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�e environmental e�ect of the meetings, incentives, conventions, and exhibitions (MICE) industry is as extensive as its economic
impact. Visitors attending events use a wide range of service providers, including airline car rental �rms, restaurants, hotels,
theaters, and tour operators. Traditionally used tourism demand forecasting approaches rely heavily on univariate time series and
multivariate regression models. Although these function-based prediction systems have demonstrated some e�ectiveness in
forecasting tourism, they are unable to accurately capture the link between tourist demand and supply as a feed-forward neural
network does (FFNN). Research has shown that an FFNN can outperform regression and time-series algorithms when it comes to
forecasting tourism data. �is research, for the �rst time, expands the use of neural networks in tourist demand creation by
combining a hybrid FFNN and chimp optimization learning algorithm (i.e., FFNN-ChOA) into a nonlinear tourism demand
dataset. In terms of predicting accuracy, FFNN-ChOA surpasses traditional backpropagation neural networks, regression models,
and time-series models.

1. Introduction

No amount of unsold plane tickets or empty hotel rooms can
be stored. Short- and long-term business predictions are
critical in the tourist sector because of their cyclical nature.
Researchers in tourism have attempted to apply several
mathematical methodologies to depict the quantitative link
between one demand and its antecedents. Alternatively,
a connection analysis for the regressionmodel might be built
entirely on its historical performance. �e previous per-
formance of these relationship models is then utilized to
anticipate or predict future performance. Building a re-
lationship model is only possible if you have a wealth of data
at your disposal, much of which should be old [1, 2].

In the past, manual (or visual) link detection methods
included desk analysis of raw data, phrase identi�cation
(looking for keywords), and an ad hoc search for distinct
patterns. �e downside is that these methods of manually
identifying relationships are cumbersome and time-con-
suming. Tourism scholars and practitioners are frequently

confronted with a mountain of raw information. In the
tourist business, automated link identi�cation is almost
never employed [3]. Instead, past research has relied heavily
on appropriate time-series models and multiple regression
analyses to predict and anticipate relationships. Models that
utilize time-series data to predict future outcomes do not
make any assumptions about other variables; instead, they
use historical data to create a mathematical function that
depicts how a variable has performed in the past. Estimated
values can be forecasted using the created function [4].

For forecasting purposes, time-series models perform
relatively well because of their simplicity. As a result, it is
impossible to use time-series forecasting models to make
accurate predictions about the future. An independent
variable and a group of dependent variables are linked to-
gether in a multiplex mathematical equation in multiple
regression analysis models. �e dependent variable’s future
values can be predicted using this function [5]. Developing
a multiple regression model that incorporates economic
elements, such as income and travel costs, is known as an
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econometric model. 'ere are some drawbacks to using
multivariate regression models, notwithstanding their great
explanatory power and strong prediction accuracy; multiple
interactions among some of the independent factors and
challenges with data collection are the two most significant
drawbacks of this study [6].

Modeling the human brain’s ability to learn is done using
neural networks [7, 8]. Many basic functional units (called
nodes) operate in parallel without any central control in
a neural network. 'e weights of the interconnections be-
tween nodes can be changed during the learning process. An
effective neural network is a function of the connection
technique and the type of the processing elements it uses. An
FFNN, for example, has connections that create an acyclic
graph that may express linearly separable functions [9].
Underwater sound processing, robotics, marine animal
identification, wireless networks, and sonar target recog-
nition have all benefited from the use of neural networks. To
better predict overnight backcountry stays in US national
parks, researchers [10] used an ANN in their investigation.
As a result of their research, the researchers concluded that
using a backpropagation ANN with weekly time-series data
can improve predicting accuracy significantly [11]. A com-
paratively small number of articles have employed neural
networks for tourism demand prediction [12]. It was shown
that an FFNNmight be used to simulate the Chinese desire to
travel to Honk Kong (expressed by a lower-dimensional
function). Annual Japanese arrivals were predicted more
accurately using the FFNN model than with multiple re-
gression or naı̈ve models such as the simple moving average
or exponent smoothing, according to the researchers in
Reference [3]. ANNs and nonlinearly separable data have
never been linked in a published study before, but that may
soon change. Indicative trends can be seen in linearly sep-
arable data sets that can be represented by linear functions. A
linearly separable function cannot reflect all of the data in the
tourism demand spectrum. Hence, the fundamental goal of
this study is to examine whether a hybrid FFNN and chimp
optimization learning method can be used to predict the
connection of nonlinearly distinguishable data in tourism
demand. By using FFNN-ChOA in conjunction with exter-
nally supplied real data, an FFNN may be further extended.
Using the feedback, theweights are then recalculated fromthe
output nodes to the hidden node(s) until the network
properly categorizes all training patterns.

