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To solve the feature loss caused by the compression of high-resolution images during the normalization stage, an adaptive clipping
algorithm based on the You Only Look Once (YOLO) object detection algorithm is proposed for the data preprocessing and
detection stage. First, a high-resolution training dataset is augmented with the adaptive clipping algorithm. Then, a new
training set is generated to retain the detailed features that the object detection network needs to learn. During the network
detection process, the image is detected in chunks via the adaptive clipping algorithm, and the coordinates of the detection
results are merged by position mapping. Finally, the chunked detection results are collocated with the global detection results
and outputted. The improved YOLO algorithm is used to conduct experiments comparing this algorithm with the original
algorithm for the detection of test set vehicles. The experimental results show that compared with the original YOLO object
detection algorithm, the precision of our algorithm is increased from 79.5% to 91.9%, the recall is increased from 44.2% to
82.5%, and the mAP@0.5 is increased from 47.9% to 89.6%. The application of the adaptive clipping algorithm in the vehicle
detection process effectively improves the performance of the traditional object detection algorithm.

1. Introduction

With the rapid development of the social economy and
accelerated urbanization, traffic problems are becoming
more and more serious [1]. Effective traffic monitoring helps
to solve increasingly serious traffic problems. Once AI enters
Agenda at the national level, intelligent transportation
systems will become the development in the trend [2–4].
An unmanned aircraft has wide application prospects in
the field of transportation, and the UAV equipped with
high-definition cameras has great development potential
and advantages in parking lot management, intelligent traffic
control, and disaster rescue [5–9]. Using the improved
YOLO algorithm, according to the characteristics of fast rec-
ognition speed, high accuracy, and good detection effect, it
can give full play to the advantages of auxiliary decision-
making in a variety of complex traffic conditions.

Compared with vehicle detection through ground
images, aerial image taken by UAV is slightly different: the

ground view is mainly taken by a fixed camera. The aerial
view is taken from the top view by a mobile UAV with a
camera. Therefore, some side information about the vehicle
is lost [10]. The image quality of the camera carried by the
UAV is much higher than that of the ground camera (most
cameras are 4K, and some high-end models can output
images with a resolution of 8K), and the amount of informa-
tion carried by the image is huge. Therefore, images need to
be used correctly and reasonably. In addition, in aerial
images, objects of interest are usually small and dense. For
example, when a DJI Inspire 2 Zenmuse X7 drone is used,
the output image size is 5760 × 3240 pixels; for such a high
resolution, a vehicle may only be 50 × 50 pixels or less
[11], and it is very challenging to detect such a small vehicle
in large images.

In the field of deep learning algorithms, image classifica-
tion networks based on convolutional neural networks such
as AlexNet, VGG, and ResNet [12–15] have been developed
to enhance ImageNet classification competition to achieve
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higher scores. Convolutional neural networks have been
increasingly used in the object detection field [16, 17]. Red-
mon et al. [18] proposed the You Only Look Once (YOLO)
object detection network; it treats object detection as a
regression problem and uses an end-to-end framework to
directly predict category and location information. The
following year, Redmon and Farhadi [19] proposed an
improved version named YOLO9000, which added anchor
boxes to make it easier for the detection head to predict
the target box and added batch normalization (BN) to
reduce the overfitting of the model. The most recent version
of the YOLO object detection algorithm is YOLOv5, which
significantly improves the accuracy and efficiency of the
object detection algorithm by replacing the backbone to
CSP-DarkNet and adding some data augmentation methods
like mosaic.

Ground target detection based on the deep learning
method has been well developed. However, the current
technology still has some shortcomings in vehicle detection
from UAVs, such as a small set of targets consisting of pieces
of cars in parking lots. Taking the YOLO object detection
network as an example, the downsampling factor of YOLO
is 32, and the network outputs a 13 × 13 prediction grid.
If the distance between two target objects is less than 32
pixels, then the network has errors when the targets are
differentiated [11].

