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Chemical process design is something that researchers must do before conducting chemical reaction experiments, and this step is
crucial for the entire chemical production. Because even if the relevant basic information of the institute is obtained, most of the
above data have not been verified by experiments, and researchers need to confirm through experiments. In addition, because the
market demand for chemical process products is very large, the types of chemical substances are increasing, chemical equipment
and instruments are becoming more and more complex, and these require researchers to design and study in advance. This
ensures the smooth production of products and the safety of researchers. However, the expansion of the equipment scale and the
complexity of the equipment make it more and more difficult to design the chemical process flow. There are many influencing
factors and levels to be considered when designing the process, and the data is also very difficult to predict and classify. In order to
solve these problems, this study discussed the countermeasures to deal with chemical process flow design in depth. Using the
method of deep learning, the problem of chemical process design was analyzed, and the performance of the method was ex-
perimentally studied. The results show that the chemical process flow based on deep learning is better than other process designs,
and its accuracy rate is higher than 94% in 10 experiments, which is higher than the other three methods. It can be seen that this
chemical process method can meet the needs of the current chemical process, and the product quality and work efficiency are

greatly improved.

1. Introduction

The most important thing in modern technology is chemical
technology, which plays a very important role in China’s
economic development and has a relatively high status. Due
to modern technological innovation, China’s chemical
processes, both in terms of enterprise scale and production
capacity, have been rapidly improved. People’s demand for
chemical processes is also increasing, and various chemical
process products have brought very considerable benefits to
people’s lives. Modern society is inseparable from chemical
production. The chemical process refers to the whole process
of turning raw materials into products after the chemical
reaction. There are many dangers of extreme conditions in
the chemical process flow, which requires very strict design,
in order to better control the smooth progress of the
chemical process flow and fundamentally improve its level.

At present, many scholars study chemical technology, but
there are relatively few studies from the perspective of deep
learning. Deep learning is a new form of machine learning,
which can imitate the human brain to interpret data, and its
performance on data is better than many methods. There-
fore, this study based on deep learning to study the design
and analysis of chemical process flow has certain practical
significance, and may be able to obtain good results.

The wealth brought by chemical technology to China’s
economy is very large, and it has brought many conve-
niences to people’s lives. Chemical process technology is also
constantly improving, and many scholars study chemical
processes. Al R studied the water quality testing problems of
ordinary people, developed related chemical process
methods, and optimized water-related parameters [1].
However, the algorithm he used to detect the concentration
of water pollution in the article could not actually get an
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accurate value. Bal’Chugov and Enhbat studied the chemical
process experiments of the Ark model and introduced
complex chemical process problems [2]. However, the data
he uses in the article are not up-to-date, which will cause the
results to be unrealistic. Frolkova analyzed the chemical
process technology work of the past few years and elaborated
the hierarchical structure of the chemical technology system
[3]. But he did not have a comprehensive description of the
technological innovations required by the comprehensive
experts. Horvat et al. established a program to assess the
cognitive complexity of chemical-technical problem tasks,
and used experiments to verify the feasibility of this program
[4]. But he did not take into account the possible influence
factors during the experiment.

After analyzing the research results of other scholars,
Makarov et al. studied the possibility of plasma chemistry
technology in converting machine wastewater and con-
firmed the use of organic dispersion medium [5]. But his
description of the water-coal composite fuel in the text is not
very detailed. Song et al. studied the chemical process sta-
bility in calcium-peptide solar cells and carried out related
experiments for analysis [6]. But he did not point out the
specific process of calcium-peptide solar cells in the text. Mi
et al. studied the formation process of the basic discipline of
chemical technology and analyzed the most important links
in the chemical process [7]. But the model he uses in the
study is not the most appropriate.

The application field of deep learning is very wide, and it
has many advantages. It can use more data or better al-
gorithms to improve the results of learning algorithms.
The innovation of this study is the use of a novel method,
deep learning, to study chemical process flow. During the
research process, a lot of relevant data were called for
analysis in a convenient way to help the future chemical
process.