According toReference [13], there are twoprimary groups
of metaheuristic algorithms: single-solution and population-
based. In the earlier category, the search process begins with
a single feasible solution.'is single potential solution is then
enhanced through iterations. In contrast, population-based
algorithms optimize utilizing a set of solutions. In this in-
stance, the search procedure begins with an initial random
population (many options), which is then improved through
iterations. Population-based metaheuristics offer several
benefits over single-solution algorithms:

(i) Multiple solutions communicate knowledge about
the search area, resulting in abrupt jumps toward
the attractive portion of the search area

(ii) Multiple optimal solutions collaborate to prevent
locally optimum solutions

(iii) Generally, population-based algorithms are more
exploratory than single-solution optimization
algorithms

Swarm Intelligence Algorithm is one of the most in-
triguing subfields of population-based algorithms (SIA).

However, in this paper, we try to divide the meta-
heuristic algorithm by its nature-inspiring origin, as pre-
vious authoritative references have made these categories in
other ways [14, 15]. In this kind of categorization, there are
both single-vector and swarmmethods in each category. For
example, in the physic-based category, there is GA (pop-
ulation-based) and SA (single-solution-based).

Generally, ChOA has some advantages over otherMOAs
which has motivated us to use this algorithm for the
mentioned problem. Actually, the ability and intelligence of
chimpanzees are not identical, but they all do their duties as
participants of a group of hunters. Consequently, each
participant’s aptitude may be valuable during a particular
stage of the search event. Our motivation can be summed up
in five major reasons: clarity, adaptability, mathematical
notation process, avoidance of local optima, and the NFL
theorem.

Following a discussion of tourism demand forecasting
approaches and the motives for this investigation, the
remaining portions of this paper are arranged as follows. It
begins with an examination of the functions of the ChOA
algorithm and FFNN. As valuable as an FFNN maybe, its
capacity to analyze nonlinear data is severely limited.
Learning processes for the FFNN-ChOA, a modification of
the FFNN that can analyze data in any function, will be
discussed next. To model and estimate the demand for
Japanese tourists to 'ailand, an FFNN-ChOA is con-
structed using publicly available data (nonlinearly distin-
guishable data with a shock). 'is section explains how to
build a model from scratch. 'e empirical results section,
which depends on the data obtained from this research,
follows to display the experimental results of prediction
performance. 'ere are three ways to quantify the accuracy
of predicting results: mean absolute deviation, root mean
square deviation, and mean absolute percentage error. 'e
findings predicted by the FFNN-ChOA model are then
evaluated with those predicted by FFNN and other fre-
quently used regression and time-series global visitors de-
mand prediction models. When it comes to forecasting
demand for Japanese tourists’ visits to'ailand, the research
report and the practicability of an FFNN-ChOA are ex-
amined. Finally, in the concluding section, the significance
of this investigation is discussed and future research pos-
sibilities are suggested.

2. Background Materials

2.1. FFNN for MICE Evaluation Model. Multiple variables
have an effect onMICE; nevertheless, the processes by which
they do so remain unknown. FFNNs are ideally suited to
identifying MICE because of their “black box” mapping of
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input to output. 'is research develops an MICE rating
model using a metaheuristic-based FFNN.

'ere are exactly as many input nodes as there are inputs
in this structure. Until now, there is no defined way to
determine the quantity of hiding layer nodes. 'is value
range may be determined using

Hid − Node �
����������������
No − in + NO − out

√
+ ϕ, (1)

where No − in stands for the input layer’s number of nodes,
ϕ denotes the bias nodes and oNO − out stands for the
output layer’s number of nodes, according to the aforesaid
technique and simulation results. Additionally, the Kol-
mogorov theorem [1] enables the formulation for de-
termining the number of hidden layer nodes, as follows:

Hid − Node � 2 ×(No − in) + 1. (2)

'e FFNN-based MICE assessment model was created
utilizing the data from the previous paragraph, as shown in
Figure 1. As observed in this picture, feed-forward NNs
(FFNNs) feature one-way interconnection. 'e FFNN
outcomes are calculated using

pj � 
n

i�1
Xi × Wij  − θj, (3)

where Wij stands for the weight vectors from the i-th input
terminal to the j-th hidden node, whilst Xi stands for the i-th
node’s input and θj represents the j-th hidden node’s bias.
According to equation (4), a sigmoid function is used to
calculate each hidden layer node’s output:

sj �
1

e
−pj + 1

. (4)

Once the concealed nodes’ outputs have been computed,
the final result may be determined as follows:

qk � 
h

j�1
sjWjk,

Ok �
1

e
−qk + 1

.

