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With the rapid development of 3-dimensional (3D) acquisition technology, point clouds have a wide range of application
prospects in the �elds of computer vision, autonomous driving, and robotics. Point cloud data is widely used in many 3D scenes,
and deep learning has become amainstream researchmethod for classi�cation with the advantages of automatic feature extraction
and strong generalization ability. In this paper, a hierarchical key point extraction framework is proposed to solve the problem of
modeling the local geometric structure between points. Various point cloud models such as PointNet, PointNet++, and DGCNN
are analyzed and their features in local key point are extracted. Based on these analyses, an indexed edge geometric feature spatial
value screening neural network (IEGCNN) is proposed.  is network extracts features from each point and its neighborhood,
calculates the distance between the center point and the points within its neighborhood, and adds the point orientation in-
formation to the edge feature spatial value screening network.  e relationship between points in the edge network architecture is
projected onto a 3D coordinate system and decomposed into three orthogonal bases.  e geometric structure between two points
is modeled by feature aggregation based on the angle between the edge vector and the base vector and the distance between the
center point and the neighboring points.  e proposed method has the capability of fast processing of point cloud data by
signi�cantly reducing the training and recognition time.  e experimental results show that this method achieved high clas-
si�cation accuracy value.  is work also provides an idea to solve the problem of real-time target detection network, which has a
broad applications prospect in the deployment of movable devices and real-time processing.

1. Introduction

 ree-dimensional (3D) target recognition is a hot research
topic nowadays, where the key to target recognition is target
classi�cation and segmentation [1–3].With the development
of data acquisition equipment, various means of data ac-
quisition are becoming more and more abundant, from
pictures to 3D models. Point cloud is the main expression
line of 3D data; LIDAR, depth sensor, and other equipment
can directly collect point cloud data [4–6]. Point clouds can
be widely used in various �elds of logistics, such as intelligent
robots and unmanned vehicles. Intelligent robots use LIDAR
to collect point cloud data.  e traditional method uses
video and other data, and its e�ciency is low, while the point
cloud data collected by intelligent robots has high e�ciency,
so the application of point cloud in the intelligent sorting

system of logistics storage can improve the e�ciency of
sorting. Driverless cars use depth sensors to collect point
cloud data in the environment, and the analysis and pro-
cessing of point cloud data for obstacle avoidance and en-
vironment perception can improve the accuracy and time
e�ciency of environment perception [7–10].  erefore,
more and more scholars are focusing their e�orts on the
processing of point cloud data. Point cloud classi�cation is
like image classi�cation, and the implementation principle is
to correctly identify point cloud data according to the
corresponding labels. Point cloud segmentation is to cate-
gorize point cloud data according to rules, and usually points
with the same features are labeled into a class. Traditional
methods generally extract features manually, and the key
points are extracted to classify and segment the point clouds,
but such methods rely on the professional level and
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experience of human, and the process is more complicated
and only applicable to specific tasks. Currently, in order to
improve the automation of point cloud classification and
segmentation, deep learning is used instead of traditional
methods. Deep learning can extract high-dimensional fea-
tures of the input data according to the learning objective. In
recent years, many researchers have applied deep learning
techniques from 2D domain to 3D unstructured point cloud
data and can directly deal with disordered and sparse point
cloud data. However, most methods only extract global
features of point clouds, ignoring the local relationships
existing between points and points, resulting in low accuracy
and robustness of classification segmentation. In addition,
deep learning is computationally complex and memory
consuming and requires a large amount of training time,
which is not conducive to transferring deep learning models
to practical application scenarios. )erefore, it is of strong
practical significance to improve the accuracy of point cloud
classification segmentation, reduce memory loss, and im-
prove the efficiency of training time [11–15].

Point cloud data is a set of vector collections in a 3D
coordinate system, a 3D model representation, and each
point is usually represented by 3D coordinates. Compared
with 2D images and grid images, point cloud data contains
RGB values, grayscale values, and other information, which
can visually depict the real world. Point cloud data is the
most primitive data, which does not need preprocessing and
can be directly applied to deep learning methods for pro-
cessing and analysis. Voxel data, on the other hand, generally
has to be preprocessed before deep learning methods can be
used. Example diagram of an unordered point cloud is
shown in Figure 1.

As can be seen from Figure 1, the point cloud data
consists of discrete points and does not contain structured
information, which cannot be directly processed by tradi-
tional methods. Point cloud data is different from other data,
it is disordered, and the same point may have many different
manifestations, which leads to the traditional deep learning
that cannot process the point cloud data, and the point cloud
data has certain sparsity, and it is difficult to use the deep
learning method to process the sparse point cloud when the
collection device collects the point cloud data. As shown in
the figure, the point cloud consists of four points, fa, fb, fc,
and fd, and the point cloud data collected by different devices
may have different orders, and the traditional methods will
incorrectly identify the point clouds with different orders as
different classes [16–19].

