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With the wide application of communication, the role of communication network is becoming more and more important. �e
current network maintenance methods are still limited to regular maintenance and post-maintenance, do not have a complete
network status monitoring function, cannot evaluate the network status, and it is di�cult to maintain before the serious de-
terioration of the network. Network faults can only be solved by the professional knowledge of technicians, and the maintenance
e�ciency is not high, so it is impossible to diagnose and locate errors in time and accurately, and eventually it will be repaired
forcibly at the cost of replacing network cables. �is paper introduces the network fault analysis, then, deep learning is used to
model the fault diagnosis of communication network, �nally, in the experimental part, the results of fault location are analyzed,
and several methods are compared. �e simulation results show that the proposed method avoids the errors caused by the
generated model to a certain extent, and improves the robustness, universality and accuracy of the network fault diagnosis model.

1. Introduction

In this paper, we propose to learn a series of high-level function
representations through deep learning, that is, the so-called
deep hidden identity function, for face veri�cation. Any most
advanced classi�er can learn based on these high-level rep-
resentations for face veri�cation [1]. �is paper shows how
these traditional methods cannot explain why large neural
networks have become so common in practice, but our ex-
periments show that advanced image classi�cation convolution
networks trained by random gradient methods are easily
compatible with random symbols. Compared with the tradi-
tional model, our experimental �ndings can be explained [2].
Deep learning algorithms, especially convolution networks,
have rapidly become a popular method for analyzing medical
images. �is paper discusses the key concepts in deep learning
related to medical image analysis, and summarizes some
contributions to this �eld, most of which appeared in the past
year, and discusses the open challenges and trends of future
research [3]. Here, we show that sequence speci�city can be
determined from experimental data by deep learning tech-
nology, which provides an extensible, �exible and uni�ed

calculation method for pattern discovery. Using various ex-
perimental data and evaluation indicators, we �nd that deep
learning is superior to other most advanced methods [4]. We
propose a new deep convolution neural network structure,
which is inspired by foresight, and the foresight module is
replaced by deep divisible convolution [5]. Point cloud is an
important geometric data structure. In this paper, we design a
new neural network, which uses point cloud directly and re-
spects the arrangement variance of access points well. [6]. �is
paper shows how the nonlinear semi-supervised embedding
algorithm is used together with the “shallow” learning tech-
nology.�is technique provides a simple semi-supervised deep
learning, while generating competitive error rates compared
with these methods and the existing shallow semi-supervised
technology [7]. Accurate and timely tra�c �ow information is
very important for the successful deployment of intelligent
transportation system. �is paper proposes a new tra�c �ow
prediction method based on deep learning, which inherently
considers temporal and spatial correlation. By observing the
research results, we can know that the tra�c �ow forecasting
method proposed in this paper has better forecasting perfor-
mance; [8]. In recent years, network has developed rapidly in

Hindawi
Mobile Information Systems
Volume 2022, Article ID 1456425, 12 pages
https://doi.org/10.1155/2022/1456425

mailto:1350007066@sqgxy.edu.cn
https://orcid.org/0000-0002-0602-6717
https://orcid.org/0000-0002-0335-677X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1456425


industrial and medical fields. NB-IoT is a wireless commu-
nication and low-power broadband technology based on new
Internet of /ings devices, which enables various services to
grow. Its performance analysis and simulation results show
that this detection mechanism can improve transmission ef-
ficiency and effectively reduce network communication failure
power consumption [9]. With the rapid expansion of satellite
communication, more andmore unattended ground terminals
are expanding outward to serve local customers. In this paper,
the signal-to-noise ratio (SNR) signal behavior measured by
grounding terminal is associated with different types of pos-
sible faults, and a terminal fault identification (TFI) system is
proposed./rough the analysis of actual data, the effectiveness
of this method is verified [10]. Microcomputer protection
marks the intelligent era of protection devices. /is paper
studies the abnormal interruption analysis of protection
channels based on the data of relay protection and recording
management system (PFRMS) and communication network
management system (CNMS) [11]. With the rapid increase of
the scale and complexity of communication networks, this
paper proposes an efficient alarm association and fault iden-
tification scheme based on OSI management object classes to
quickly separate fault sources. /e algorithm uses managed
object class dependency graph, observing the research results,
we can see that the proposed algorithm is simple to implement
[12]. /e principle and algorithm of Wide Area Protection
System (WAPS) have been developed greatly. /is paper
presents a reliability evaluation method for large-scale secure
communication systems. Finally, CSWAP in IEEE 11-bus
system is analyzed as an example, and the factors affecting the
reliability of CSWAP are summarized, which verifies the ef-
fectiveness of this method [13]. /e complexity of commu-
nication networks and the amount of information transmitted
in these networks make it more and more difficult to manage
these networks. In this paper, a new event association scheme
for fault identification of communication networks is pro-
posed, which is based on algebraic operation of sets [14]. In this
paper, a new method of fault data identification based on
subbasis function is proposed, and a pre-whitening matching
detection method of underwater ship communication network
is proposed. /e underwater ship communication network
model and communication channel model are established, and
the fault data signal is decomposed into multiple narrowband
signals, which can effectively improve the underwater com-
munication quality [15].