2. Methods of Chemical Process Flow

2.1. Chemical Process. Chemical processing is the method of
converting raw materials into products through chemical
processing [8]. The scope of this technology is actually very
wide, and the operation process is also more. The early
chemical production was mainly based on experience, but after
the progress of the times, the production of this handicraft can
no longer meet the needs of society. Today’s production is
mainly based on modern technology based on scientific theory.
The content of chemical substances is very complex and there
are many types, and sometimes it is necessary to use empirical
techniques. In fact, this subject is also set up in the curriculum
of colleges and universities, usually industrial chemistry or
chemical technology, and the content of these two subjects is
basically the same. In general, the main development trend of
this technology is to control automation, large-scale produc-
tion, low consumption and low pollution, and optimize pro-
duction parameters [9]. The process study of this technology
can be seen in Figure 1 for details.

As shown in Figure 1, chemical production has to be
carried out in specialized laboratories, and instruments and
equipment also affect the entire chemical operation [10].
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There are also many types of chemical substances, and the
complexity is very large. Some chemical substances will
produce toxic gases, which are quite harmful to the human
body. Generally, when chemical reactions are carried out,
laboratory personnel need to bring protective measures. In
order to ensure the quality of the final output product, safety
precautions must be taken when conducting experiments.

The chemical production process can generally be rep-
resented by three steps [11]. Specifically as shown in
Figure 2.

As shown in Figure 2, the process of chemical pro-
duction generally has three steps. The first step is the
treatment of the raw material. In order to carry out the
chemical reaction, the raw material needs to be pre-treated
to make it reach the required state and specification as a
chemical reaction material before proceeding to the next
step [12]. Otherwise, the effect will be out of the experi-
mental purpose. Different raw materials require different
processing methods. Generally, different pretreatment op-
erations such as purification, concentration, mixing,
emulsification, or pulverization (pulverization is generally
aimed at solid materials) are required. Just like the first step
shown in the figure, industrial wastewater as a raw material
needs to be pre-treated first. The second step is a chemical
reaction. This is the most critical step in the production
process. When the raw material is pre-treated to meet the
requirements of the experiment, it is allowed to react under
certain fixed conditions such as temperature and pressure.
Of course, these conditions are generally extreme conditions
for humans, so researchers need to pay special attention to
safety issues, take protective measures, and consider safety
issues first in the design of the entire experiment. When the
raw materials reach the reaction conversion rate and yield
required by the experiment, it means that the experiment is
progressing smoothly. There are many types of chemical
reactions, including oxidation, reduction, and polymeriza-
tion. Through chemical reactions, people can obtain the
desired product or a mixture. The third step is product
refining [13]. This step is a finishing touch, and its purpose
is to separate the mixture obtained in the previous step,
remove magazines and other unwanted products, and
obtain a product that meets the final rule. This step can be
said to be better. In short, the entire chemical production
process must be carried out in specific equipment and
instruments, and the chemical and physical transforma-
tions need to be accurately completed after meeting the
operating conditions.

2.2. Chemical Process Design. The chemical process design is
also mainly divided into two stages [14]. The first stage is
preliminary preparation. Because researchers need to un-
derstand the properties of the raw materials before pro-
ceeding to the next step. The second stage is equipment. This
stage is the external conditions required in the chemical
reaction and the equipment to carry out the chemical re-
action. Together, these two phases are chemical process
designs. Researchers need to understand the characteristics
of the raw materials very carefully, as well as the properties of
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FIGURE 1: Chemical process studies.
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FiGURrE 2: Chemical production process.

the instruments and equipment, relevant security measures
should be fully implemented, in order to ensure the smooth
progress of the experiment. And the researcher must work
according to the research regulations and operate according
to the operation drawings, and the final product can meet
the target demand. The process design also has several basic
features [15], as shown in Figure 3.