With the widespread use of many sensor devices and the
increasing development of information technology, people’s
daily life andmany fields such as engineering and technology
generate various forms of massive image data, and the
technology used to obtain “information” from the massive
image data and guide machines to perceive and understand
their surroundings is computer vision. Image alignment is
an important step in many complex computer vision tasks,
aiming to match multiple spatial data acquired by different
sensors at different times and under different conditions,
and is therefore one of the difficult and hot research areas in
computer vision. Image alignment technology emerged in

the 1970s and was early applied to military weapons and
equipment. After rapid development, image alignment has
been gradually applied to many civilian fields and widely
used in different disciplines and different research tasks.
Image alignment has been widely used in many fields and in
imaging medicine, which produces multimodal data with a
high degree of variability. Image alignment aligns multi-
modal organ data to the same coordinate system, and
through image fusion, it can reflect the tissue shape and
function of the organ at the same time, facilitating medical
diagnosis. In mapping, image alignment technology aligns
high-resolution serial images collected by UAVs to the same
spatial coordinate system, and further stitching and fusion
can generate a panoramic map of the target scene. Image
alignment algorithms are also required as the basis for
different tasks, such as 3D reconstruction, simultaneous
visual localization and mapping, image stitching and fusion,
image retrieval, target identification and tracking, and other
complex computer vision tasks. 3D reconstruction restores
the 3D structure of a static scene by recovering it from
images with different viewpoints in three main steps, feature
matching between images, camera pose estimation, and
recovery of 3D structure using estimated motion and fea-
tures. Image alignment is the first step of image processing,
and the accuracy of its algorithm has a great impact on the
3D reconstruction results. Image stitching and fusion is the
process of stitching and aligning two or more images with
overlapping scenes obtained from different viewpoints,
different times, or different sensors to produce a large field of
view image, which is the most direct application of image
alignment algorithms. )e goal of the image retrieval task is
to retrieve all images with similar scenes in each query
image, where the image alignment algorithm compares the
similarity between images by computing feature matching
between images. In summary, the significance of image
alignment is to establish the correspondence between the
two or more images to be aligned, the image and the target
object, or the image and the features extracted by the
template. In recent years, image alignment techniques have
achieved some results and have shown broad application
prospects in many vision tasks. As a key technology in many
fields, the evolving computer vision has put forward higher
requirements on the alignment technology, so the alignment
technology still has important research significance and
practical value [20].

Point cloud data is widely used in many 3D scenes, and
deep learning has become amainstream researchmethod for
point cloud classification. According to the different ways of
feature space value screening, the existing algorithms are
categorized into traditional methods and deep learning al-
gorithms. In this paper, based on the representative methods
and the latest research of deep learning, the basic ideas are
summarized with its advantages and disadvantages; compare
and analyze the experimental results of the main methods;
look forward to the future work and research development
direction of deep learning in the field of point cloud key
point extraction. )ere are still problems of excessive
number of parameters and complex network size when the
original point cloud is directly input to the classification
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network, and the real-time task processing still needs further
optimization. )e existing 3D point cloud key point ex-
traction methods usually ignore the useful information in
other neighborhood features, so this paper proposes a point
cloud key point extraction algorithm based on feature space
value screening. Firstly, the network structure and super-
parameters are trimmed and compressed to achieve a
lightweight model; secondly, the k-nearest neighbor algo-
rithm is used to determine a new local region on each feature
space value screening layer, add the vector direction between
neighboring points, map the output features of different
layers, and make index jump connections to further reduce
the local feature information loss. )is will have a broad
applications prospect in the deployment of movable devices
and real-time processing.

2. Related Work

)is section will elaborate point cloud key point extraction
mechanisms and point cloud alignment techniques.

2.1. Point Cloud Key Point Extraction. In recent years, with
the continuous development of science and technology and
the rapid growth of life needs, the digital modeling of 3D
objects in the objective world with point cloud data, i.e., 3D
reconstruction technology, has been frequently used in
various industries and has received good response. In the
field of medicine, through the construction of three-di-
mensional model of human organs, there can be more in-
tuitive response to the patient’s lesions, to help doctors
develop more effective treatment plan; in the field of public
transportation, there is autonomous driving technology by
real-time construction of the vehicle’s surrounding envi-
ronment, to help the vehicle in time to find and avoid
obstacles; in the field of archaeology, through the con-
struction of three-dimensional model of cultural relics, it can
digitally repair the broken cultural relics and restore the
historical appearance; in the field of archaeology, by con-
structing 3D models of cultural relics, it can digitally restore
damaged relics and restore the historical appearance. )e
most basic and critical step in the realization of 3D re-
construction is the point cloud key point extraction [21–25].
When using 3D scanning equipment to scan an object, it is
impossible to obtain complete 3D information of the surface
of the object in a single scan due to object occlusion, limited
field of view, and other factors in a fixed perspective.

