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Outdoor positioning can often achieve accurate positioning according to GPS and mobile phone signaling, while indoor po-
sitioning is di�cult to meet the needs of practical application due to the limitations of satellite reception. In order to e�ectively
solve the problem of large error in the individual positioning strategy in the indoor environment, this paper applies multisensor in
the multisource information fusion indoor positioning system. By using the positioning results of multiple sensors to limit the
range of geomagnetic matching for combined matching, the matching error can be e�ectively reduced. �en, the global optimal
value of indoor network is calculated by using the multi-information data fusion algorithm, which can optimize the initial value
and threshold of the multi-information data fusion algorithm, improve the network accuracy as much as possible, and accelerate
the convergence speed at the same time. After completing the optimization processing, the indoor network can obtain the
combined positioning and predicted positioning results, so as to facilitate the fusion training to the actual position coordinates,
and �nally obtain the optimal positioning results. �e simulation results show that the mean square error predicted by the multi-
information data fusion algorithm calculated by the multi-information data fusion algorithm can be e�ectively reduced by 76%,
and the fusion positioning accuracy can be improved by 48% compared with the accuracy of a single positioning strategy. �e
method proposed in this paper e�ectively improves the positioning accuracy, indicating that the positioning performance
is better.

1. Introduction

With the e�ective development and improvement of In-
ternet technology and satellite technology, experts within the
industry have conducted more in-depth and intensive re-
search on human activities [1, 2]. Robots appear in more and
more �elds, and such intelligent robots are often introduced
into the production of various enterprises, especially in
cluster production [3, 4]. In the speci�c industrialized and
process-oriented robot production process, the smooth
completion of the task can only be ensured by ensuring safe,
e�ective, and collaborative work [5, 6]. Typically, in the
logistics industry, it is important to make the corresponding
task scheduling more accurate, put in accurately, and ac-
curately capture the location [7, 8]. Wi-Fi, GPS/BeiDou/
GNSS and other methods are often used for the traditional
positioning methods to achieve speci�c navigation and

positioning, but it should be noted that satellite signals are
often a�ected by the surrounding environment and build-
ings. In several cases, there may even be a loss of signal and
the result that positioning cannot be achieved.�erefore, the
traditional GPS satellite type positioning cannot be well
applied to indoor environment positioning [9, 10]. At
present, most of the indoor positioning of robots often uses
fusion sensors such as laser radar technique, mileage re-
cording, and inertial measurement unit technology to
achieve positioning. Di�erent from the traditional GPS
positioning method, this sensor-based positioning is not
disturbed by the environment, and there is no need to worry
about the weakening of satellite signals and can e�ectively
achieve speci�c positioning indoors [11, 12]. �e speci�c
indoor positioning usually includes two methods: one is to
achieve speci�c positioning based on basic image processing,
and the other is to achieve positioning by e�ective data
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information fusion for multiple sensors. In addition, it
should be noted that different methods require different
sensors, such as RFID, Wi-Fi, and pedometer sensors, but
these sensors are also different due to different materials,
equipment manufacturing, technology, and structure, which
often lead to the unstable collection of the data [9, 13]. 'e
mileage pedometer mainly relies on the specific motor in-
stalled to realize the coding work and does not need the
external information of the sensor to realize the specific
positioning, but this method often causes systematic and
random errors, which will cause the decline of the estimation
accuracy of the pose. Inertial measurement unit technology
positioning needs to achieve positioning after the specific
intelligent machine moves, but the positioning accuracy of
this method is not enough, and offsets often occur. Relatively
speaking, the accuracy of laser radar positioning is relatively
high, but this requires a relatively clear environment. If the
laser information is blocked to a certain extent, the scanned
information will not match the corresponding map infor-
mation, thus resulting in inaccurate positioning. For UWB
positioning technology, it is a relative way to provide ab-
solute position, but if there are many obstacles in the room,
the relative accuracy is low. If a single sensor is used for
positioning, however, due to the limitation of their re-
spective perception capabilities, the accuracy and precision
of positioning are insufficient. 'erefore, it is necessary to
perform fusion positioning of multiple sensors to improve
the reliability of positioning [14]. Due to the rapid devel-
opment of wireless communication technology and multi-
source data, multisource data are widely used in various
fields as an emerging network technology. 'e flow of in-
door multisource data, the daily multisource data high-
performance scientific computing, the multisource data
high-performance scientific computing industry, and the
monitoring of real-time information of multisource data is
becoming more andmore important. By setting up real-time
positioning and real-time monitoring on multisource data
high-performance scientific computing, we can perceive
various types of data information in multisource data high-
performance scientific computing, use multiple sensor ter-
minals to realize monitoring and management, and com-
plete the real-time monitoring and management of high-
performance scientific computing. Because the nodes cor-
responding to the distributed indoor flow have the char-
acteristics of high mobility and large network scale, higher
requirements are put forward for the reliability, stability, and
security of the real-time positioning and real-time moni-
toring system. Compared with the traditional methods, the
positioning and real-time monitoring system based on
multi-information data fusion algorithm needs to analyze
the extracted multisource data information, which can
complete the high-performance scientific calculation and
positioning of multisource data, resulting in simple equip-
ment structure, low cost, and convenient maintenance. It has
gradually become the continuous development trend of real-
time positioning and real-time monitoring system in in-
telligent room.