2. Network Fault Analysis

From the perspective of network slicing, the network ar-
chitecture is shown in Figure 1. Based on the system model,
we summarized the common network errors, as shown in
Table 1.

It can be seen from Table 1 that NFV concept and
network slicing are more prominent features of 5G than 4G,
so the deployment of 5G network should also consider the
possible interruptions in these areas and take precautions in
advance. With the introduction of network slicing tech-
nology, the following issues need attention:

2.1. Granularity. Slicing can meet the needs of different
online services and different user groups. However, the
number of slices and the cutting method are the problems
that need to be solved when slicing. In addition to being large
enough to provide sufficient flexibility, slicing units may not
meet the requirements of certain types of networks, while
slicing units are too small to manage and deploy.

2.2. Flexibility. If slicing can be used very flexibly, it has
some real-time performance, just like 4G policy control
architecture. However, slicing is too flexible, and the cost
and risk of network management increase slightly. After all,
stability and reliability are also issues that need to be con-
sidered in network management. In addition, the launch of
new services is not achieved overnight, which requires a lot
of business preparation and analysis.

2.3. Allocation of Resources. /e application of network
slicing technology complicates the operation of network.
Operators must be able to quickly configure network re-
sources in the shortest time according to customer needs and
provide highly compatible services flexibly. Failure to
configure network resources in time will lead to network
congestion.

2.4. Isolation. Network slicing technology must support the
isolation of various network components. If the slab does not
meet the insulation requirements, the performance of other
parts will be affected.

Observing Table 1 shows that the fault perception ac-
curacy of deep reinforcement learning algorithm is over
95%, which has higher accuracy, smaller positioning delay
and outstanding application performance compared with
existing fault perception algorithms.

3. Fault DiagnosisModeling of Communication
Network Based on Deep Learning

/e error characteristic data of the whole telecommunica-
tion network of intelligent power station has a large amount
of data, which is not conducive to the traditional method of
processing the error characteristic data one by one.

/erefore, this paper proposes a deep learning method,
which creates a diagnosis model through machine learning,
which represents the nonlinear mapping relationship be-
tween fault characteristics and location is shown in formula
(1), and realizes fault handling and analysis. At the same
time, it has high-dimensional error characteristics.

Yj � f Xj , (1)

Where:Xj represents the j-th fault feature set; Yj denotes the
j-th communication network fault code.

3.1.AutomaticGenerationMethod of Fault Samples. In order
to realize autonomous training of deep fault diagnosis
model, it is necessary to provide fault sample set for
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telecommunication network. It is very common to collect
historical failures to obtain a database, but this situation
requires a certain amount of accumulation time, and because
of the high reliability of the equipment, the operation is
insufficient in the case of equipment failure. /erefore, in
addition to historical error data samples, it is necessary to
automatically generate correct and reliable error samples.

According to Bessel’s system definition and basic
principles, this paper regards telecommunication network as
a whole, and introduces external factors (such as random
component failure, network topology modification, network
component configuration, etc.).

S(t + Δt) � g(I(t), S(t)). (2)

/e state vector S is shown in formula

S � [EbrX, EvX, Pl], (3)

Where A is the actual transmission path of the message.
/e input vector I is shown in formula

I � A, C, P, Sconponent, H . (4)

In the above formula, Sconponent is the working mode of
communication network components; H is the operating
environment parameter of telecommunication network.

/e instruction instance obtained by the generation
method can be stored in the database according to a certain
operation mode x � [A, C, P]. As shown in formula

D � D1, D2, . . . , Dj, . . . , DM ,

Dj � Xj .

⎧⎪⎨

⎪⎩
(5)

In the above formula, Dj is the j-th fault sample.