(5)

'e most crucial components of FFNNs are their biases
andweights. 'e connection weight vectors for each node
must be set to the optimumvalueswhen employing anFFNN.

2.2. Chimp Optimization Algorithm. Fission-fusion is
a group that includes chimpanzees. 'ere is a constant flux
in the social structure in this sort of society. A person’s
ability and responsibility may change with time, like the rest
of society in general.'e concept of subgroups is introduced
in this algorithm because each chimpanzee group will have
its own unique potential to do a given job [16].

Driving, blocking, chasing, and attacking chimpanzees
are the four classifications. To guarantee a successful search,
they are given a range of tasks. Following their prey instead of
attempting to grab them, drivers are content to keep up with
them. Barricade’s built-in trees obstruct the prey’s escape
route. Chasers want to capture their prey swiftly. Finally, the
prey’s escape path into the lower woodland has been dis-
covered by the predators. Figure 2 depicts the process of
hunting at several points along the way. When chimpanzees
hunt in groups, they go through two unique stages: “Ex-
ploration,” in which they drive and block the prey while
following it, and “Exploitation,” inwhich they attack the prey.

2.2.1. .e Mathematical Model of ChOA. As previously
indicated, prey is pursued throughout the exploratory and
exploitative periods. Push and pursue the prey with the help
of equations (6) and (7):
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Figure 1: XRD patterns of calcium oxide expansion agent samples.
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d � −xchimp(t) · m + xprey(t) · c


, (6)

xchimp(t + 1) � −d.a + xprey(t),

(7)

where xprey and xchimp are, respectively, the prey and the
chimp position vectors, t denotes the number of iterations,
and a, m, and c are the coefficient vectors, which can be
represented as follows:

a � 2.r1 · f − a,

m � Chaos_ value,

c � 2.r2.

(8)

'e f parameter is nonlinearly reduced by the iteration
from 2.5 to 0. Furthermore, the range of the randomized
variables r1 and r2 is [0, 1]. 'ese random coefficients
prevent the algorithm from getting stuck in local minima.
'ese numerous chaotic maps reveal the effect of chim-
panzees’ sexual desires on hunting behavior in the form of
this chaotic vector, m.

fs dynamic behavior may be seen in Table 1 and Figure 3.
As you can see, T represents the maximum number of it-
erations, and t represents the current iteration. To improve
the ChOAs’ performance, a range of curves and slopes were
used to pick f coefficients.

Among all mathematical optimization techniques, lo-
cating the global optimum is a typical and difficult problem.
Generally, there are two essential phases that define the
preferred path to convergence toward the global optimum in
population-based optimization approaches (Exploration and
Exploitation). 'e participants must be urged to disperse
through the whole search area in the initial phases of
minimization. In other words, rather than concentrating on

local optimal solution, they ought to strive to investigate the
entire search area. 'e participants must use the knowledge
they have obtained in the later rounds to reach the global
optimum. In ChOA, we may optimize these two main phases
to discover global optimum with quick convergence speed by
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Figure 2: “Exploration” vs. “Exploitation.”(a) Exploration (b) Exploitation.
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Table 1: f vectors.

Group f
Attacker 1.95–2 t1/4/T1/3

Barrier 1.95–2 t1/4/T1/3

Driver (−3 t3/T3) + 1.5
Chaser (−2 t3/T3) + 1.5
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fine-tuning the parameter f. In light of these considerations,
we put forth the assailant, obstacle, follower, and driver of the
independent groups’ model.

Each set of entities in this approach independently at-
tempts to search the problem area using a strategy focused on
adjusting f. Particles can be thought of as a group with a co-
herent approach because they all exhibit the same behavior in
local and global search in standard population-based tech-
niques. However, any population-based algorithm might
theoretically produce more random and guided search at the
same time if it used various independent subgroups with
a common purpose. In this study, using various methods for
updating f,we theoreticallymodel the independent subgroups.
In other words, the subgroups act differently in terms of how
thoroughly they complete their tasks including exploration
and exploitation. Any continuous function having a range
between [0, L] can be used to implement the updating tech-
niques of independent subgroups.