Therefore, some researchers are committed to improving
the network structure. Zhong et al. [20] used convolutional
neural networks to generate vehicle-like regions from the
feature maps of different layers in the backbone and pooled
the features of the deep and shallow layers, which is helpful
to detect small objects more effectively. Yang et al. [21] used
cross-layer skip connections to overcome the feature loss
caused by deep convolutional neural networks for small
objects. Sommer et al. [22] showed that the current region
proposal network (RPN) did not work effectively for small
objects, so the RPN network, including the fast R-CNN
improvement, was used to detect small objects. The above
researchers have conducted in-depth studies on network
structures. However, due to the strict limitation of the input
size of the convolutional neural network, the above algo-
rithms are weak in terms of enhancing the vehicle detection
process of high-resolution images.

Due to the limitations of the convolutional neural
network, the current mainstream target detection network
has strict requirements for the size of the input image. Dif-
ferent object detection networks have different requirements
for the resolution of the input image. Images that do not
meet the corresponding resolution need to be compressed
or zero-padded and adjusted to meet the requirements
before being detected again. The faster R-CNN [23] uses
1000 × 600 pixel images as the regular input, SSD [24] uses
300 × 300 or 512 × 512 pixel images as the input, and the
latest YOLOv5 algorithm uses 640 × 640 pixel images as
the input. However, the resolution of images captured by
UAVs is much higher than the image size acceptable for
the above object detection models. The loss in the process
of image compression will seriously affect the detection of
small targets in the target detection network.

In order to solve the problem of feature loss in the
process of UAV high-resolution image target detection, an
adaptive clipping algorithm based on UAV image as the
input of training and detection is proposed in this paper.
The algorithm is based on the YOLOv5 object detection net-
work. During the process, high-resolution images are input
to the network for training after being adaptively clipped
according to the input size requirements. After training,
the small object detection problem is transformed into a
standard problem using a sliding window for sliding chunk
detection through the step size calculated by the adaptive
clipping algorithm. The algorithm is evaluated by using
accuracy, recall, and map, and the effect of the algorithm is
verified by testing actual vehicle detection images.

The rest of this paper is organized as follows: Sec-
tion 2 presents the principles and implementation of
the YOLOv5-based adaptive clipping algorithm, Section 3
describes the experimental procedure of the algorithm in
this paper based on a modified VisDrone dataset, and Sec-
tion 4 presents and analyzes the results of the operation of
the proposed algorithm. Finally, a conclusion is drawn in
Section 5.

2. Description of the Methodology

The workflow of the proposed YOLOv5-based high-
resolution UAV image vehicle detection algorithm is shown
in Figure 1.

The drone acquires high-resolution images or videos,
which are processed to form an image library, organized into
an initial training dataset using manual labeling, and split
into a final training dataset after processing by the pro-
posed adaptive clipping algorithm that is used to train
the YOLOv5 object detection algorithm. The correspond-
ing model weights are obtained.

The detection process uses the improved adaptive clip-
ping detection algorithm to take chunks of the images on
the test set. After obtaining the coordinate position of the
current image’s clipping detection frame, the coordinates
are adjusted according to the sliding window step given by
the adaptive clipping algorithm. Then, the adaptive clipping
detection coordinate frame is merged with the coordinate
frame of the original image detection after nonmaximum
suppression. Finally, the complete object detection image is
outputted.

3. The Proposed Adaptive Clipping Method

3.1. YOLOv5 Object Detection Algorithm. The proposed
adaptive clipping algorithm applies to both the training data
preprocessing process and the detection process of the object
detection algorithm. The YOLOv5 algorithm, as the latest
version of the YOLO algorithm, is known for its breakneck
detection speed and high accuracy. Currently, the YOLOv5
model has a detection speed as low as 2ms per image on a
single NVIDIA Tesla v100. The proposed algorithm requires
the input image to be detected in chunks and then combined
into a single image; therefore, the YOLOv5 algorithm is
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chosen as the object detection algorithm to ensure a high
detection speed during real-time performance.

The YOLOv5 network model consists of three main
structures: the backbone, the feature pyramid network, and
the detection head. The backbone network is responsible
for extracting features from different images at different
scales, the feature pyramid network is responsible for fusing
features from different scales and passing them to the
detection network, and the detection network is responsible
for predicting the object category in it using the image fea-
tures and generating the object bounding box. The YOLOv5
network structure is shown in Figure 2.