In view of these needs and deficiencies, this paper at-
tempts to introduce Kalman filtering to integrate

multisensor data and integrates mileage pedometer, inertial
measurement unit technology, and laser radar information
technology to achieve specific indoor positioning analysis,
and simulation experiments are used to verify and to im-
prove the accuracy and reliability of indoor positioning.

1.1. Basic �eory and Related Information Fusion Technology

1.1.1. Relevant Basic �eories

(1) Fuzzy Logic�eory. For fuzzy logic theory, it is not a specific
mathematical model; relatively speaking, the cost is low, the
calculation is more convenient, and the operability is strong.
During the specific construction and acquisition process,
specific and detailed positioning analysis cannot be achieved.
'erefore, the specific structure of fuzzy modeling cannot be
specifically set according to specific comprehensive indicators.

(2) Bayesian Inference Method. Bayesian inference method
has many relatively specific applications, such as parameter
self-adaptation, structure self-adaptation, and other
methods. 'is inference method requires the relative in-
dependence of data; therefore, it is difficult to construct the
system. In a specific system, there are specific rules of in-
crease and decrease, and this method needs to recalculate the
specific probability to achieve the specific consistency and
specific correlation of the system [15].

(3) Dempster–Shafer Reasoning. For the inference method,
its main feature is to properly deal with undetermined
problems, especially for conditional probability, and it can
realize a specific posterior method, but the disadvantage of
this method is that its framework is relatively limited;
meanwhile, conflicting combinations are prone to exist
[16, 17].

(4) BLE Positioning. For BLE positioning, it mainly solves the
communication problem between mobile devices and fixed-
location devices through Bluetooth technology. General
communication equipment often includes two parts: one is
the specific gravity equipment part, and the other is the
specific peripheral equipment part. 'erefore, in this case,
the peripheral device will scan through the specific center of
gravity device and use the broadcast in the peripheral device
to contain specific identification information and the specific
content of the broadcast frame, so as to realize the distance
judgment and analysis between the specific device and the
center of gravity device [18, 19]. 'rough the actual es-
tablishment of training samples, the specific position and
relative distance are analyzed, and the specific instructions
for the next step are realized.

'e functions of the parallel distributed multisensor
information fusion system can be intuitively represented
abstractly in Figure 1.

1.2. Structural Relation of Entropy of Information Fusion
System. 'e concept of entropy comes from thermodynamics
and can be calculated specifically by the following formula:
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H p1, p2, · · · pn(  � − 
i

pi ln pi( . (1)

Here, Xk is the probability of the corresponding event.