)erefore, the object needs to be scanned in multiple views,
and then the results of multiple scans are stitched together
and fused, and the fusion of point cloud data from two
adjacent views uses the point cloud key point extraction
technique. By solving the spatial transformation relationship
between two coordinate systems, a rotation translation
matrix can be obtained, and then the rotation translation
matrix converts the two point clouds into the same coor-
dinate system to realize the point cloud summary key point
extraction, and so on to realize the 3D reconstruction of the
object. However, in practice, due to the accuracy of 3D
scanner measurement, human operation, or the influence of
natural environment, the obtained point cloud data have
errors, which will affect the key point extraction effect of two
adjacent point clouds and thus affect the final 3D recon-
struction effect. )erefore, this paper will start from the
point cloud key point extraction algorithm, analyze several
common point cloud key point extraction algorithms, and
propose improvements, aiming to design a point cloud key
point extraction algorithm that takes into account efficiency,
accuracy, and robustness and provide a good technical
support for the development of subsequent point cloud key
point extraction technology and 3D reconstruction tech-
nology [26].

)e point cloud key point extraction algorithm based on
deep learning is based on inputting a point in the point cloud
data and its neighborhood information into a neural net-
work and describing the point using the output vector of a
layer in the network. 3D ShapeNets lead deep learning to 3D
modeling and extract global features by calculating deep key
points of 3D data with good noise immunity, but poor
extraction of key points for low overlap rate point cloud
models. 2D feature space value screening neural network is
used to generate descriptors for local feature matching, but it
only connects image block feature vectors as training
samples for the network, thus lacking spatial correlation.
3DMatch algorithm, a self-supervised learning method, uses
millions of positive and negative labels in RGB-D recon-
struction results to train robust descriptors by twin neural
networks for point cloud key point extraction. Based on
3DMatch, KNN is used to find the corresponding points to
improve the efficiency of the algorithm. Based on the
3DMatch network framework, more descriptive and dis-
tinguishable descriptors are trained by increasing the
number of feature space value screening layers and elimi-
nating pooling layers, but the training efficiency is low.
Perfect-Match algorithm vowelizes the network input for
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Figure 1: Diagram of a disordered point cloud.
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density values, reduces the voxel grid density, and saves the
network capacity, and the algorithm has real-time perfor-
mance.)e binarized local feature descriptors can effectively
reduce the computational effort. By increasing the negative
sample weights, a multiedge-based loss function is proposed,
which increases the gap between positive and negative
samples. A 3D point cloud-based self-coding descriptor
(Adaptive O-CNN) is proposed, which can retain more
information of the original point cloud. Point cloud key
point extraction plays a central role in 3D scene recon-
struction, which is essentially to find the transformation
relationship between the point cloud data to be matched. In
early studies on point cloud key point extraction, key points
with distinguishing and descriptive power are usually pre-
calculated for point cloud data and then further processed.
However, recent studies have shown that the existing key
point detection methods are not only time-consuming but
also ineffective in practical applications, while uniform
sampling and random sampling methods are proved to be an
effective method to replace the key point detection algo-
rithm. )erefore, the research direction of feature-based
point cloud key point extraction is mainly directed at feature
description and feature matching. Table 1 collates the
common point cloud feature description methods.

2.2. Point Cloud Alignment. In this section, point cloud
alignment techniques are divided into two main categories:
alignment based on traditional methods and alignment
based on deep learning methods, and an overview of these
two types of point cloud alignment methods is given. In
traditional methods, traditional point cloud alignment
calculates the spatial transformation relationship between
two point clouds through spatial geometry theory or sta-
tistical principles, which can be divided into two categories:
feature-based alignment algorithms and featureless-based
alignment algorithms [27–29].

Feature-based alignment algorithms mainly use the
feature points of point clouds to achieve point cloud
alignment. )e feature points are the rotation invariant
points in the point cloud data, and the local space is con-
structed by taking the feature points as the center, extracting
the information in the space to describe the feature points,
judging whether they are the corresponding points by the
similarity of the two point descriptions, and calculating the
spatial transformation matrix between the two point clouds
according to the corresponding point set to realize the point
cloud alignment.)eHarris algorithm is suitable for gridded
point cloud data, which needs to be gridded before feature
detection, so it is not real-time; the intrinsic shape signature
algorithm defines a local coordinate system for each point in
the point cloud and establishes the covariance matrix and
solves it to determine the feature points according to the
relationship between the magnitude of the feature values; the
SIFT algorithm considers the extreme values of the adjacent
scales of key points. )e NARF algorithm only targets the
edge feature points, so the detected feature points have
limitations and are sensitive to noise and outliers. )ere are
also many methods for feature descriptor construction. )e