3.2. Adaptive Clipping of Datasets. Taking a DJI Inspire 2
Zenmuse X7 UAV as an example, the maximum image size
output by the camera is 5760 × 3240 pixels, and the size of a
vehicle on the ground is only approximately 30-50 pixels
when the UAV is flying at an altitude of 50-100 meters.
The algorithm compresses the input image to 640 × 640
pixels during the object detection process. At this time, the
length of the vehicle on the ground is only 4-6 pixels, and
the image detail features of the vehicle suffer a large amount
of loss. Figure 3 shows the detailed features of the vehicle in
the same area before and after the compression of the origi-
nal image.

In this paper, we propose an adaptive image clipping
algorithm for the training set of high-resolution images cap-
tured by UAVs. In the process, the high-resolution images
are slid and clipped with overlap according to the output size
required by the object detection network to generate a new

dataset after data augmentation. The clipping frame coordi-
nates are calculated as follows:

Nw =
Iw
Fw

+ 1, ð1Þ

Nh =
Ih
Fh

+ 1, ð2Þ

Sw = Fw −
Fw − Iw%Fwð Þ

Nw

� �
, ð3Þ

Sh = Fh −
Fh − Ih%Fhð Þ

Nh

� �
, ð4Þ

where Iw denotes the number of horizontal pixels in the
original image, Ih denotes the number of vertical pixels in
the original image, Fw represents the width of the input
image of the object detection network, Fh represents the
height of the input image of the object detection network,
Nw denotes the number of clip frames finally generated in
the horizontal direction, and the calculation results in paren-
theses are rounded down, and Nh represents the final num-
ber of clip boxes generated in the vertical direction. The
calculated results in parentheses are rounded down. Sw is
the step length of the horizontal sliding of the clip frame,
and Sh is the step length of the vertical sliding of the clip
frame.

The workflow of the sliding window equations is shown
in Figure 4. First, we calculate how many windows are
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Figure 1: As can be seen from the figure, the vehicle images collected by the UAV are divided into a training set and a test set. The training
set is processed by an adaptive clipping algorithm and then trained using YOLOv5. The images from the test set are adaptively chunked and
fed into the improved YOLOv5 for detection. The detection results of both branches are nonmaximum suppressed to obtain the final
detection frame.
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Figure 2: The structure of YOLOv5.
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needed to cover all the pixels at the current crop size accord-
ing to Formulas (1) and (2). We allow the window to exceed
a portion of the image. We then distribute the excess equally
as the overlap of the sliding window in Formulas (3) and (4).
Note that when the image size is just divisible by the sliding
window, we add an extra window and then divide the entire
window equally for overlap.

The label format of the YOLOv5 algorithm is the nor-
malized relative coordinate value. For example, ð0:5, 0:5Þ
represents the center point of an image, and ð1, 1Þ represents
the point in the bottom right corner of an image. Therefore,
the original labels need to be mapped according to the rules
of adaptive clipping to generate the labels of the new image,
and the algorithm flow of label mapping proposed in this
paper is shown in Algorithm 1.

The original object box ðx1, y1, x2, y2Þ represents the
top-left and bottom-right coordinates of an object box in
the original map, ðx3, y3, x4, y4Þ represents the top-left and
bottom-right coordinates of the current sliding window,
and ðx − top, y − top, x − bot, y − botÞ represents the top-left
and bottom-right coordinates of the object box of an object

Input: ObjectBox(x1,y1,x2,y2),SlidingBox(x3,y3,x4,y4)
Output: ClippingBox(x-top,y-top,x-bot,y-bot)

function Label mapping(x1,y1,x2,y2,x3,y3,x4,y4)
if IoU([x1,y1,x2,y2], [x3,y3,x4,y4])>0 then

x-top = max(x1,x3)
x-bot = max(x2,x4)
y-top = max(y1,y3)
y-bot = max(y2,y4)

end if
return x-top,y-top,x-bot,y-bot

Algorithm 1: Label mapping.

Input: Image, DetectSize
Output: PredictionBox

function Detect (img, detect_size)
Nw,Nh,Sw,Sh = Adaptive_clipping(img.size, detect_size)
for h in range (Nh) do
for w in range (Nw) do

y3 = h ∗ Sh do
y4 = h ∗ Sh + detect_size
x3 = w ∗ Sw
x4 = w ∗ Sw + detect_size
clip_img = img[:,y3:y4,x3:x4]
pred_clip = Model(clip_img)
pred_clip[:,:,0] += x3
pred_clip[:,:,1] += y3
pred_all = Concat (pred_clip,pred_all)

end for
pred = Model(img)
pred_all=Concat (pred, pred_all)
pred_all=NMS (pred_all)

end for
return pred_all

Algorithm 2: Adaptive clipping detection.