As can be seen from Figure 3, there are three basic
features of this process design [16]. The first is the profes-
sionalism of the researchers. Because when conducting
chemical reaction experiments, it is necessary to have very
rich theoretical knowledge and practical experience of
chemistry, that is to say, a very strong professional quality is
required. And the professionalism of researchers is the
guarantee for the safe conduct and successful output of
experiments. And it also requires researchers to have very
flexible on-the-spot responses. The researchers play the
leading role in the whole design. They organize and analyze
the materials to make the design of the whole experiment
more scientific and accurate. The second characteristic is
danger. As far as it is known, many raw materials will be used
in the process design process, and some raw materials have
great hidden safety problems, and the risk factor is relatively
high, so the experimental process will also become dan-
gerous. At this time, researchers need to have a very high
degree of professionalism and take perfect protection and
inspection measures, to ensure the safety of the experiment.
The third feature is the complexity of the process [17]. The
process involves a lot of raw materials and a lot of types of

chemical substances. It not only requires researchers to be
deeply familiar with the basic knowledge of chemistry, but
also requires them to operate complex instruments and
equipment. Therefore, the entire chemical production
workload is very large, and the requirements for researchers
are very high.

When designing this process, the following points
should be paid attention to, as shown in Figure 4.

From Figure 4, we get information that three points
should be paid attention to when designing [18]. The first
point is the validity and completeness of the underlying data.
Because most of the basic materials used by researchers are
provided by scientific research units, which are basically
theoretical knowledge, lack of experimental proof and actual
production content, and the difference between chemical
production equipment required for chemical reactions is still
quite big. Therefore, these basic materials cannot meet the
design requirements. These data are not up to standard in
terms of completeness and availability. Therefore, re-
searchers must carry out experimental verification of these
data and test the correctness of the data to ensure the smooth
progress of the design work. The second point is the selection
and design of chemical equipment. Because the work of
chemical production is very complex and the conditions are
very extreme and harsh. When carrying out process design,
some special equipment problems of pressure vessels or
high-temperature resistant equipment will be encountered.
At the same time, science and technology are constantly
improving, the types of chemical materials are becoming
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more and more, and the types of equipment are gradually
becoming more abundant. Even the same production
equipment may have different materials and equipment
specifications. Therefore, when designing the equipment,
researchers need to pay attention to the selection of the
model of the equipment that must meet the process re-
quirements. If there are special requirements, the equipment
should also meet them. Even if the production scale is
relatively large, the overall harmony and rationality should
be considered when selecting equipment, and the equipment
should be optimized. And the safety of the entire process
progress needs to be guaranteed. The third point is the
design cycle requirements. Because of the increasing de-
mand for such products, the competition in the market is
also very fierce. In order to increase competitiveness, some
companies choose to shorten the design time of the process,
resulting in a decline in product quality. Sometimes product
performance cannot be guaranteed. Therefore, enterprises
should correctly understand the importance of design, and
ensure product quality in accordance with the prescribed
design cycle.

2.3. Deep Learning. A deep learning algorithm that learns
from historical data and then extracts useful information
hidden in the data [19, 20]. The more common network
structures in deep learning are as follows.

The first is a fully connected multi-layer neural network.
Its structure is shown in Figure 5.

The propagation process of the network is divided into
two types. The first is forward propagation. If the network
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depth is A, the regular term coefficient is, the expression is as
follows:

K=AU,U)+p2(9). (1)

The second is the backpropagation process. First, cal-
culate the gradient of the last layer of the loss function K:
H <—V5K,

(2)
FORL = A,A-1,...,1DO.

Get the gradient of the output of each layer, it can be got
a gradient of X;:

HeV oK = HG'(X). (3)

Finally, use the loss function K to calculate each layer:
Vi K = HS) | + V5D (9),

(4)
VK = H+ V@ (9).

The second network structure is a convolutional neural
network. It has representational learning ability. Each unit of
its neural network can be represented by Figure 6.

If ], represents the Oth layer feature of the convolutional
neural network, the formula can be obtained:

Jo=G(Jo-1 xEo +No). (5)
If layer O is a pooling layer, it can be got:
Jo = subsampling (J_; ). (6)

Each layer of forward propagation mentioned above is
actually activated by a nonlinear function. The general
nonlinear activation function is as follows:

1
HC)=—=,
I1+R
1-R* (7)
H(C) =——=,
2 1+R*

H(C) = MAX(0,C).