Before they can try to catch the prey, they must first
locate it by driving or blocking it; then, they must encircle
it until they determine its location. 'e search is conducted
by intruders. Driver, barrier, and chaser may all be in-
volved in a chase at times. 'e proper location of the prey is
unknown in the first iteration. In order to deal with this
issue, it is reasonable to assume that the attacker will be in
the same place as the prey. Driver, barrier, and chaser
locations should be updated based on the attacker’s lo-
cation. To keep the best answers, other chimpanzees are
prompted by the best chimpanzees to change their posi-
tions. Equations (9) to (11) characterize this strategy as
follows:

dBarrier � xBarrier × c2 − x × m2




dAttacker � xAttacker × c1 − x × m1




dDriver � xDriver × c4 − x × m4




dChaser � xChaser × c3 − x × m3


,

(9)

x1 � −a1 × dAttacker + xAttacker

x2 � −a2 × dBarrier + xBarrier

x3 � −a3 × dChaser + xChaser

x3 � −a4 × dDriver + xDriver.

(10)

x(t + 1) �〈x1 + x2 + x3 + x4〉 ×
1
4
, (11)

Search agents’ positions are always up to date because the
chimpanzees in the search area regularly change their po-
sitions with respect to one another, as seen in Figure 4. As
searching agents move in a circle, the chimpanzee’s final
location may be seen.

'e chimpanzees will assault and pursue prey till the
victim comes to a stop, as was previously indicated. It is
necessary to drop the value of f linearly to replicate the attack
process. While f drops from 2.5 to 0 in subsequent rounds, it
is random in the range [−2f, 2f]. Figure 4 shows that
a chimpanzee’s future location can be anywhere between

[−1, 1] depending on the distribution of random integers.
Despite the recommended driving techniques, ChOA could
still be a chance of being caught in local minima. “Explo-
ration” is the term used to describe this period. As a result,
ChOA requires an extra operator in order to avoid becoming
entangled in locally optimal solutions and assure exploration
success.

Chimpanzees in the ChOAmove in various directions to
discover their prey and then unite to attack it. 'is action is
theoretically illustrated in Figure 5 by assigning the vector
“a” in such a manner that becoming stranded in local
minima, the chimps disperse from their prey and compel
individuals to rejoin at the location of their prey.

As previously stated, chimpanzees’ social motivation is
based on the hunt for food. Because the last piece of hunting
meat is so valuable, the chimpanzees are obligated to give up
their hunts. As a result, they engage in a frantic snatching of
flesh for collective nourishment. Finally, chimpanzee psy-
chosis may be simulated using chaos maps.
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Figure 6 and Table 2 detail the chaotic maps used to
improve the ChOA’s efficiency. 'ese systems, although
predictable, are capable of producing unpredictable results.
'e initial value of 0.7 is shared by all chaotic maps. Here is
a visual representation of the updating process:

xchimp(t + 1) �

Chatic value if μ>
1
2

xprey(t) − a.d if μ<
1
2

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where μ represents a randomized number between 0 and 1.
In this equation, the normal behavior of chimp for

changing position xchimp(t + 1) � xprey(t) − a.d. is sub-
stituted by values from the chaotic map (Chaotic value ) to
provide chaotic behaviors for justification of sexual moti-
vation of chimp. Indeed, this term reduces the risk of getting
stuck in local minima by changing the search space, cha-
otically [17]. In fact, by using the chaotic maps, we can
control how the search space is changed in addition to the
random behavior.

To summarize, ChOA begins with the creation of
a random chimpanzee population (candidate solutions). All
chimpanzees are then classified as attackers, barriers,
chasers, or drivers, depending on their general mannerisms
and habits. When it comes to updating their coefficient of
variation, the chimpanzee groups adopt a unique strategy
(f). In this repeated process, the prey’s position is guessed by
the attacker, the barrier, the pursuit, and even the driver.
Updates are made to the prey’s distance from each of the
available solutions. Use an adaptive modification of the
parameters c and m to avoid local optima. As a further
speed-up, the amount of f has been reduced from 2.5 to zero.
Otherwise, they would all rush toward the food if it were
available. Finally, the use of chaotic maps speeds up con-
vergence by preventing local minima from forming.

3. Methodology

3.1. Training an FFNN Using ChOA. In this section, the
proposed FFNN-ChOA training method for the FFNN is
discussed. ChOA is used to train an FFNNwith just a hidden
unit. 'e effectiveness of this training technique relies
heavily on ChOA’s depiction of FFNN elements (search
agents) and its objective function selection.