Figure 3: Detail damage in compressed images.

Fw Sw Overlap Overlap Overlap

Figure 4: Detailed process of implementing the equation.
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Figure 7: Adaptive clipping of datasets. The image on the left is the labeled original image, and the image on right is the labeled adaptive
clipping image.
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Figure 5: Adaptive clipping detection algorithm flow.
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output from the clip map. IoU is the intersection over the
union of the ratio discriminant function, which is responsi-
ble for calculating the ratio of the intersection over the union
of two regions. IoU is calculated as

IOU =
Area A ∩ Bð Þ
Area A ∪ Bð Þ : ð5Þ

3.3. Adaptive Clipping Detection. The network structure of the
YOLOv5 object detection algorithm has strict requirements
concerning the resolution of the input raw images. The default
input image size in YOLOv5 is 640 × 640; thus, all images
larger than this resolution will be compressed, and image detail
features are inevitably lost during the compression process.

This paper proposes adaptive clipping of images in the
inference process using the adaptively clipped image coordi-
nates calculated using Formulas (1)–(4) to address the above
issues. The algorithm uses the input image width required by
the network during the inference process Fw, as in Formula
(1); the input image height required by the network Fh, as in
Formula (2); and the calculated chunk detection frame coor-
dinates to perform clipping with overlap on the original
images and detect the clipped images separately. The algo-
rithm flow is shown in Algorithm 2.

In Algorithm 2, img is the image input with the original
resolution, and the clipped image size is the input image size
of the object detection algorithm (640 in this paper). The
output of the Adaptive clipping function is calculated by
Formulas (1)–(4). The Model function is the YOLOv5 net-
work training model, which returns the prediction frame
information of the input image. The Concat function is the
combination function, which outputs the tensor after the
combination of multiple tensors. Finally, the NMS function
is the nonmaximum suppression function, which eliminates
the redundant prediction frames by removing the object
frame with the greatest overlap with the confidence value.

Since single images inevitably contain some large objects,
to avoid detection errors caused by the incomplete combina-
tion of object features when a single large object is split into
multiple clips, the algorithm inputs the whole image for
inference after the inference of the clips. Finally, nonmaxi-
mum suppression is used for all inference results, including
the clipped images and the whole images. The principle of
this part of the algorithm flow is shown in Figure 5.

4. Experiments

The VisDrone drone dataset [25] was filmed and produced
by the AISKYEYE team at Tianjin University, and the base
dataset consists of 260,000 frames of video, with more than
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Figure 10: Recall and precision curves.
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10,000 still images from 14 different cities collected by vari-
ous models of drones.

The VisDrone dataset is labeled with ten categories,
namely, pedestrian, person, car, van, bus, truck, motor, bicy-
cle, awning-tricycle, and tricycle. However, it suffers from an
imbalance in the data distribution of different classes. To
overcome this problem, uniform variables are used to verify
the validity of the algorithm. We have removed the category
labels for people and nonmotorized vehicles. According to
various vehicle characteristics, retain only the car, van, bus,
and truck categories, and unify the names of the above cate-
gories into one named car by modifying the labels. Facilitate
the monitoring and identification of objectives. The adjusted
training set has a total of 6471 images, the validation set has
a total of 548 images, and a total of approximately 175,000
cars are labeled. We use an Intel I7-7700 CPU with 16GB
of memory and an NVIDIA RTX 2070 GPU (8GB) for
experiments, and the deep learning framework is Python
3.7 with PyTorch1.8.

4.1. Data Preprocessing Results. The training set is adaptively
clipped using the proposed algorithm, and the clipping pro-
cess discards the images that do not contain the object in the
generated clipping map. The algorithm generates 35,742
images for the training set and 2656 images for the valida-
tion set. The labels of the clipped training set are reassigned
using Algorithm 1 according to the YOLO-TXT format. The
format requirements are shown in Figure 6.