concept of point signature, which generates a point signature
for each point in the point cloud and finds the corresponding
point pair by judging the similarity of the signature, is
computationally intensive. )e point feature histogram
descriptor needs to calculate the distance and angle rela-
tionships of all points in the neighborhood of the feature
points, and thus the algorithm is inefficient. Further, the fast
point feature histogram descriptor, which simplifies some
feature components in PFH, reduces the computational
effort while maintaining the descriptiveness of the descriptor
as much as possible [30]. By constructing a local reference
system of feature points, dividing regions based on the
interval and direction of points and feature points in the
neighborhood of feature points, calculating the normal
vectors of feature points in the regions and their angle
cosines, and performing histogram statistics for each region,
the histogram obtained by connecting each region is finally
used as the SHOTdescriptor. )e matching of descriptors is
accelerated by binarizing SHOT descriptors. Feature de-
scriptors with scale invariance enable point cloud alignment
at each scale. RIFTdescriptors have rotation invariance. )e
residual angle in the adaptive domain is used as a feature
descriptor of points for point cloud alignment at scaling
scales. Various local features are combined such as normal
and density as feature descriptions of points, which is
computationally low and descriptive [38, 39].

Featureless-based alignment algorithm method refers to
the direct manipulation of the original point cloud data to
achieve alignment. )e iterative nearest point algorithm has
certain requirements on the initial positions of the two point
clouds to be aligned, and when the initial positions of the two
point clouds are far apart, the alignment is not effective or
even cannot be achieved, and it is sensitive to extraneous
factors such as noise. Using the point-to-point tangent plane
distance instead of the point-to-point distance in the original
ICP algorithm, the efficiency is improved by reducing the
number of iterations. )e ICP algorithm based on K-D tree
accelerated search improves the efficiency of the algorithm.
Point-to-point and point-to-surface feature definitions re-
duce the sensitivity of the ICP algorithm to the initial po-
sition of the model by estimating the curvature of all points
in the point cloud but are not as efficient. Constrained ICP
algorithm, by dividing the space and reducing the corre-
sponding point search space, improves the efficiency of the
algorithm. A search method based on PD-tree structure is
robust to noise. )e Pickey-ICP algorithm uses the idea of
hierarchy to improve the efficiency of searching corre-
sponding point pairs. )e GO-ICP algorithm effectively
solves the problem that the ICP algorithm easily falls into
local optimal solutions. )e ICP algorithm incorporating
genetic algorithm takes the result of alignment using genetic
algorithm as the initial position of the point cloud to im-
prove the alignment accuracy. )e ICP algorithm based on
curvature extrema accelerates the convergence of the al-
gorithm by constraining the curvature extrema. Hu im-
proves the alignment accuracy of ICP algorithm by using
dynamic angle factor. 4-point matching algorithm, however,
generates incorrect alignment when the point cloud model
has symmetry. Based on 4PCS, the Super4PCS algorithm is
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proposed to provide alignment efficiency while ensuring
alignment accuracy. )e chunked point cloud variance
distribution similarity principle is used to extract the point
cloud overlap region, which improves the accuracy of point
cloud alignment with low overlap rate. )e algorithm ac-
curacy is improved by constructing an objective function to
reduce the error accumulation.

)e existing 3D point cloud key point extraction
methods usually ignore the useful information in other
neighborhood features, so this paper proposes a point cloud
key point extraction algorithm based on feature space value
screening. Firstly, the network structure and super-
parameters are trimmed and compressed to achieve a
lightweight model; secondly, the k-nearest neighbor algo-
rithm is used to determine a new local region on each feature
space value screening layer, add the vector direction between
neighboring points, map the output features of different
layers, and make index jump connections to further reduce
the local feature information loss. )is will have a broad
applications prospect in the deployment of movable devices
and real-time processing.

3. Methods

In this section, the proposed system is discussed in detail.
)e proposed network structure is presented and the edge
geometry feature space value filtering is discussed.

3.1. Model Architecture. Based on the principle of network
light-weighting, a prototype network structure is proposed
based on PointNet as shown in Figure 2. By simplifying the
network structure, only the basic feature space value filtering
layer, the pooling layer, and the fully connected layer are
included in the network to achieve a lightweight network. In
order to extract the global features of the point cloud, the
maximum pooling layer is used to extract the key points, and
the size of the feature space value filtering kernel is set to
1× 1. Since each point in the fully connected layer is con-
nected to all points in the previous layer, which integrates
the features of the previous layers, the number of parameters
in the fully connected layer is the largest in the whole
network architecture, and the streamlining of the number of
parameters and nodes in the fully connected layer is an
important step to realize the network light-weighting. In the
process of network optimization, the parameters of other
layers can be kept consistent with the network prototype in
order to investigate the impact of the parameters of one layer
on the network performance.