Definition: H(K), H(K-1) is the fusion entropy; I(k) is
the amount of mutual information, under the condition
of information correlation, I(k)> 0, specifically, as
shown in following formulas:
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i

p y|Z
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 ln p y|Z
k

  , (2)
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Changes are made on the basis of formula (2), formula
(3), and formula (4), and the specific calculation can be
obtained as follows:

H(k) � H(k − 1) − I(k). (5)

For information fusion in space, formula (5) represents
the structural relationship between the entropy of the fusion
system and its subfusion systems.

'e first step is to analyze the threat factor data set and
effectively classify it [20, 21].

We suppose that the strike targets can be divided into n
categories, and the following sets are defined:

(1) All target objects are initialized, and the specific
target object set is represented by the corresponding
data set X � x1, x2, · · · , xn .

(2) 'reat level classification set reflects the possible
threat level of each target:
D� {d1, d2, d3, d4, d5, d6}� {'e greatest threat, the
very great threat, the second greatest threat, the
greater threat, the general threat, the low threat}.

(3) 'reat factor set attributes reflect the impact of air
strike targets on threat estimation:
A � a1, a2, · · · , at , ai(i � 1, 2, · · · , t) reflect the at-
tributes of different targets that affect the degree of
threat, such as target types, mission attempts, in-
terference capabilities, hit capabilities, and naviga-
tion elements.

'e second step is to construct the mathematical model
of fuzzy recognition based on the first step [4, 22].

For a certain target xi ∈ X, (i � 1, 2, · · · , n), the threat
factor set A � a1, a2, · · · , at  of the target can be obtained
through the sensor data, according to which the object xi can
be classified, which is a problem of pattern recognition.

For a finite set of target objects X � x1, x2, · · · , xn , P �

p1, p2, · · · , pn  is the probability distribution over the set;
for ∀i, pi > 0, and 

n
i�1 pi � 1. On the basis of formula (1), the

probability distribution entropy can be calculated by the
following formula:

H(p) � − 
n

i�1
pi ln pi( . (6)

Let f(k)(k � 1, 2, · · · , m; m≤ n) be the distribution
function defined on X � x1, x2, · · · , xn , the mathematical
expectation can be specifically calculated by the following
formula :

E[f(k)] � 
n

j�0
pj · fj(k). (7)

On the basis of formula (7), the probability distribution
of a specific value needs to be solved. If the value ofm is less
than n, the relative probability distribution is not unique,
which requires a selection criterion to determine the most
reasonable probability distribution. When E[f(k)] is con-
strained to take a specific value, the distribution that
maximizes the entropy should be selected. 'e result of
pattern recognition can be calculated specifically by the
following formula:

a0 �
0, p 0|a1, a2, · · · , at( >p 1|a1, a2, · · · , at( ,

1, p 0|a1, a2, · · · , at( <p 1|a1, a2, · · · , at( .
 (8)

'e solution that requires the maximum entropy dis-
tribution is equivalent to solving a conditional extremum,
which is solved by the Lagrangian method. We define

G pi, λk(  � − 
n

i�1
pi ln pi(  − 

m

k�0
λk(f(k) − E[f(k)]). (9)

'e necessary and sufficient conditions for the above
formula to take the maximum value are as follows:

zG

zpi

� 0, (i � 1, 2, · · · , n) and
zG

zλk

� 0, (k � 1, 2, · · · , m).

(10)
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Figure 1: Functional block diagram of parallel distributed multisensor detection and decision fusion system.
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'en,

ln pi + 1 − 
m

k�0
λkfi(k) � 0, andfi(k) � E fi(k) . (11)

From this solution, the maximum entropy distribution
fi(k) can be obtained, so that the classification to which the
object should belong can be obtained, to achieve the purpose
of pattern recognition.