Each image generates a txt file of the same name, and
each line in the txt file represents the label of an individual
object. The first column is the object class, numbered from
0. Since all classes were merged, only one class is included
in the dataset. The second and third columns are the XY
coordinates of the object frame, and the coordinate positions
are normalized using the aspect pixel values of the original
image as the denominator. The fourth and fifth columns
are the aspect pixel values of the object frame, which are also
normalized using the aspect pixel values of the original
image as the denominator. The converted label image is
shown in Figure 7.

4.2. Clipping Test Results. The YOLOv5 model is modified
using Algorithm 2. We use transfer learning to initialize
the model parameters, and the pretrained model is trained
on the MS COCO dataset. The detection process of the algo-
rithm is shown in Figure 8. We chunk the input image
according to its size and the model’s hyperparameters. The

global detection branch takes the original image and infers
it directly, while the chunking detection branch uses image
chunks for detection. For example, the original map in
Figure 8 is calculated using the algorithm to be divided into
six blocks for inference. After the inference, the target boxes
of the two detection branches are combined, and the
redundant target boxes are removed using a nonmaximum
suppression algorithm. The final result will be marked on
the image at the end of the above process.

4.3. Comparative Tests. The transformed VisDrone dataset
comprises 35,742 images in the training set and 2656 images
in the validation set. The network parameters are updated
using stochastic gradient descent (SGD). The learning rate
uses the warm-up method and is updated by the cosine
annealing algorithm. The number of iterations is set to
200, and the batch size is set to 16 for training.

To verify the generalization performance of the adaptive
clipping algorithm, we compare the performance to the fas-
ter RCNN [23] and cascade RCNN [26] on the transformed
VisDrone dataset. The experimental group uses the adaptive
clipping algorithm to train and detect the data. In contrast,
the control group uses the original algorithm to train and
detect the high-resolution images directly.

5. Results and Analysis

We use different metrics, including the precision, recall, and
mean average precision (mAP), to verify the effectiveness of
the network. For a classification problem, the samples can be
classified as true positives (TP), false positives (FP), true neg-
atives (TN), and false negatives (FN) according to the com-
bination of the ground truth and the prediction from the
neural networks. The formulas for the precision and recall
are shown in Formulas (6) and (7), respectively.

P =
TP

TP + FP
100%, ð6Þ

R =
TP

TP + FN
100%: ð7Þ

The mAP is the average of the detection precision for all
categories and is calculated as

mAP =
1
n
〠
n

k=1
J P, Rð Þk, ð8Þ

Table 1: Comparison of different algorithms.

Model mAP@0.5 mAP@0.5:0.95 Precision Recall Average speed (ms)

FRCNN 0.494 0.243 0.525 0.480 96

Cascade RCNN 0.586 0.330 0.592 0.538 117

YOLOv5(s) 0.479 0.261 0.795 0.442 46

FRCNN+AC 0.784 0.488 0.715 0.655 341

Cascade RCNN+AC 0.815 0.540 0.742 0.657 788

YOLOv5(s)+AC 0.896 0.624 0.919 0.825 212
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Figure 12: Continued.
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where JðP, RÞ is the average precision function, which is cal-
culated using the current category number k. The precision
rate P with the recall rate R forms the P‐R area under the
curve. n is the total number of categories, and k is the cur-
rent category.

5.1. Analysis of Model Training Results. The loss function is
used to determine the training state of the model in the cur-
rent iteration and to calculate the difference between the pre-
dicted and true values during the iteration. The YOLOv5
loss function is calculated as

Loss = lobject + lbox + lclass, ð9Þ

where lobject is the confidence loss, lbox is the bounding box
loss, and lclass is the category loss. Since there is only one
class in the training set of this paper, lclass is 0. The loss func-
tion curve of the training process is shown in Figure 9.

As the loss curve shows, at 200 rounds, the curve
essentially stops decreasing, and the network training is
essentially complete. The value of the loss function of the
training set decreased from an initial 0.3187 to approxi-
mately 0.1397, and the value of the loss function of the
validation set decreased from an initial value of 0.5425 to
0.2487.

The precision measures how accurate a model is at rec-
ognizing an object. The recall rate is how much a model
searches for the entire object when recognizing the object.
Figure 10 shows the variation of the precision and recall dur-
ing the training of the model according to the number of
epochs. The highest precision achieved by the model during
training is 0.93087, and the highest recall is 0.8169.