3.2. Point Cloud Key Point Extraction. Traditional point
cloud key point extraction methods are usually designed to
solve domain-specific problems, and it is difficult to extend
to new key point extraction tasks. Deep learning-based point
cloud key point extraction can be divided into point-based
extraction methods and tree-based extraction methods. )e
former directly uses the original point cloud as the input for
deep learning; the latter first uses a k-dimensional tree
structure to regularize the point cloud and then provides the
processed data to the deep learning model. A class of feature
space value filtering operation called Geo-Conv is applied to
each point and its local neighborhood to extract the edge
features of the central point and adjacent points by gradually
expanding the acceptance domain of the feature space value
filtering to extract features in layers and maintain the
geometric structure of points along the hierarchy. Consid-
ering the directional information between points, the value
of point projection to polar coordinates is calculated and
then weighted and summed with the distance between two
points to solve the problem of incomplete extraction of local
key points.

3.3. Feature SpaceValueFilteringBasedonEdge Feature Space
Value Filtering. )e key point extraction based on edge
feature space value filtering uses the k-nearest neighbor
method to define the k points closest to a point as the
neighboring area. Firstly, the edge features between the
center point and the neighboring points are extracted, and
then the feature space value filtering operation is performed
on the edge features.)e set of nearest neighboring points to
the centroid Pxi is {j:(i, j) ∈ ε}, and the set of directed edges
associated with it is {(i,ji1),. . .,(i,jik)}. )e edge features are
defined as eij, where hθ is a nonlinear function composed
using the learnable parameter θ. An asymmetric aggregation
operationΨ is added to the hθ operation to obtain the feature
output of the i-th vertex of the edge feature space value
screening:

Pxi′ � Ψj:(i,j)∈εhθ Pxi, Pxj . (1)

For the features of the centroid, the feature difference
between the centroid and the neighboring points are fed into
the multilayer perceptron in series, so that the edge features
fuse the local relationship between points and the global
information of the points. After obtaining n edge features,
maximum pooling is performed to obtain a single feature of
this local region, and local information is extracted and
integrated layer by layer by superimposing multiple layers of

Table 1: Point cloud key point extraction method.

Algorithm name Algorithm categories
3DSC [31] Point cloud descriptors based on local features
RoPS [32] Point cloud descriptors based on local features
SHOT [33] Local feature-based point cloud descriptor based on local features
PFH [34] Local feature-based point cloud descriptor based on local features
FPFH [35] Local feature-based point cloud descriptor
PointNet [36] Convolutional neural network-based point cloud descriptor based on convolutional neural network
3DSmoothNet [37] Convolutional neural network-based point cloud descriptor based on convolutional neural network
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feature space value screening in this way. )e local neigh-
borhood map of the edge feature space value filtering layer is
constructed by a multilayer perceptron. When the edges of
adjacent points are filtered by layer-by-layer eigenspace
values, each layer outputs a new point cloud map structure
and feature space, and a new local area is obtained. )e
method of interpoint difference is introduced to consider the
geometric correlation information between points and solve
the problem of incomplete extraction of local key points in
PointNet and PointNet++ architectures; however, there is a
problem of ignoring the directional information of points, so
the indexed edge geometric feature space value screening
neural network is proposed.

3.4. Key Point Extraction of Indexed Edge Geometry Feature
Space. )e edge geometry feature space value filtering is
shown in Figure 3. Indexed edge geometry feature space
value filtering neural network adds the orientation infor-
mation of points to the edge feature space value filtering
network, models the 3D point cloud with polar coordinate
system, and projects the relationship between points in the
edge network architecture to the 3D coordinate system. )e
values of polar coordinate projections to different axes are
calculated and compared with two points
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where Plj denotes the mode length of vector, Pd denotes the
projection length, and Pθ denotes the pinch angle. Suppose
an F-dimensional point cloud contains n points; in the F-
dimensional point cloud, n denotes the number of points
and F denotes the number of channels. For each point,
according to the k-nearest neighbor algorithm and the
network superparameter r to construct a local spherical
neighborhood, a spherical neighborhood N(Pxi) with Pxi as
the center point can be constructed, and the feature output
Pxi of the center point is calculated after obtaining several
neighborhood points and then the center point, where the
dimension of the weight matrix MF is Øin ×Øout.