3.2. Fault Diagnosis Model Based on DBN. DBN is widely
used in image recognition and other fields, because it can
deal with horizontal and vertical high-dimensional input,
and describe the nonlinear relationship between input and

Table 1: 5G network failures.

Interference Uplink interference downlink interference
Overlay
vulnerability Coverage boundary has no coverage blind spot within coverage

Hardware Antenna failure RF transmission chain/reception chain failure other hardware failures (power supply, GPS clock
module)

Transmission Interface failure: NG interface/xn interface link failure beam fault

Network slicing

NFV fault network slicing configuration Configuration of connection resources: Over-utilization of connection
resources and under-utilization of connection resources allocation of computing resources: Over-utilization of
computing resources and under-utilization of computing resources memory resource configuration: Overuse of
memory resources, insufficient utilization of memory resources slice interoperability network management security

Others Fading Configuration parameter error
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Figure 1: 5G network architecture diagram.
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output with multi-layer structure. In addition, due to the
redundancy rate of high-dimensional data, it has good fault
tolerance and can still produce accurate values when data is
lost/erroneous. /erefore, this paper uses DBN to build a
fault diagnosis model of communication network.

DBN is composed of several RBM stacks, and the cor-
relation between fault characteristics and fault locations of
telecommunication network is represented by several hid-
den layers to realize diagnosis and analysis operations. /e
fault features are inputted in the input layer
Xj � [x1, x2, . . . , xm], /e output level is communication
network fault location Yj � [y1, y2, . . . , yn], where N is the
total number of communication network components, yi

refers to whether the i-th component in the network is faulty
or not, if the component is faulty, yi � 1, otherwise, it is 0.

DBN adds pre-training process through greedy unsu-
pervised learning, that is, only using fault attribute data to
preset network parameters, so as to avoid local optimal
solution caused by arbitrary network parameters.

/e energy function that defines RBM is shown in
formula

E(v, h|θ) � − 

nv

i�1


nh

j�1
wijvjhj − 

nv

i�1
bivi − 

nh

j�1
cjhj, (6)

Where: vi and hj are the neuron states of the visible layer and
the hidden layer of RBM respectively,
vi, hj ∈ 0, 1{ }; θ � cj, bi, wij  is the RBM network parame-
ter, where cj and bi are the offset values of the hidden layer
and the visible layer respectively, and wij is the connection
weight of the i-th visible layer neuron and the j-th hidden
layer neuron; nv and nh are the number of neurons in visual
layer and hidden layer, respectively.

According to formula (6), we can get probability dis-
tribution formula

P(v, h|θ) �
1

Z(θ)
e

−E(v,h|θ)

. (7)

/e CD algorithm is used to reconstruct the input layer
in both positive and negative directions, as shown in formula
(8) and formula (9)

P hj � 1|X  � f cj + 

nv

i�1
wijxi

⎛⎝ ⎞⎠, (8)

P vi � 1|h(  � f bi + 

nh

j�1
wijhj

⎛⎝ ⎞⎠. (9)

/e network parameters are updated according to the
error, as shown by formulas (10)–(12)

wij � wij + ε P h0j � 1|v0 vi0 − P h1j � 1|v1 vi1 , (10)

bi � bi + ε vi0 − vi1( , (11)

cj � cj + ε P h0j � 1|v0  − P h1j � 1|v1  ,

(12)

Where ε is the learning rate.
In the fine-tuning process, the general BP algorithm is

used to supervise the learning of the whole DBN. All the
instruction examples are used to calculate the MSE and
gradient between the DBN output layer and the target
output, and adjust the network parameter θ in the opposite
direction of the gradient. /e objective function of opti-
mization is shown in (13), and the matching of network
parameters is shown in (14).

min
θ

J(θ) �
1
N



N

i�1
x

(i)
− x

(i)2
2 , (13)

θ � θ − ε · ∇θJ(θ), (14)

Where: x(i) is the diagnosis result of the i-th sample; x(i) is
the actual fault of the i-th sample.

4. Experimental Analysis

4.1. SimulationResultAnalysis. /emodel training is carried
out on a single-core CPU computer, and the iteration times
of the model training process are 5000 times. Fault detection
accuracy pairs of different fault location algorithms are
shown in Figure 2 and Table 2. /e current algorithms are
AA, GA and FA.