1.3. System Analysis of Mobile Positioning Technology. In the
specific GPS positioning process, due to the limitation of the
reception of satellite signals, there may be signal loss and
instability. 'erefore, in this case, the use of Bluetooth
technology for indoor positioning of logistics intelligent ro-
bots is relatively reliable and precise. Since the logistics in-
telligent robot selected is wheeled, its specific moving distance
can be obtained through the specific wheel speed and the
corresponding radius. Sensors are installed on the left and
right sides of the intelligent robot. During the specific travel
process, the sensors collect the corresponding rotational speed
and position data to calculate the speed of the wheels, and
then transmit the corresponding rotational speed data to the
server for fusion through the corresponding electronic
compass data, to achieve the measurement and calculation of
the robot coordinates and position in the moving distance
[23, 24]. In addition, the analysis of sensor data is required to
analyze the specific model of Bluetooth positioning and re-
alize the specific calculation of indoor position by classifying
and inputting the data. On the server side, two methods can
be integrated to realize the information analysis of the en-
vironmental sensors and further obtain the position of the
intelligent robot accurately.

Under normal circumstances, intelligent robots are often
divided into three specific movements in three directions,
namely, going straight, turning left, and turning right,
specifically as shown in Figure 2.

Among them, the left and right photoelectric sensor
signals are marked as Fl and Fr, respectively, and the motion
state of the logistics robot is also divided into three rela-
tionships for the sensing signals: Fl� Fr, Fl> Fr, and Fl< Fr.

'reat assessment is to estimate whether the target is
close enough to a fire unit or defended object, determine
whether the target poses a threat to it and the size of the
threat, and then rank the targets according to the size of the
threat. 'e evaluation steps are shown in Figure 2.

Step instructions are as follows:

(1) Apply the maximum entropy method of pattern
recognition to classify striking targets.

(2) Determine the target threat level according to the
results of ① and the knowledge base of the estab-
lished threat level classification set. 'e basic form of
the rules in the knowledge base is as follows:
<rule≥ IF< antecedent>THEN< conclusion>
(OR<action>).
'e meaning of the whole equation produced is that
if the antecedent is satisfied, then the conclusion can

be obtained or the striking specified action can be
implemented. Specific rule examples are as follows:
<Rule I≥ IF<Target Classification II “Tactical
Ballistic Missiles”> THEN<maximum 'reat>;
<Rule II≥ IF<Target Classification� “air-to-ground
missiles, antiradiation missiles”> THEN< very great
threat>;
<Rule III≥ IF<Target Classification II “Cruise
Missiles, stealth plane, Large Bombers”>
THEN<'e second greatest threat>;
<Rule IV≥ IF<Target Classification II “fighter
plane, fighter-bomber plane, early warning com-
mand airplane”> THEN<'e Greater 'reat>;
<Rule V≥ IF<Target Classification II “Small Plane,
Helicopters, Reconnaissance Aircraft”>
THEN<General 'reat>;
<Rule VI≥ IF<Target Classification II “Unidentified
Machine, False Target, Bait”> THEN< Small
threat>.

(3) Setting: among the n types of many striking targets,
the threat level of the i (i ∈ {1, 2, . . ., n}) target is
denoted as d(i), and the target has a threat factor set
Ai � a1, a2, · · · , at ; the threat level of the j (j ∈ {1, 2,
. . ., t}) attribute of the i-th target is denoted as e(i, j).
'en, the threat degree Di of the i-th target can be
specifically calculated by the following formula:

Di � α μi · d(i) + 

t

j�1
v(j|i) · e(i, j)⎡⎢⎢⎣ ⎤⎥⎥⎦. (12)

In the formula, the specific weight of the target threat
degree is represented by σY, and the threat degree weight of a
specific attribute is represented by v(j|i); the specific weight of
the importance degree is represented by α.