The mAP is an evaluation metric that assesses network
performance in the object detection field. mAP@0.5 is the
area under the P‐R curve of the network when setting the
detection IOU ratio threshold to 0.5. mAP@0.5:0.95 is the
average value of the area under the P‐R curve of the network
when setting the detection positive case intersection and
ratio threshold from 0.5 to 0.95, calculated individually at a
step size of 0.05. Thus, mAP@0.5:0.95 is harder to achieve.
Figure 11 shows the mAP curve during training. The final
mAP@0.5 achieved by the algorithm is 0.894, and the
mAP@0.5-0.95 is 0.623.

As shown in Table 1, we compare the original dataset
with the data processed by the proposed algorithm, the faster
RCNN, the cascade RCNN, and YOLOv5. The results show

that before using the proposed algorithm, the mAP of the
cascade RCNN exceeds the faster RCNN and YOLOv5,
and the precision and inference of YOLOv5 improve over
time. After the adaptive clipping algorithm is used, the
parameters of all three object detection frameworks are
improved to some extent, and our algorithm outperforms
the other two algorithms in all metrics. The inference time
is controlled within an acceptable range.

5.2. Analysis of Detection Results. To prove the rigor of the
analysis, 500 images in the test set that are not involved in
training are used for testing. The detection function pro-
vided by the original YOLOv5 algorithm and the improved
adaptive clipping detection function are applied to the test
set. The detection results are evaluated based on the label
value calculation. The detection results, which are presented
in Table 1, show that the original model has significant fea-
ture losses due to the input image compression problem
when detection is performed on high-resolution images;
therefore, the detection results of the original model are
lower than those of the model with the proposed algorithm
in all indices.

Figure 12 shows a comparison of the detection effect
between the proposed algorithm and the original algorithm.
(a–c) and (g–i) are the detection effects of the proposed algo-
rithm, and (d–f) and (j–l) are the detection effects of the
original algorithm. In (a–f), in which the UAV flies at a
low altitude and is tilted, the vehicle object size is approxi-
mately 100 pixels in the close view and only 30 pixels or less
in the far view. (d–f) Show that the original algorithm has a
good detection effect for near vehicles, but for far vehicles, a
large area is not detected. The proposed algorithm can detect
both small objects at a distance and large objects nearby
because of the adaptive clipping of the detection images.
The images detected in (g–l) are images taken at high alti-
tudes, and the object size is generally smaller than 50 pixels.
At this point, the advantage of the proposed algorithm
becomes apparent. (g, j) Show that the original algorithm
detects only two buses and one car as large objects. In con-
trast, the proposed adaptive clipping detection algorithm
detects all 45 vehicles. The second figures in (h, k) show
the detection effect of large dense objects. Because the
objects are too small and dense, the original algorithm
detects only one vehicle, while the proposed algorithm
detects 255 objects, accounting for 95.1% of all 268 objects.
The vehicle targets in (i, l) are smaller than 30 pixels in size.

(k) (l)

Figure 12: Detection result comparison.
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The original algorithm did not detect any targets, while the
algorithm in this paper detected 50 targets, including all 48
objects plus some false positive detections.

6. Conclusion

This paper proposes a vehicle detection method based on
high-resolution images captured by UAVs, which addresses
that traditional object detection algorithms are limited by
images and object size. High-resolution images can limit
the performance of the network when detecting small tar-
gets. So, we take the YOLOv5 object detection algorithm as
the baseline. And we proposed an adaptive clipping algo-
rithm of high-resolution images during data preprocessing
and detection to detect small object vehicles. We introduce
evaluation indices such as precision, recall, and mAP to
evaluate the performance of the algorithm and design com-
parison experiments to verify the algorithm’s effectiveness.
The conclusion of improving the resolution of the UAV
aerial image is obtained.

The framework detection speed determines the vehicle
detection efficiency and real-time performance during
UAV operations, so improving the operating speed of the
algorithm is the goal of future research. Furthermore, in
subsequent research, the single-scale object detection pro-
cess for the object detection network and the network model
structure can be improved, for example, by using model
pruning, backbone structure optimization, and repara-
meters. Therefore, UAVs can be widely used in intelligent
traffic management.

Data Availability

The data underlying the results presented in the study are
available within the manuscript.
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