N Pxi(  � Pxj|Pxj − Pxi ≤ r ,

f pi|(l)(  � MFf pi|(l − 1)( 

+


n
i�1,j�1(i≠j) w Pxi, Pxj, r h Pxi, Pxj 


n
i�1,j�1(i≠j) w Pxi, Pxj, r 

Pxi′,

(3)

where f(pi|(l)) denotes the eigenvector of point pi at layer l,
MF denotes the weight matrix used to extract the features of
the centroid, and w denotes the distance weighting between
the centroid Pxi and different neighboring points Pxj, which
decreases monotonically with ‖Pxj − Pxi‖. As the radius r
increases, the perceptual field of the spherical neighborhood
gradually increases and the difference with the weight
function w( ) of the center point decreases. h(Pxi, Pxj)

denotes the edge feature, which is the most important
feature extracted part of this network architecture. In the 3D
Euclidean space, the vector can be expressed as the pro-
jection of three orthogonal bases, and the modulus of the
projection represents the “energy” in the corresponding
direction, so the edge features can be projected onto the
three orthogonal bases, and the edge features in each di-
rection are extracted using different weight matrices, and
then the features in the three directions are regrouped to
maintain the Euclidean geometry. )e edge features based
on polar coordinates are calculated as follows:

h Pxi, Pxj  � 
d∈D

cos2 Pθ( Mdf pj(l − 1) , (4)

values output
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Figure 3: Edge geometry feature space value filtering.
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D denotes the set of three orthogonal bases in the quadrant
where Pxi and Pxj are located; Md denotes the direction-
dependent weight matrix to extract edge features in different
directions; cos2(Pθ) is the coefficient to ensure that the sum
is 1 when the features are aggregated.

3.5. Extraction of Key Points for Graph Feature Space Value
Screening. Graph feature space value filtering is shown in
Figure 4. In this paper, a directed graph G� (V, E) is
constructed by using the K-nearest neighbor operator, V
represents the input point cloud, which is the vertex of the
graph model, V∈[1, N], N is the number of point clouds, E is
the edge composed of point pairs, and the structure of KNN
model is shown in Figure 4. xi is the node; eij represents K
neighboring points and node.)e output of the graphmodel
is the feature aggregation of all directed edges of the node,
which is expressed formally as

xi � 
j:(i,j)∈1,...,k

h xi, xj ,
(5)

where h(xi, xj) denotes the edge function, to reduce the
number of parameters to improve the efficiency of the deep
network while taking into account the local information of
the point cloud; the edge function is defined to consider only
local features:

h xi, xj  � h xj − xi . (6)

)e feature vector eij of node xi is defined as

eij � g w 
i�1

x⎛⎝ ⎞⎠, (7)

where w is the weight assigned to the node; g is the max
pooling symmetric function, which is used to aggregate the
feature vectors of the neighboring points.

3.6.PointCloudKeyPointExtractionSteps. )e specific steps
of point cloud key point extraction are as follows:

(1) Input 7-dimensional point cloud with fused spectral
and laser intensity information and solve the rota-
tion invariance of the point cloud by aligning the
input data with T-Net constructed by KNN.

(2) Use MLP (64, 64) abstraction to align the shallow
features of the point cloud and map each point
feature to 64 dimensions.

(3) Construct KNN for the 64-dimensional shallow
features of each point. Expand the dimensionality of
the point cloud (horizontal point cloud dimen-
sionality, nonvertical feature dimensionality) with a
directed graph, add the local information of K
neighborhood points like the feature clustering, and
then pool the most representative neighborhood
information by MLP (64, 128) after mapping the
point features with aggregated neighborhood in-
formation to 128 dimensions.

(4) Use the idea of residual network to connect the
shallow features of the point cloud with the K-di-
mensional pooling by using a jump connection.
After the graph model generates features that con-
sider the local information, the original point cloud
information is maintained in the deep network as the
abstraction of features deepens to enhance the
prediction capability of the network. In contrast to
the edge function selection, which only considers
local features, the information of nodes and neigh-
boring points is considered while reducing the
number of parameters to improve efficiency.

(5) )e fused features are mapped to higher dimensions
using MLP (1024), and fine-grained features at dif-
ferent scales are captured using spatial pyramid
pooling to further enhance the feature abstraction
capability of the network.

(6) )e high-dimensional features of N points are
connected with the fused features to improve the
prediction accuracy of the network. Finally, the fully
connected layer is entered for feature dimensionality
reduction, and set the dropout layer to prevent
model overfitting, and obtain the probability matrix
of N points corresponding toM categories to achieve
the key point extraction of the point cloud.

4. Experiments and Results

)e experimental setup along with experiments conducted is
discussed in this section. )e results produced are also
presented.

4.1. Experimental Setup. ModelNet is a standard dataset for
classification of 3D models publicly available at Princeton
University, with 12715 classification models in 662 classes,
divided into two classes, ModelNet10 and ModelNet40.
ModelNet10 contains 4899 models in 10 classes, with 3991
training samples and 908 testing samples; ModelNet40
contains 12311 models in 40 classes, including 9843 for
training and 2468 for testing.)e results of testing using this
class division are called instance accuracy. If the first 20

KNN
F10nxC0

FI (L-1)nxCL-1

Max pooling

nxKx (∑t=0 Ct)
L

Figure 4: Graph feature space value filtering.
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models in each category test catalog are used as the test set
and the first 80 models in the training catalog are used as the
training set, the test results are called category accuracy. In
this experiment, the example accuracy is selected as the test
result.