It can be seen from the above introduction that people
measure whether the deep learning model meets people’s
requirements by the size of the loss function value. If the
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value of the loss function is less than the accuracy given by
people in advance, it means that the deep learning model
meets the requirements of people. Otherwise, the correction
of the parameters in the model is achieved by the back-
propagation algorithm until the loss function value is less
than the given accuracy. In this part, people will briefly
introduce the common loss functions in deep learning. In
order to improve the generalization ability of the model,
several common regularization terms are added to the loss
function, such as:

K®) =K (0 +pa ). (8)

The regular term generally has the following forms. For
example, the regular term formula of A parameters can be:

1
G (E) = EIIEH;. (9)
The regular term formula for the A’ parameter can be:
@ (E) =|El, = Y |Eo| (10)
0

If U is the true value and U (C) is the actual output value,
the mean squared loss function can be obtained:

K=JU-0©I (11)

M is the number of samples, then the cross entropy loss
function formula is:

K=-

Mz

(UoLOG(Tp () + (1 - Up)LOG(1 - Ty (C))).

o]
T

(12)

The exponential loss function and absolute value loss
function can also be obtained as:

14 _
K=- EXP|(-U,U,(C)]|,
202::1 [ oUo( )] 13)

K =|U-U(Q)|.

3. Experiment and Deconstruction of Chemical
Process Flow

3.1. Instance Destructuring. In the field of machine learning,
the confusion matrix is used to judge the quality of the
model. The confusion matrix that presents the four indi-
cators together is shown in Table 1.

In order to verify the feasibility of the method based
on deep learning, the test set about chemical process flow
is divided into four categories, and the number of tests is
set to 10, 20, 30, and 40 times, and case studies are carried
out [21, 22]. The key evaluation indicators of the deep
learning model in the first type of test set are shown in
Table 2.

From the information in Table 2, the training effect of the
model in this study is very good. When the number of tests is
10, the four indicators of the model all reach 100% efficiency,
which shows that the model has a very good performance in
terms of precision, accuracy, and recall. When the number of
tests is added to 20, the precision rate of the model is 77%,
the accuracy rate is 95%, and the recall rate is 100%, which
are basically above 75%. When the number of tests reaches
30, the precision of the model is 100%, the accuracy rate is
95%, and the recall rate is 71%, which is a good testament to
the excellent potential of this model.

The following are the key evaluation indicators of the
deep learning model of the second type of test set, as shown
in Table 3.

As shown in Table 3, the training effect of this model is
better. Although the performance of each indicator has not
reached 100%, it is basically more than 60%. When the
number of tests is added to 20, the precision rate of the
model is 65%, the accuracy rate is 93%, and the recall rate is
67%, which is basically above 60%. When the number of tests
reaches 30, the precision rate of the model is 87%, the ac-
curacy rate is 83%, and the recall rate is 85%, and the
performance is still very good. When the number of tests
reaches 40, the model has a precision rate of 67%, a precision
rate of 95%, and a recall rate of 65%.

The following are the key evaluation indicators of the
deep learning model of the third type of test set, as shown in
Table 4.

As shown in Table 4, the training effect of the model is
basically good. Although the performance of each indicator
has not reached 100%, it is basically more than 60%. When
the number of tests is added to 10, the precision of the model
is 100%, the precision is 100%, and the recall is 100%. When
the number of tests reaches 20, the precision of the model is
91%, the accuracy rate is 98%, and the recall rate is 100%, and
the performance is still very good. When the number of tests
reaches 30, the model has a precision rate of 86%, a precision
rate of 88%, and a recall rate of 65%.

The following are the key evaluation indicators of the
deep learning model of the fourth type of test set, as shown in
Table 5.