On the basis of formula (12), the formula is transformed,
specifically as shown in the following formula:

μi + 

t

j�1
v(j|i) � 1, α ∈ [0, 1]. (13)

'e algorithm based on BLE positioning technology and
the algorithm of distance positioning can be used to ac-
curately locate the robot. 'e specific calculation methods
are shown in following formulas:

Cpq � 2πR · Ps, (14)

X△t � Cpq · cos θ, (15)

straight Turn le�
Turn Right

Figure 2: Steering of the robot.
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Y△t � Cpq · sin θ, (16)

Xp � XAj + X△t(p − 1) + X△t, (17)

Yq � YAj + · · · + Y△t(q − 1) + Y△tq. (18)

When a specific intelligent robot completes a series of
sorting and transfer tasks, it realizes the transformation and
analysis of specific positions; that is, it can complete pro-
cesses such as warehouse, path, and sorting. First, we start
from the logistics warehouse to find the corresponding
goods to be transshipped. After finding the goods, we send
the goods to the specific sorting area for analysis and then
return to the specific warehouse for the analysis of next task.
When the logistics warehouse is set as the starting point of
the intelligent robot, the initial position can be set to [0,0].
Meanwhile, we integrate the photoelectric sensor with the
electronic compass accordingly, analyze and calculate the
position of the intelligent logistics robot at a specific mo-
ment, use the current position coordinates as the input value
of the indoor classification model, and use the nearest
neighbor algorithm to obtain and analyze the best position
of the logistics robot.

'e specific indoor positioning algorithm of the logistics
robot mainly includes two specific parts, namely, the offline
machine learning part and the online location testing part.
First of all, it is necessary to set up and learn according to the
specific position of the robot, and build a specific overall
classification model. 'is classification model needs to in-
tegrate two numerical models of indoor positioning and
distance positioning. Firstly, the corresponding data sets are
established by using various data obtained by Bluetooth
sensors, photoelectric sensors, and electronic compass
sensors, and specific models and algorithms are constructed
for specific data sets. By constructing a specific location and
database for specific mapping analysis, the specific area can
be divided into several types. One is the collection of data
location coordinates. In this way, the nearest neighbor al-
gorithm can be used to obtain the specific relative position,
so as to construct the mapping relationship model of the
two. 'e online location test needs to be implemented from
multiple aspects. On the one hand, the input data of data
modeling are analyzed by using Bluetooth data to obtain the
location of the intelligent robot at a specific time; on the
other hand, according to the relative coordinate position of
the specific distance-classified model and the specific robot,
the specific logistics robot positioning is obtained; finally, the
data results are integrated for specific analysis, compre-
hensive decision-making analysis is carried out through the
integrated control unit, and corresponding services are
output, to obtain the final indoor positioning, specifically as
shown in Figure 3.

'e so-called positioning information is actually the
information parameters of the shared intelligent robot, and a
fixed analysis is carried out according to the actual specific

collected relevant parameter data to realize decision support.
When the logistics robot detects the corresponding desti-
nation, it can perform specific operation control according
to the control unit, prompting the intelligent robot what the
next operation and step are until the transfer task is com-
pleted and the control of the operating system is realized.
When the robot completes the specific work and returns to
the origin position of the logistics warehouse, the corre-
sponding system will record the previous task environment
and information. After the record is completed, it will be
specifically cleared and wait for the next specific task of the
intelligent robot.

'e specific multisensor fusion positioning system
mainly includes a positioning system, a mobile intelligent
robot platform, and a computer, specifically as shown in
Figure 4.

1.4. Indoor Environment Positioning Method. 'e multi-
sensor fusion positioning process framework is shown in
Figure 5.

As shown in Figure 5, the whole framework first uses the
extended Kalman filter algorithm to perform data fusion of
multisensors to realize data fusion of odometer pedometer,
IMU, and BLE positioning information. Among them, EKF
includes prediction step and update step. On this basis, the
AMCL algorithm is used to analyze the laser radar posi-
tioning data, and the specific map matching update analysis
is realized.

In accordance with the multi-information data fusion
indoor environment positioning method and the basic
principle of relative altimetry being adopted, the results of
indoor positioning can be obtained based on the multi-
information data fusion algorithm.With regard to the height
measured by the sensors, the accurate positioning of the
indoor environment can be completed. However, there are
also errors in the results calculated by using the algorithm
proposed in this paper. For the purpose of improving the
accuracy of positioning, the process of the algorithm is
optimized in this paper, and the multi-information data
fusion process obtained after optimization is shown in
Figure 6.