In order to encode all the different FFNN weights and
biases for each individual chimpanzee, we use a one-di-
mensional vector for each one. For each vector, the total
length may be calculated using equation (13). For example,
equation (14) produces the FFNN ultimate vector seen in
Figure 7, which illustrates this encoding strategy:

Length � (n − h) +(2 − h) + 1, (13)

Chimp � w1w2w3 . . . w11w12b1b2b3b4b5b6 . (14)

MSE is used to evaluate the chimpanzees’ performance,
which is carried out by calculating the difference between the
needed and evaluated values for all training samples that

were generated by the search engines (FFNNs). An MSE
solution is shown in

MSE �
1
N



N

i�1
fr − fe( 

2
. (15)

3.2. Dataset. Official sources from Japan and 'ailand were
utilized to learn about and test various network configu-
rations in this study. It was important to choose data that
were available, reliable, and capable of being quantified
during the modeling process. According to the following
sources, Table 3 contains essential information about the
Japanese number of tourists to 'ailand between 1991 and
2020 [18].

(i) 'e'ailand Tourist Association’s Statistical Report
of Tourism (1991–2020)

(ii) 'e 'ailand Government’s Department of Statis-
tics issued the Director of Internal Revenue Annual
Survey (1991–2020)

(iii) 'ailand Tourist Organization Executive Summary
(1991–2020) from the'ailand Tourist Organization

(iv) Japan’s Executive Yuan Accounting and Statistics
publishes the Republic of China’s Statistical
Handbook (1991–2020)

(v) 'e Finance and Information of the Executive Yen
of Japan publishes the Monthly Journal of In-
formation of the Japanese government (1995–2020)

(vi) 'ailand Tourist Association’s Visitor Arrival Sta-
tistics (1991–2020)

Because of the USD/Yen floating currency, this research,
like the previous one that used FFNNs to anticipate tourism
demand (Law and Au, 1999), measures all monetary values
in USD.'e number of Japanese visitors to'ailand may be
shown as a function of the following:

Arrival � f(SEPR, FORER, POPU, MAEX,

GDP, AVEHR),
(16)

where information is summarized in Table 4.
'e cost of transportation has also been utilized in

certain research to estimate international tourist con-
sumption. However, this analysis did not include trans-
portation expenses from Japan to 'ailand due to a lack of
data. According to Reference [19], the cost of transportation
is not a substantial or important influence on tourism de-
mand. As a result, these findings were extrapolated to in-
clude all Japanese residents in 'ailand in this investigation.

'ese variables were substituted for their real counter-
parts because the data were not readily available to us.
AVEHR was utilized as a reference for the living costs in
'ailand for Japanese visitors. In addition, MAEX served as
a stand-in for marketing costs associated with promoting
'ailand’s tourism business in Japan. GDP was also utilized
as a reference for the standard of living in Japan, while SEPR
was being used as a reference for the relative costs of goods
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Figure 6: Continued.
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and services in Japan. In Table 3, all of the monetary
numbers are expressed in US dollars and in real terms
compared to the year 1991. 'e SEPR for the year I was
determined in the same method as in earlier research by
Carey (1991) and Morley (1993):

SEPRi �
CPIi(Thailand)/CPI1991(Thailand)

CPIi(Japan)/CPI1991(Japan)
. (17)

3.3. .e FFNN-ChOA to Model the Japanese Demand for
Travel to.ailand. 'e goal of this study is to build a neural
network that can accurately predict how popular 'ailand
would be among Japanese tourists. A shift in China’s
tourism policies toward the end of 1998 permitted Japanese
tourists to go to China via a third nation.

A large number of Japanese tourists, particularly
those who had left China before the Communists gained
control, were eager to return to the country. 'ailand

became the most popular tourist destination for Japanese
citizens because of its handy location as a gateway to
China [20]. According to Table 1, Japanese tourists to
'ailand climbed by 322% in 1988, and the number of
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Figure 6: Chaotic maps.

Table 2: Chaotic maps.

Name Range
Chebyshev (−1, 1)
Gauss/mouse (0, 1)
Circle (0, 1)
Singer (−1, 1)
Iterative (0, 1)
Piecewise (0, 1)
Logistic (0, 1)
Tent (0, 1)
Sinusoidal (0, 1)
Sine (0, 1)
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Japanese visitors has continued to rise since then. From
1991 to 1998 and 1988 to 2020, the Japanese tourism
market in 'ailand displays two distinct tendencies. A
nonlinear function cannot describe the demand for 'ai
tourism in Japan, as it is nonlinearly separable after
a shock in 1988.

In addition to family and friends, China’s historical and
cultural attractions drew a large number of Japanese tourists.
'is compelled me to go to China more than anything else
on my list of potential travel destinations [20]. Japan’s
population had steadily increased since 1988, save for the
global recession of 1991 and China’s Qiandao Lake massacre

Table 3: An overview of Japanese tourist arrivals in 'ailand.