As shown in Table 5, the training effect of this model is
good. Although the performance of each indicator has not
reached 100%, it is basically more than 60%. When the
number of tests is added to 10, the precision of the model is
100%, the precision is 100%, and the recall is 100%. When
the number of tests reaches 20, the precision of the model is
100%, the accuracy is 100%, and the recall rate is 100%, and
the performance is still very good. When the number of tests
reaches 30, the precision of the model is 100%, the accuracy
is 97%, and the recall rate is 81%. This is a good illustration of
the excellent performance of this model.
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TaBLE 1: Confusion matrix table.

, . True value
Confusion matrix
Positive Negative
. Positive TP o
Predicted value Negative EN N

TaBLE 2: The key evaluation indicators of the first type of test set.

Test times Accuracy (%) Accuracy (%) Recall (%) F1-score (%)
10 100 100 100 100
20 77 95 100 87
30 100 95 71 83
40 100 100 100 100
TaBLE 3: The key evaluation indicators of the second type of test set.
Test times Accuracy (%) Accuracy (%) Recall (%) Fl-score (%)
10 100 91 61 76
20 65 93 67 87
30 87 83 85 89
40 67 95 65 73
TABLE 4: Key evaluation indicators of the third type of test set.
Test times Accuracy (%) Accuracy (%) Recall (%) Fl-score (%)
10 100 100 100 100
20 91 98 100 96
30 86 88 65 71
40 77 91 91 82
TasLE 5: Key evaluation indicators of the fourth type of test set.
Test times Accuracy (%) Accuracy (%) Recall (%) F1-score (%)
10 100 100 100 100
20 100 100 100 100
30 100 97 81 89
40 83 95 91 86

3.2. Deconstruction Based on Deep Learning. In order to
further verify the superiority of our method compared to
other methods, people conducted a comparative experiment
between the deep learning method and other methods [23].
And in order to get more intuitive data, the accuracy of these
methods was quantitatively compared. They were placed
under the same conditions for ten repetitions. The result is
shown in Figure 7.

The information can be obtained from Figure 7, the ac-
curacy of the method in this study is higher than 94% in 10
experiments, which is higher than the other three methods,
and the effect obtained by the method in this study is very
stable. When the number of tests is 1, the accuracy of this
method is 97, the accuracy of method 1 is 93, the accuracy of
method 2 is 92, and the accuracy of method 3 is 94. When the
number of tests is 4, the accuracy of this method is 95, the

accuracy of method 1 is 93, the accuracy of method 2 is 91, and
the accuracy of method 3 is 92. When the number of tests is 8,
the accuracy of this method is 96, the accuracy of method 1 is
91, the accuracy of method 2 is 92, and the accuracy of method
3 is 92. When the number of tests is 10, the accuracy of this
method is 95, the accuracy of method 1 is 94, the accuracy of
method 2 is 93, and the accuracy of method 3 is 93.

This shows that the proposed method can obtain richer
information than shallow networks by expressing highly
abstract features of diagnostic data. This advantage will be
more obvious in industrial occasions with many variables,
complex data relationships, and high nonlinearity [24]. It is
worth noting that although method 1 achieves high accuracy
in the tenth experiment, the model is too random, and the
diagnostic results fluctuate greatly, and it is easy to fall into a
local optimum.
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In order to further verify that the proposed deep model
can solve the defect that the traditional multi-layer neural
network is easy to fall into the local optimal solution, the
sixth and eighth experiments are analyzed in detail, and the
results are shown in Figure 8.

The information can be obtained from Figure 8. In two
experiments, the proposed method has achieved relatively
ideal classification results in about 100 iterations. However,
method 1 falls into the local optimal solution early in the
sixth experiment, and the classification error stays at about
0.3. Therefore, although the multi-hidden layer neural
network can also obtain a relatively ideal classification effect,
the classification error sometimes converges. Sometimes it
falls into a local optimum, and the diagnosis results fluctuate
wildly, which obviously cannot achieve satisfactory results in
industrial occasions where the comprehensive performance
of the diagnosis model is high. Therefore, the proposed deep
fault diagnosis method can not only extract complex abstract
information in complex industrial data, but also has a great
improvement in model classification accuracy compared
with shallow networks. Moreover, it overcomes the limi-
tation that the traditional multi-hidden layer neural network
is easy to fall into the local optimal solution, so it can be well
adapted to the detection and diagnosis of complex chemical
processes.