Bluetooth data collection

Classification input

distance classification

Determine the coordinates

Determine the location

data collection

Figure 3: Data collection process.
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'e process of multi-information data fusion is de-
scribed as the following:

'e state vector of multi-information data acquisition by
the sensor can be represented as follows:

X � X Y SL ψ H . (19)

In the above expressions, X and Y are used to stand for
the coordinate values corresponding to the carrier in the
data fusion coordinate system; SL stands for the step size
being calculated; Ψ stands for the acquisition angle of sensor
data; and H stands for the height.

'e state expression for the sensor multi-information
data acquisition is as follows:

Xk � Xk−1 + SLk · cos ψk(  + WX,

Yk � YK−1 + SLk · sin ψk(  + WY,

SLk � SLk−1 + WSL,

ψk � ψk−1 + Wψ,

Hk � Hk−1 + WH.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

'e above expression is a nonlinear equation, which can
be obtained by linearization processing:

Xk � ΦkXk−1 + Wk. (21)

In the above expression, Xk is used to stand for the state
vector of data information at the moment tk,φk stands for
the transfer matrix of the state, and Wkstands for the noise
vector of the fusion process. 'us, the state transfer matrix
can be expressed as follows:

'e state transfer matrix expression is as follows:

Φk ≈
zf

zX
|X�Xk

�

1 0 cos ψ −SL · sin ψ 0

0 1 sin ψ SL · cos ψ 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X�Xk

. (22)

'e observation vector can be expressed as follows:

L � SL ψ H . (23)

'e observation equation can be expressed as follows:

SLP DR � SLk + VSL,

ψP DR � ψk + Vψ ,

HP DR � Hk + VH.

⎧⎪⎪⎨

⎪⎪⎩
(24)

'us, it can be observed that the observation equation
used has the linear characteristics and does not require
linearization processing. Hence, the expression for the
matrix designed can be obtained as follows:

Bk �

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)
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Figure 4: Composition of the positioning system.
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Figure 5: Flow chart of fusion positioning.
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Figure 6: Multi-information data fusion process.
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It is assumed that the state noise covariance matrix
expression is as follows:

ΣWk
�

σ2X 0 0 0 0

0 σ2Y 0 0 0

0 0 σ2SL 0 0

0 0 0 σ2ψ 0

0 0 0 0 σ2H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where σX � σY � 1m, σSL � 0.03m, σψ � 0.5 rad, and
σH � 0.5m.

'e covariance matrix corresponding to the observation
vector can be expressed as follows:

Σk �

σ2SL 0 0

0 σ2ψ 0

0 0 σ2H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

1.5. Analysis of Experiment andResults. In this paper, for the
purpose of testing the practicality of the multi-information
data fusion indoor environment positioning system, simu-
lation software is used to carry out simulation and testing. In
a square area with a length of 50 cm, the nodes are moved
along the arrows in a counterclockwise direction according
to the simulated route, as shown in Figure 7. 'e moving
speed of the node is 1m/s, the time interval during the
moving process is set to 0.5 s, and the moving position is
stacked in an uninterrupted manner and monitored.

Compared with the other positioning methods, the
positioning trajectory obtained based on the proposed
method is smoother and closer to the reference trajectory,
which suggests that the multisensor fusion positioning
method put forward in this paper can achieve relatively high
positioning accuracy and stability. 'e details are shown in
Table 1.

'e accuracy of positioning is calculated based on the
multi-information data fusion algorithm, with the expres-
sion as follows:

δ �

�������������

1
n



n

i�1
xi − x0( 

2




. (28)

1.5.1. Non-Line-of-Sight Error. As shown in Figure 8, in this
simulation experiment, the relationship between the LOS
error value and RMSE is mainly studied, and the noise obeys
the Gaussian distribution. From the results, with the increase
of μN, the RMSE value of all algorithms increases, but the
multisensor fusion positioning method (MSNIMA algo-
rithm) in this paper has more obvious advantages and higher
positioning accuracy.