Year Service
price

Average hotel
rate (USD)

Exchange rate
(YEN/USD)

Japan population
(×1000)

'ailand marketing
expenses (USD)

GDP Japan
(trillion USD)

#Japanese
visitors

1991 1.39 152.77 0.007 100220 925147 2.33 85421
1992 1.33 166.11 0.007 103452 1524321 2.14 33251
1993 1.31 187.17 0.007 104862 1332556 3.25 32145
1994 1.35 191.51 0.008 105964 1214568 3.25 36542
1995 1.36 191.66 0.007 106823 1452142 3.65 375421
1996 1.50 196.33 0.007 107048 1952412 3.98 396521
1997 1.52 178.22 0.008 107830 1546321 4.01 39754
1998 1.16 171.33 0.007 108224 2136542 4.11 52147
1999 1.16 162.65 0.008 108702 2145222 4.52 65214
2000 1.18 161.47 0.007 109190 2145002 4.55 85421
2001 1.16 173.32 0.008 110127 3215406 4.52 95412
2002 1.16 197.22 0.007 110714 3652146 5.32 165324
2003 1.18 198.24 0.008 111314 3412516 5.69 254123
2004 1.11 199.25 0.008 112067 3325616 6.23 254133
2005 1.11 257.45 0.007 112508 3214563 6.87 354123
2006 1.19 251.33 0.008 112923 3321560 7.25 412563
2007 1.28 257.66 0.007 112938 3321456 6.32 541236
2008 1.30 279.55 0.008 113512 4215630 6.35 654123
2009 1.46 299.77 0.007 114053 4215630 7.85 754123
2010 1.52 321.14 0.007 114610 4223056 8.25 854123
2011 1.59 338.33 0.007 122612 4231562 8.66 965231
2012 1.60 373.55 0.007 122812 4231456 7.25 1230145
2013 1.70 355.54 0.007 122440 4235612 6.32 1345213
2014 1.86 301.12 0.007 124966 4556321 6.41 1452369
2015 1.89 253.33 0.008 123842 4556321 5.12 1854123
2016 2.14 233.78 0.008 124494 4865321 5.11 1854123
2017 2.27 239.63 0.008 124006 4878962 5.32 1945632
2018 2.39 267.41 0.008 124792 5213462 5.21 2546321
2019 2.52 279.75 0.008 125181 5569321 5.12 1632514
2020 2.53 288.44 0.008 125448 5564123 5.02 1245632
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Figure 7: Typical FFNN example corresponding to equation (14).
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in 1994, when 24 Japanese tourists were slain [20]. For
Japanese tourists, 'ailand’s proximity to China is not the
only reason to visit. 'ey can also buy, dine, and explore.

'ese data are ideal for evaluating the accuracy of the
FFNN-ChOA and other tourist demand forecasting models
due to the nonlinearity and two suggestive patterns in the
Japanese request for 'ailand travel seen in Table 3. An
FFNN-ChOA model is developed to predict the surge in
tourist growth in tourism. 'ere has not been a published
paper that makes an attempt like this yet. FFNN-ChOA
training (learning) and testing are based on data from Ta-
ble 3. Predicted arrivals from Japan were based on the first 25
of the 30 observations made between 1991 and 2020. Note
that the number of Japanese people arriving in 'ailand
changed dramatically in 1988. 'e first few years following
1988 are also included in the testing phase in order to retain
the information regarding this dramatic transformation.

'e variables in the six input nodes were as follows:

SEPR, FORER, POPU, MAEX, GDP, AVEHR. (18)

Output variables in this study included arrival, which
represents how many Japanese tourists arrived in 'ailand
in a given year. In this study, a ten-node hidden layer neural
network was utilized to estimate the number of Japanese
tourists that visit 'ailand each year.

A computer program was created using Windows 7 on
aCore i7PC for theFFNN-ChOAmodel, andTable 5provides
a detailed breakdown of the network and simulation.

Either starting with a tiny model and then growing it
bigger, or starting with a hugemodel and then shrinking it, is
how neuroscientists build the best neural network for a given
task. Fast convergence and consistent performance were
achieved with the utilization of 10 nodes in this study. 'e
following section summarizes the research’s findings.