4.2. Analysis of Fault Location Results

4.2.1. Single Fault Location Analysis. Only one fault in the
system is a single fault. By verifying the test set, we analyze
the effectiveness of DNN on it. /e results are shown in
Tables 3 and 4.

Looking at Tables 3 and 4, we can conclude that DNN is
very effective in locating various fault types.

In the process of fault location. When a failure occurs,
the traffic through the switch drops rapidly, and then an
abnormal traffic alarm is triggered, as shown in Table 5. In
addition, because the related secondary equipment cannot
receive these messages normally, It will send a message to
receive an exception. /erefore, XD and XM composed of
alarm information are represented by formulas (15) and (16).
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XD � XMU 1, XP 1, XP 5, XIT 1, XMC 1, XMC 2, XMC 3, XMC 4, XMC 5 ,

XMC 1 � AAMR S13 ,

XP 1 AAMR G56 , XP 5 AAMR G9, AAMR S2 ,

XIT 1 � AAMR G57 ,

XMC 1 � AAMR G10, AAMR G19, AAMR G35, AAMR G51 , XMC 2 � AAMR G3 ,

XMC 3 � AAMR G4 , XMC 4 � AAMR G5 , XMC 5 � AAMR G6 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

XM � S1, S2, S3, S4, S5 ,

S1 � P4 , P4 �
AAMT G10, AAMT G19, AAMT G35, AAMT G51,

AAMT G56, AAMT G57, AAMT S13

⎡⎣ ⎤⎦,

S2 � P17 , P17 � AAMT G3 ,

S3 � P29 , P29 � AAMT G4 ,

S4 � P53 , P53 � AAMT G5 ,

S5 � P79 , P79 �
AAMT G3, AAMT G4, AAMT G5, AAMT G6,

AAMT G9, AAMT S2

⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

/e formed X is used as the input of the DNNmodel, the
obtained failure result is shown in the formula.

YDNN �
L2

0, . . . , 1, . . . , 0
 . (17)

Cross-link method locates communication network
faults only according to message receiving status. In this
example, the fault location result obtained due to the failure

of the associated secondary device to normally receive the
message is shown in.

Y �
L2 Port4 Port79

0, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 0
 . (18)

/e traffic determination method locates a communi-
cation network fault based only on a state, resulting in a fault
location result as shown in.

Table 2: Fault intelligent sensing performance comparison table.

Algorithm Accuracy Perceptual delay (ms) Storage space Cost Perceived fault type Network scale
DRL 0.95–0.99 0.30–0.40 Small Low Soft and hard faults Complex network
AA 0.80–0.90 5.0–6.0 Small Gao Hard fault Simple network
GA Gao Slow Big 0 Soft and hard faults Simple network
FA Low Quickly Small 0 Hard fault Simple network

37 56 77 98 11616
50

60

70

80

90

100

DRL
AA

GA
FA

Figure 2: Accuracy of different fault awareness algorithms.
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Y �
L2Port2Port4Port79

0, · · · , 1, · · · , 1, · · · , 1, · · · , 1, · · · , 0
 . (19)

To compare the effects of fault location, we use the same
evaluation index.

Observing the calculation results, the result of the
method proposed in this chapter is 0. /e method proposed
in this chapter can reduce the scope of suspicious faults and
improve the efficiency of operation and maintenance.

According to the above calculation method, the obtained
data are as shown in the following Table 6.

Observing the above table, we can conclude that the
results of the model proposed in this paper are lower than
the other two models, so it can effectively improve the
accuracy of fault location. DNN can achieve this effect
because it is more reasonable in data processing.

4.2.2. Multiple Fault Location Analysis. /ere are multiple
faults in the system at the same time, which is called multiple
faults. /ese faults can be located in one position or in
different positions.

Table 3: Fiber link failure.

Link number Accuracy (%)
L1 98.795
L2 97.597
L3 98.889
L4 98.824
L5 98.851
L6 100
L7 100
L8 98.667
L9 97.647
L10 98.864
L11 99.765
L12 98.75
L13 100
L14 100
L15 98.611
L16 97.727
L17 98.718
L18 98.757
L19 99.78
L20 99.023
L21 100
L22 98.63
L23 100
L24 99.795
L25 100
L26 100
L27 100
L28 99.864
L29 97.778
L30 99.75
L31 98.756
L32 99.81
L33 99.718
L34 98.592
L35 98.684
L36 100
L37 100
L38 100
L39 100
L40 100
L41 97.856
L42 98.847
L43 98.649
L44 99.897
L45 100
L46 100
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Table 4: Equipment port failure.

