has a certain improvement in the accuracy
of bearing fault identi�cation, and its stability is better.

5. Conclusions

Anovel bearing fault identi�cationmethod formulticonditions
and small samples was proposed to challenge the problems of
lacking fault data and poor performance. To verify the e�ec-
tiveness of the proposed method, the arti�cial and natural
bearing fault signals were taken to experiment with as a case
study. ­e result shows that the proposed method realized
accurate fault signal identi�cation under multiple working
conditions and small samples, and its accuracy rate of bearing
fault positioning exceeds 90%. Bene�tting from the

reconstruction of high-dimensional space of bearing vibration
time series by coordinate delay construction method, extrac-
tion of the phase space features using the convolutional neural
network, the transmission of the gradient to other layers by
residual block, updation of the classi�er parameters by Meta-
SGD, and integration of multiple classi�ers by AdaBoost
method, the proposed method gets excellent bearing fault
feature extraction and high fault identi�cation ability. Finally,
compared with other advancedmethods, the proposedmethod
also has certain advantages. From these cases, the proposed
method is very e�ective.

­e proposed method can accurately identify bearing
faults under small samples and multiworking conditions
without manually setting fault features. ­erefore, the
proposed method has a certain value in some application
areas with complex working conditions and di�culty
obtaining a large number of bearing fault samples, such as
aviation bearings.
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