In order to verify the reliability of our method, people
applied the deep learning algorithm in four test sets of
chemical process flow design, and conducted two experi-
ments [25]. The number of training sessions is set to 100
times. The result is shown in Figure 9.

It can be seen from Figure 9 that although a larger batch
update amount has a faster convergence rate in the early
stage of the fine-tuning process, as the number of iterations
increases and the objective function approaches, the training
process oscillates or even diverges. The smaller batch update
amount, although the convergence speed is slightly slower,
can gradually converge to a lower range with the increase in
training times. In the parameter combination that has not

been optimized enough, the error on the test set can be
similar to or even better than that of the optimization model
based on deep learning. A model with a larger learning rate
must have a faster convergence rate, but in the later stage,
there will be oscillations and the phenomenon of falling into
a local optimum. A model with a lower learning rate con-
verges more slowly at the beginning of training. In order to
overcome this problem, this study adopts a training method
of using a larger learning rate in the early stage of training
and lowering the learning rate in the later stage of training.
After the training of the model is completed, the test set data
is input into the diagnostic model to obtain the prediction
result, and the result is compared with the label data of the
test set. If the diagnostic rate does not meet the require-
ments, it must return to the pre-training step to reset the
model parameter combination to train a new model. If the
diagnostic performance is good, the model will be used in
the online stage. This is a good proof that deep learning
algorithms are very suitable for chemical process design.

In order to better verify the accuracy of the method in
this study, in the chemical data set, the method in this study
is compared with the other two methods [26]. The result is
shown in Figure 10.

The information can be obtained from Figure 10, which
shows the classification improvement effect of different
methods on the model. The proposed method is largely
better than random selection, and with the increase in the
number of iterations, the performance improvement effect is
greater until a convergence value. After 10 iterations, the
design accuracy of the three methods reached 99.76%,
99.48%, and 98.2%, respectively. After active learning, the
model classification accuracy was improved by nearly 1.5%.
However, although the active learning criterion based on
information entropy has greatly improved the classification
performance of the model, the results are similar to those
obtained from industrial datasets. From the graphs of the
number of false positive points and the false positive rate of
the model under different methods, it can be found that the
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proposed method is not only better than the traditional
method in overall accuracy but also reduces the occurrence
of false positives. It is worth noting that although there is a
certain fluctuation in the false positive phenomenon in the
process of increasing the number of iterations (such as a
sudden increase in the false positive rate in the second

iteration), with the increase of the number of iterations, the
suppression effect of the proposed method on false positives
tends to be stable, and is generally better than other methods.

In the above experiments, the advantages of the pro-
posed method are illustrated from the perspectives of model
depth and sample selection criteria. From the perspective of
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model depth, the effects of deep learning-based methods and
other shallow models in chemical process design are com-
pared, and the results show that the method proposed in this
study is superior to the existing shallow models in terms of
precision and accuracy. At the same time, the article further
verifies the necessity of feature learning and expression in
the proposed method by comparing different models. From
the perspective of active learning sample selection criteria,
the traditional deep network model and the active deep
network model combined with information entropy are
compared. The results show that the proposed method can
not only efficiently use the labeled samples to improve the
classification accuracy of the model but also suppress the
false positive phenomenon of the diagnostic results to a large
extent. Therefore, deep learning has great potential in
chemical process design.

4. Conclusion

In this study, the design of chemical process flow is studied
and analyzed by the deep learning method. And it is con-
cluded that the application of this method is of great help to
the design of chemical process flow, which greatly improves
the accuracy and precision of process design, and makes the
whole design have a better effect. Therefore, further research
on the design of deep learning in this process can be con-
sidered. However, due to the limited length of the article, it
cannot cover all aspects, and there are not many examples
used in the research, which is also the limitation of this
article. Looking forward to further research with more real
data in the future is to discover more ways to help design
chemical processes. At the same time, people should also
firmly believe that there will be more research materials on
this topic in the future, and the design of chemical process
flow will become more and more scientific and accurate.
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