4. Experimental Simulation

It was also used to predict Japanese tourist arrivals by FFNN-
ChOA in addition to five other forecasting models with the

same test data as the näıve moving average (NMA) (3),
multiple regression (MR), FFNN-DA, FFNN-NLBBO,
FFNN-SCA, and FFNN-IWT. Table 6 displays the default
value and setup parameters for these algorithms. A multiple
regression model uses a multivariable functional form to
model the connection between predictor variables and its
outcome variable. Given the form of equation (19), the
multiple regression obtains the following:

Arrival � a1 × SEPR + a2 × FORER + a3 × POPU

+ a4 × MAEX + a5 × G DP + a6 × AVEHR,

(19)

where a1 is a constant and the coefficients a2, a3, a4, a5, and
a6 are all variables.

4.1. Statistical Metrics. When determining how accurate
a model’s predictions are, a number of statistical metrics are
taken into account. 'ese include RMSE, R2, RRMSE,
MAPE, MAE, and MRE which are as follows:

R
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(20)

Table 6: Default value and setup parameters for these algorithms.

Algorithm Parameter Value

ChOA
f Figure 1

r1, r2 Random
m Table 1

NLBBO

μ 1 (0, 1)
η 1

Step size 1
Max (I) and (E) 0.005

μ
IWT α Linearly decreased from 2 to 0

DA

V 5 m ∕ s
Initial velocity 3 m ∕s

W 10−3 kg
Wing area 10−4m2

Bold values are vector-based.

Table 4: Japanese visitors’ information.

Abbreviation Information
Arrival Number of Japanese tourist arrivals in 'ailand
FORER Foreign exchange rate
SEPR Service price in 'ailand relative to Japan

MAEX Marketing expenses to promote'ailand’s tourism
industry

GDP Gross domestic expenditure per person in Japan
AVEHR Average hotel rate in 'ailand
POPU Population in Japan

Table 5: Simulation details.

Parameter Value
Input nodes 6
Output node 1
Maximum iteration 10000
Learning rate 0.001
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Figure 9: MICE value (FFNN predicted vs. actual value).
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Figure 8: MICE value (FFNN-DA predicted vs. actual value).

Table 8: Benchmark metrics for FFNN and other models.

Method R 2 RMSE MAE RRMSE MRE MAPE Rank

Training

NMA 0.73 0.065 0.053 0.088 0.027 2.574 6
FFNN-ChOA 0.98 0.017 0.015 0.012 0.036 0.640 42
FFNN-IWT 0.95 0.032 0.021 0.023 0.012 1.175 36

MR 0.87 0.040 0.033 0.053 0.018 1.653 24
FFNN-NLBBO 0.90 0.061 0.038 0.061 0.021 1.841 18
FFNN-DA 0.91 0.073 0.053 0.065 0.025 2.107 12

Testing

NMA 0.58 0.068 0.042 0.041 0.025 2.382 6
FFNN-ChOA 0.97 0.018 0.012 0.013 0.007 0.577 42
FFNN-IWT 0.94 0.027 0.018 0.016 0.013 0.984 36

MR 0.88 0.039 0.027 0.021 0.016 1.459 24
FFNN-NLBBO 0.82 0.043 0.030 0.027 0.018 1.666 18
FFNN-DA 0.76 0.044 0.034 0.029 0.020 1.860 12

Table 7: Benchmark metrics for the classic FFNN.

RMSE MAE MAPE % RRMSE R 2 MRE
0.06252 4.02E-02 1.285123 0.042100 0.5902 0.02388
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where Avi stands for the real value and Pvi
′ for the expected

values, respectively, and “m” stands for the quantity of
instances.

4.2.MICEForecastingUsing FFNN-ChOA. 'eFFNNmodel
was initially run without the use of a metaheuristic

optimization method. According to Figure 8, the forecasted
MICE model values are compared to the test datasets actual
MICE model values for comparison (20 percent of the total
data). According to Figure 9, predictions are accurate and
close to the data collected in numerous situations. 'e pre-
dictedMICEmodelsoftendeviate significantly fromtheactual
results. It is shown in Table 7 how the FFNN predictions were
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Figure 12: MICE value (FFNN-NLBBO predicted vs. actual value).
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Figure 10: MICE value (FFNN-ChOA predicted vs. actual value).
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Figure 15: Overall stacked ranking results.
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Figure 14: MICE value (FFNN-NMA predicted vs. actual value).
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analyzed using statistical markers. Even if the FFNN model’s
predictions for MICE models are not awful, more accurate
forecasts are needed before we can recommend it as a reliable
MICEmodelpredictor.'eFFNNmodel shouldbedeveloped
using metaheuristic optimization procedures.