As shown in Figure 9, this result shows that when the
LOS error value is 2, the measurement obtained by noise
follows a Gaussian distribution and the effect of non-line-

of-sight error variance on RMSE. 'e multisensor fusion
localization method (MSNIMA algorithm) has the best
localization effect.

1.5.2. �e Non-Line-of-Sight Error Follows an Exponential
Distribution. As shown in Figures 10 and 11, the positioning
accuracy of the multisensor fusion positioning method
(MSNIMA algorithm) is better than the other two algo-
rithms, which has obvious advantages.

As shown in Figure 11, the multisensor fusion locali-
zation method (MSNIMA algorithm) proposed in this paper
is robust and has high pointing accuracy.

1.5.3. �e Non-Line-of-Sight Error Obeys a Uniform
Distribution. 'e results between the maximum deviation
coefficient Umax and the root mean square error are shown in
Figures 12 and 13. With the increase of the maximum
deviation sparseness, the three algorithms all show an in-
creasing trend, while the multisensor fusion positioning
method proposed in this paper (MSNIMA algorithm) has
high positioning accuracy.

For a single sensor, the weighted averaging method is
more practical, and for the actual system, it is more ad-
vantageous. Typical methods such as Kalman filtering can
effectively solve the problem of image fusion, and fuzzy logic
methods can also help the filtering method to improve the
corresponding robustness. 'e fusion of precision can re-
alize the limitations of Bayesian through specific wavelet
transform methods, so as to achieve specific model im-
provement and use. 'e fusion of various methods and the
integration of various data can effectively improve the
performance of the algorithm and improve the accuracy of
indoor positioning.

0

5

10

0 2 4 6 8

MSNIMA
IMM-KF
Rwgh

Figure 7: Simulation route for the indoor environment
positioning.

Table 1: Accuracy of various positioning methods/m.

Accuracy of positioning
in different directions

X direction of the
movement

Y direction of the
movement

Length of the movement
route 0.6345 0.5733

Single sensor 0.3255 0.0824
Odometer 0.2055 0.2833
Fusion of multiple
sensors 0.0734 0.0987
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In addition,multisensor fusion is a stationary and random
relative process, which is mainly distributed through a linear
structure. On the one hand, if the corresponding system

performance needs to be improved, its algorithm needs to be
improved to achieve nonlinear, nonstationary information
fusion and improve the accuracy of indoor positioning.

MSNIMA
IMM-KF
Rwgh
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Figure 8: Relationship between the mean values of LOS error μN and RMSE.
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Figure 9: Relationship between LOS error variance σ2N and RMSE.

0

2

4

6

0 0.5 1 1.5 2 2.5

MSNIMA
IMM-KF
Rwgh

Figure 10: Relationship between parameters μ and RMSE.
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Figure 11: Relationship between standard deviation of measurement noise and RMSE.
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2. Conclusions

In view of the large error of the current indoor single
positioning method, it appears before using multisensor. In
this paper, multiple sensors, geomagnetism, and multi-
source data are used to extract the three indoor positioning
features, which can be completed by mobile phone. We
simplify the calculation and make the algorithm more
complete. 'e multi-information data fusion algorithm is
used to effectively solve the problem of slow convergence
speed of neural network algorithm. 'e multisensor data
fusion is carried out by relying on Kalman filter, and the
odometer, inertial measurement unit technology, and lidar
information technology are fused. Compared with the
positioning method, the fusion positioning accuracy can be
improved by 48%. 'e method proposed in this paper can
use the sensors built in the mobile terminal, that is, the
continuous and stable indoor positioning. If multiple
sensor signals disappear, it can also continue to locate,
indicating good scalability and fault tolerance. We achieve
specific indoor positioning analysis. 'e simulation results
show that the multisensor in the multi-information data
fusion method is effective, can meet the actual needs,
greatly improves the accuracy of indoor positioning, and
has good stability at the same time.
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