)e experimental hardware and software environment is
shown in Table 2, and the model parameters are set as shown
in Table 3. )e training process loss convergence is shown in
Figure 5.

4.2. Experimental Results and Analysis. )e comparison of
accuracy and number of parameters in ModelNet40 and
ModelNet10 are shown in Figures 6–8, respectively. )e
classification accuracy of the propose method is about
92.78% on ModelNet40 and 94.2% on ModelNet10 with
0.61M parameters, which is the best result in the same
number of parameters. It is higher than all multiview-based
classification networks and most voxel and point cloud-
based classification networks.

)e experimental results are analyzed and discussed
below:

(1) Comparison with multiview fusion-based network:
)e multiview fusion-based approach uses multiple
projections of different fixed views to input the
rendered image into the feature space value filtering
neural network, which performs single-view key
point extraction from the projected rendered image,
and the input is required to be a continuous model.
In contrast, the IEGCNN network model in this
paper takes sparse and disordered point clouds as
input, and the network model is more lightweight,
with only about 0.4% of the parameters based on
multiview, and the classification accuracy on Mod-
elNet40 and ModelNet10 is improved by about
2.08% and 1.4%, respectively, compared with the
pairwise network, which indicates that IEGCNN can
well learn the essential features of the point cloud
model.

(2) Comparison with voxel-based network: )e voxel-
based network can be built deeper and the network
structure can be more complex due to the advantage
of deep learning. )e classification accuracy of the
proposed method is only lower than that of
VRNEnsemble, which is one of the many voxel-
based methods, and the classification accuracy de-
creases by about 2.76% and 2.94% on the Mod-
elNet40 and ModelNet10 datasets, respectively.
VRNEnsemble trains voxel-based variable autoen-
coders, which are designed on the basis of ResNet,
and the deep ResNet can be seen as an integration of
shallow neural networks of different depths; ResNet
enhances the flow of gradients by jumping con-
nections. )e voxel-based network takes full ad-
vantage of deep learning. )e network is 45 layers’
deep, the network architecture is complex, and as the
depth increases, the network can better approximate
the objective function through many nonlinear

mappings and improved feature representations. For
these reasons, the classification accuracy of
VRNEnsemble-based network is higher than that of
the method in the paper, but the training of this
network requires encoding and decoding operations
for the 3D voxel model, and the training time is the
longest, which takes 6 days. At the same time, the
voxel-based deep learning networks cannot be di-
rectly applied to the disordered and sparse point
cloud model and require complicated voxelization
operations. )e designed network model contains
only three feature space value filtering layers and one
fully connected layer, which can quickly and directly
process point clouds. )e network parameters ac-
count for about 0.7% of the VRNEnsemble method.
)e eigenspace value filtering layer of the paper is 3
layers, while the eigenspace value filtering layer of the
VRN architecture is 45 layers, which has advantages
in terms of light weight and real-time.

(3) Comparison with PointNet: )e designed network
architecture has about 1% of the network parameters
of PointNet. )e classification accuracy is improved
by about 3.58% and 1.12% using ModelNet40 and
ModelNet10 datasets, respectively. )e network
parameters of IEGCNN are reduced by about 0.19M
compared to PointNet (Vanilla), but the classifica-
tion performance is improved by about 5.58% on
ModelNet40 and 2.24%. )e experimental results
show that the present network architecture can meet
the requirements of classification accuracy and
lightweight in the network with the original point
cloud as input.

(4) Comparison with LDGCNN and DGCNN: )e
classification accuracy of IEGCNN is improved by
about 0.58% compared with DGCNN, and the
network parameters are about 30% of DGCNN.
Although the classification accuracy on ModelNet40
is about 0.12% lower than that of LDGCNN model,
the number of feature space value filtering layers is
about 60% of that of LDGCNN and the training time
is about 1/3 of that of LDGCNN model. )erefore,
simply increasing the number of channels and the
number of fully joined layers does not necessarily
improve the overall performance of the network
architecture.

(5) Comparison with 3DmFV and Point2Sequences
networks: 3DmFV uses Fisher vectors as the input of
the feature space value filtering neural network and
voxels the point cloud into a standard 3D grid, which
solves the problem of disorder of the point cloud.

Table 2: Experimental platform and configuration.