ChOA is used in conjunction with NMA, MR, FFNN-
DA, FFNN-NLBBO, and FFNN-IWT in the next phase of
the experiment. Statistical results for FFNN-ChOA and five
more prediction models for training datasets are provided in
Table 8. Since the R2 for all six models is more than or equal
to 0.82, this study’s techniques provide significant training
advantages.

Following model training, the hybrid models were val-
idated and assessed using the test datasets that had been
generated from them. NMA, MR, FFNN-DA, FFNN-
NLBBO, FFNN-IWT, and FFNN-ChOA MICE model
predictions areshownand contrastedto the realmode in
Figure 10–14. Metaheuristic optimization tactics may be
seen to have a considerable impact on the FFNN model’s
performance in these graphs. It appears from the graphs that
all hybrid models increase prediction accuracy by decreasing
the difference between predicted and real MICE values. For
the testing datasets, statistical metrics are included in Ta-
ble 8. It appears that all six models can more correctly
forecast the MICE model than the FFNN approach; only the
FFNN-ChOA model performs at a high level of accuracy.

Table 8’s ranking technique for each benchmark is used to
examine and compare the models’ prediction performance.
Figure 15 shows the total ranking results in the form of
stacked bars. As shown in Figure 16, there are six statistical
metrics for the FFNN and six models to consider. When it
comes to training and testing, the FFNN-ChOA model has
proven itself to be the most accurate and dependable of the
bunch. 'is model’s intelligent optimization has several
advantages, including faster convergence and lower error
rates. Figure 17 shows a comparison using a Taylor diagram
based on correlation coefficient and standard deviation. As
for FFNN-ChOA, it has shown to be effective.

All of the models utilized in this study exhibit higher
forecasting ability than the traditional FFNN, as shown by
Figure 17. 'e MLP-ChOA, however, outperforms all other
models in terms of accuracy. In order to estimate the ICT
score, this article suggests utilizing the MLP-ChOA com-
bined approach.

5. Analysis and Discussion

Experimentation shows that the real number of Japanese
visitors and those predicted by FFNN-ChOA are closely
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Figure 16: Plot of the utilized metrics.
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related. In the test dataset, the high predicting accuracy of an
FFNN-ChOA does not maintain regarding the none of
Japanese demand for 'ailand tourism.

To put it another way, when things change dramatically,
the FFNN is unable to accurately predict the demand for
tourism. An FFNN-predicting ChOA’s output is precise,
with a reasonably tiny amount of inaccuracy, but on the
other hand, because the FFNN-ChOA projected value dis-
parities are so minor, it is clear that the FFNN-predictions
ChOA’s are accurate within a few percent. It is important to
note the low MAPE value of the ChOA technique, which
qualifies as extremely accurate forecasting.

6. Conclusion

For a nonlinearly distinguishable regression model, this
research has shown that an ANN’s predicting accuracy can
be enhanced by utilizing a ChOA learning strategy. Tradi-
tional FFNNs, on the other hand, are unable to detect the
patterns in nonlinear visitor numbers when significant
fluctuations occur. 'e use of a ChOA algorithm in tourist
demandmodels for predicting is a significant step forward in
this area. 'ere is no limit to the functions that may be
represented by FFNN-ChOA because of its inherent nature.
Results show that FFN-ChOAs are far more robust than
traditional tourism demand forecasting methods, which are
based on regressions and time series. Due to the large
number of processing nodes in FFNN-ChOA, even a few
nodes or weights can be damaged without interrupting the
network’s operation.

'is study’s findings will be useful to 'ailand’s tourist
policymakers, especially those involved in the planning
process. Despite this, FFNN-ChOA is not perfect. In
contrast to deterministic approaches, ANNs are less evident
to users. 'e FFNN-ChOAs do not use symbols, such as
arithmetic operations, to convey the modeling processes,
finding it challenging for scientists to explain the reasoning
behind specific conclusions. An FFNN-ChOA also has the
problem of perhaps necessitating an excessive amount of
training time. However, developments in high-speed digital
technology can overcome this training time issue. However,
despite the favorable results of this study, the applicability of
FFNN-application ChOA’s to tourist demand has to be
proven with some other nonlinear tourist demand datasets.
In the future, this might be accomplished. FFNN-ChOA
integration into tourism forecasting with multivariate data
and a higher level of dependency among characteristics
might also be investigated in the future. 'is study also
relied on data from credible and thorough government
publications for its testing data. To see if an FFNN-ChOA
model can accurately anticipate the associations between
noisy (i.e., including random mistakes) or inadequate
tourist demand data, it would be worthwhile to conduct an
investigation.
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