Port number Accuracy (%)
1 98.81
2 99.547
3 97.684
4 98.734
5 97.611
6 98.667
7 98.876
8 100
9 97.824
10 100
11 100
12 100
13 99.876
14 99.845
15 97.653
16 97.63
17 98.663
18 97.834
19 99.546
20 98.901
21 100
22 98.734
23 100
24 100
25 100
26 97.789
27 99.436
28 97.453
29 97.845
30 99.765
31 97.463
32 99.676
33 98.701
34 97.563
35 97.667
36 97.925
37 100
38 100
39 98.645
40 98.463
41 100
42 98.245
43 100
44 97.753
45 100
46 100
47 100
48 100
49 100
50 100
51 98.887
52 97.782
53 99.453
54 98.837
55 99.78
56 99.667
57 98.567
58 98.531
59 98.788
60 97.564

Mobile Information Systems 7



Table 4: Continued.

Port number Accuracy (%)
61 98.75
62 100
63 97.328
64 100
65 100
66 98.628
67 97.564
68 100
69 99.653
70 100
71 100
72 100
73 100
74 100
75 100
76 97.738
77 98.901
78 97.678
79 99.474
80 97.757
81 98.649
82 99.634
83 97.257
84 99.731
85 97.784
86 99.837
87 100
88 98.554
89 100
90 100
91 99.63
92 100

Table 5: Messages failed by L2.

Switch Port Message
1 4 G10, G19, G35, G51, G56, G57, S13
2 17 G3
3 29 G4
4 53 G5
5 79 G3, G4, G5, G6, G9, S2

Table 6: Error comparison.

Fault location method Accuracy of fault location (%) Maximum error Minimum error Average error
DNN 99.072 0.5 0 0.004
Cross link method 80.692 0.889 0 0.249
Flow judgment method 77.644 0.875 0 0.314
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When a failure occurs, the traffic of the switch will drop
rapidly, thus triggering a traffic alarm, and the results are
shown in Table 7; because the relevant secondary equipment
cannot receive these messages normally, It will also give an

abnormal alarm; In addition, the merging unit 1 and the
protection device 5 will issue a device abnormality alarm.
/us, XD and XM in the fault feature set X constituted by the
alarm information are shown by formulas (20) and (21).

XD �
XMU 1, XP 1, XP 2, XP 3, XP 4, XP 5, XIT 1,

XIT 2, XIT 3, XIT 4, XIT 6, XIT 7
 ,

XMU 1 � ASTE, AAMR G1, AAMR G8, AAMR S1, AAMR S13 ,

XP 1 AAMR G56 , XP 2 AAMR G58 , XP 3 AAMR G61 , XP 4 AAMR G64 ,

XP 5
ASTE, AAMR G9, AAMR G18, AAMR G31, AAMR G34, AAMR G47, AAMR G50

, AAMR S2, AAMR S4, AAMR S6, AAMR S8, AAMR S10, AAMR S12
 ,

XIT 1 � AAMR G57 , XIT 2 � AAMR G59 , XIT 3 � AAMR G60 ,

XIT 4 � AAMR G62 , XIT 6 � AAMR G63 , XIT 7 � AAMR G65 ,

(20)

XM � S1, S2, S3, S4, S5 ,

S1 � P3, P4 , P3 � AAMT S1, AAMT S2 , P4 � AAMT S56, AAMT S57 ,

S2 � P17 , P17 � AAMT G58, AAMT G59 ,

S3 � P29 , P29 � AAMT G60, AAMT G61, AAMT G62 ,

S4 � P53 , P53 � AAMT G63, AAMT G64, AAMT G65 ,

S5 � P79, P85 , P79 � AAMT S2 ,

P85 �
AAMT G56, AAMT G57, AAMT G58, AAMT G59, AAMT G60, AAMT G61,

AAMT G62, AAMT G63, AAMT G64, AAMT G65
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Enter the fault feature set in DNN, and the result is
shown in formula.

YDNN �
P7P88

0, . . . , 1, . . . , 1 . . . , 0
 . (22)

According to the above analysis process, the state of two
ports is used for fault location. However, because the links
sent by the two ports do not intersect, the result of posi-
tioning is an empty set.

/e result is expressed by

Y �
L3L43P3P7P85P88

0, . . . , 1, . . . , 1 . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 0
 .