Operating systems Linux Centos7
Operations acceleration library RTX 2080Ti
Languages CUDA 10. 1 + cuDNN7.5
GPU Pytorch 1.3
Framework Python 3. 5. 2
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Since Fisher vectors are computed using a vowelized
grid, they are computationally intensive andmemory
consuming, which leads to information loss through
manual key point extraction. Point2Sequences is a

recurrent neural network-based model that uses a
point cloud sequence learning model to capture the
correlation between different regions within a local
area of the point cloud by capturing the correlation
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Figure 6: Accuracy comparison in ModelNet40.

Table 3: Experimental parameter setting.

Batch volume Data set Number of points K-nearest neighbor points Optimizer Learning rate Number of training sessions
ModelNet40 1024 20 SGD 0.001 32 250
ShapeNetPart 2048 40 SGD 0.001 14 200
S3DIS 4096 20 SGD 0.001 14 100
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Figure 5: Schematic diagram of training process loss convergence.
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between different regions in the local area of the
point cloud; the features of all the local areas are
input into the coder-decoder of a recurrent neural
network to achieve the aggregation of regional fea-
tures. )e proposed IEGCNN network improves the
classification accuracy by about 1.68% over 3DmFV
and 0.18% over Point2Sequences onModelNet40 but
decreases by about 1% and 1.1% over 3DmFV and
Point2Sequences on ModelNet10, respectively, be-
cause the proposed architecture discards the number

of feature space value filtering layers and the number
of fully connected layers, and the number of nodes is
significantly reduced because the traditional feature
transformation layer is dropped. In the ModelNet10
dataset, due to the distribution pattern of training
and testing samples and the limitation of the number
of models, the features of the point cloud model are
not fully extracted.

(6) Analysis of the generalizability of the streamlined
model: )e framework of the network model is
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Figure 7: Accuracy comparison in ModelNet10.
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designed based on PointNet, and considering the
problem of insufficient extraction of local key points
in PointNet and PointNet++ network structures, a
method of introducing the directional information
of points is proposed combining edge index jump
links, reducing the size of the network, reducing the
number of feature space value screening layers in the
model, and gradually changing the number of
channels in each feature. )e optimal model pa-
rameters are determined by gradually changing the
number of channels in each spatial value filtering
layer. )eoretically, the reduction of the network
structure will cause a certain decrease in the clas-
sification accuracy. To compensate for the reduced
accuracy caused by the reduction of the eigenspace
value filtering network, the number of channels in
the second eigenspace value filtering layer (Block2)
was increased from 64 to 128 in the original model,
and the key point extraction process was optimized
by using indexed feature transfer to reduce feature
loss and make the extraction more comprehensive.
From the analysis of the experimental data, the
streamlined network model can quickly process the
whole point cloud model and improve the classifi-
cation accuracy while reducing the number of pa-
rameters, which has strong universality.

5. Conclusion

With the continuous development of deep learning, the
technology of 3D point cloud target recognition is more and
more applied to the fields of unmanned driving and intel-
ligent robotics. )e unmanned vehicles and intelligent ro-
bots can be widely used in logistics sorting and
transportation, and the data collected by unmanned vehicles
and intelligent robots are mostly in the form of point clouds.
Among them, the classification and segmentation of point
clouds is the basis of 3D point cloud target recognition, and
more and more research works are carried out around point
cloud classification and segmentation.

A hierarchical key point extraction framework is pro-
posed to solve the problem of modeling the local geometric
structure between points. By analyzing point cloud models
such as PointNet, PointNet++, and DGCNN and their
features in local key point extraction, the indexed edge
geometric feature spatial value screening neural network
IEGCNN is proposed, which extracts features from each
point and its neighborhood, calculates the distance between
the center point and the points within its neighborhood, and
adds the point orientation information to the edge feature
spatial value screening network. )e relationship between
points in the edge network architecture is projected onto a
3D coordinate system and decomposed into three orthog-
onal bases, and the geometric structure between two points
is modeled by feature aggregation based on the angle be-
tween the edge vector and the base vector and the distance
between the center point and the neighboring points. It has
the capability of fast processing of point cloud data by
significantly reducing the training and recognition time.

)is work not only achieves better results in classification
tasks, but also provides an idea to solve the problem of real-
time target detection network, which has a broad application
prospect in the deployment of removable devices and real-
time processing.
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from the author upon reasonable request.
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complex shapes in meshes using digital images for reverse
engineering applications,” Computer-Aided Design, vol. 42,
no. 8, pp. 693–707, 2010.

[25] S. Sharifzadeh, I. Biro, N. Lohse, and P. Kinnell, “Abnormality
detection strategies for surface inspection using robot
mounted laser scanners,” Mechatronics, vol. 51, pp. 59–74,
2018.

[26] K. Demarsin, D. Vanderstraeten, T. Volodine, and D Roose,
“Detection of closed sharp edges in point clouds using normal
estimation and graph theory,” Computer-Aided Design,
vol. 39, no. 4, pp. 276–283, 2007.

[27] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik,
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