(23)
100 sets of data samples were obtained by randomly

simulating various complex fault scenarios to the effec-
tiveness of this method in multi-fault environment is

verified. Using the model mentioned above, the errors of all
samples are calculated, and the results are shown in the
following Tables 8 and 9.

4.3. Network Fault Detection and Diagnosis Results. Using
the network fault detection and diagnosis idea based on
AWGAN-GP proposed in this section, after selecting the
function, the AWGAN-GP algorithm is used to learn the
sample data collected from the real network environment
according to certain rules. In any network mode. Obtain a
large amount of analog data with labels anywhere in the
network. In the fault diagnosis model, the real data is used as
the test data to test the model. In addition, the virtual data
generated by the generated resistance network is used as
training data to train the fault detection and diagnosis
model. In order to better prove that the algorithm can
produce reliable virtual data, several classical classification

Table 7: Messages affected by failures.

Switch number Port number Message number

1 3 S1, S2
4 G56, G57

2 17 G58, G59
3 29 G60, G61, G62
4 53 G63, G64, G65

5 79 G3, G4, G5, G6, G9, S2
85 G56, G57, G58, G59, G60, G61, G62, G63, G64, G65

Mobile Information Systems 9



algorithmmodels are selected in the fault diagnosis model of
this chapter for verification.

First of all, this section takes the simulation data and
original data generated before and after work screening as
training data and simulation data respectively, and practices
and tests various fault diagnosis models. /e simulation
results are shown in Figures 3 and 4. Continuous iteration
makes the performance of each classification algorithm

more stable, and the fault diagnosis accuracy of each clas-
sification model before and after applying feature screening
is sorted according to Table 10. As can be seen from the table,
each fault diagnosis model is carried out after function
screening./e accuracy of error diagnosis is higher than that
of the untrained feature screening model, which shows that
although the original small sample size is increased by the
creation of the final simulation sample, the distribution of

Table 8: Error comparison of two kinds of fault location when multiple faults occur.

Fault location
method

Accuracy
of fault
location
(%)

Maximum
error

Minimum
error

Average
error

DNN 92 0.333 0 0.027
Cross link method 41 1 0 0.558
Flow judgment
method 0 1 0.333 0.607

Table 9: Error comparison of triple fault location methods when multiple faults occur.

Fault location
method

Accuracy
of fault
location
(%)

Maximum
error

Minimum
error

Average
error

DNN 86 0.25 0 0.035
Cross link method 36 1 0 0.632
Flow judgment
method 0 1 0.25 0.694
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Figure 3: Accuracy of each fault diagnosis model after feature screening.
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Figure 4: Accuracy of each fault diagnosis model without feature screening.

10 Mobile Information Systems



the generated data is not consistent with the original data set.
/erefore, if we can filter out the virtual samples that violate
the distribution law of the original data set, we can effectively
improve the classification accuracy of the next classifier.

On the other hand, considering the time of detecting and
diagnosing network faults, after function screening, the
input parameters of the training model are reduced, and the
learning time of the model is also reduced accordingly. /e
final time for troubleshooting is shown in Table 11. /e
process described in this chapter takes less time to diagnose
network errors after feature filtering than it does without
filtering functionality during troubleshooting. In view of the
accuracy and timing of the network fault detection and
diagnosis model, this chapter finally chooses XGBoost
model as the final network fault detection and diagnosis
model.

/e results show that the model proposed in this paper
can locate the fault location more accurately when dealing
with higher dimensional feature sets; In addition, under the
influence of feature information loss or false positives, DNN
can still accurately locate fault points because of its excellent
stability.

5. Concluding

/e secondary system composed of secondary equipment
and telecommunication network is the basic requirement
for the normal operation of intelligent substation. At
present, there are many shortcomings in the method of
positioning secondary substation in intelligent substation.
It is mainly manifested in the weak ability of state data
processing, low accuracy of fault location and poor anti-
interference ability. In this paper, based on the existing
research, a new intelligent fault location method is pro-
posed. In order to overcome the difficulties encountered in
the process of intelligent substation troubleshooting, we
adopt a new method. /is paper presents a method based
on DNN. Firstly, fault status redundancy monitoring an-
alyzes the characteristic data received by each control node
in different positions, and proposes the presentation of
fault characteristic information. Secondly, because of the
application of this principle, a large number of samples will
be generated, which will enlarge the training samples.
Finally, combined with deep learning, the model is
established.
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