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�e development of Internet of �ings (IoT) technology depends on technologies such as high-e�ciency storage and high
computing power. Mobile cloud computing (MCC) technology will be an important foundation for the development of IoT. �e
e�cient scheduling of tasks in IoTdevices in MCC environment is challenging. �e requirements for task scheduling in MCC are
becoming more and more complex. As the core problem in MCC, task scheduling aims to allocate tasks reasonably, achieve
optimal scheduling strategies, and complete tasks e�ectively. In this paper, e�cient delay-aware task scheduling algorithm
(EDTSA) is proposed, with the optimization goal of minimizing task running time. �e matching of tasks and virtual machines is
modeled as a bipartite graph. �e problem is divided into multiple subproblems to solve the optimal solution separately. �e
combined solution is used as the initial solution of the local search algorithm. �e e�ciency of the local search depends on the
quality and nature of the initial solution. We can generate multiple initial solutions according to di�erent division criteria. �e
initial solution is the combination of the optimal solutions of the subproblems, so the quality of the initial solution has been greatly
improved and generating multiple initial solutions according to the division can reduce the probability of falling into the local
optimal solution. �is algorithm also divides the neighborhood to reduce unnecessary searches. Finally, we verify the e�ciency
and practicability of the algorithm through experiments.

1. Introduction

Mobile cloud computing (MCC) and Internet of �ings
(IoT) are two hot emerging concepts, and at the same time,
they are inseparable. IoT devices generate a large number of
tasks at di�erent times and schedule or allocate these tasks,
which requires cloud computing with large-scale computing
capabilities. Documents [1–4] all point out applications
based on IoT and cloud.

In a cloud environment, cloud providers (such as
Google, Amazon, and Microsoft) provide computing re-
sources and services, and users can access them just like
ordinary applications that are leased or released. At the same
time, the cloud provider must manage, store, and ensure the
reliability of the resources, and the user only needs to pay
according to the usage when the task is performed. In order
to satisfy the user’s request and obtain the maximum pro�t,

the cloud provider must consider the performance and cost
of the cloud system in the resource scheduling process. How
to e�ciently utilize the resources in cloud computing has
always been a core concern [5]. Among them, the literature
[6] allocates virtual machines from the perspective of least
resource consumption, which saves the cost of computing
but relatively prolongs the completion time of the task. We
consider how to complete the e�cient scheduling of large-
scale tasks.

Literature [7] summarizes the division of task scheduling
algorithms in cloud environment and divides task sched-
uling algorithms in cloud environment into two categories:
static task scheduling algorithms and dynamic task sched-
uling algorithms. �e uni�ed scheduling after accumulating
certain tasks is called static scheduling, and the scheduling
arrangement changes with the entry of new tasks, which is
called dynamic scheduling. �e algorithm proposed in this
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paper mainly solves the large-scale static scheduling problem
in MCC environment.

&e goal of task scheduling is to assign tasks to each
virtual machine. Arrange the execution order of tasks, so
that they take the shortest time to complete under the
premise of satisfying constraints. &e task scheduling
problem has been shown to be a nondeterministic poly-
nomial (NP) problem [8, 9]. References [10–13] attempt to
solve other equally difficult scheduling or assignment
problems. So how to optimize the task scheduling decision is
a challenging work. To address this challenge, we design an
efficient delay-aware task scheduling algorithm (EDTSA),
which treats the cloud computing problem as an optimi-
zation problem and solves it using a heuristic strategy. &e
relationship between tasks in multiple stages and virtual
machines is modeled as a bipartite graph. &e optimal sit-
uation of each stage is obtained by network flow algorithm as
our initial solution and a local search is used to find an
approximate global optimal solution. In addition, we have a
new division of the neighborhood, reducing many unnec-
essary search areas.

&e remainder of this article is organized as follows:
Section 2 reviews related work. In Section 3, we model the
task scheduling problem in cloud computing. In Section 4,
the problem transformation is performed and a heuristic
algorithm, EDTSA, is proposed to solve the optimization
problem. Section 5 presents the experimental results and
shows the comparison results of the EDTSA with other
algorithms. Section 6 concludes the paper and discusses
future directions for this paper.

2. Related Work

&ere have been many related researches on the task
scheduling problem in cloud computing from the model and
algorithm. In the optimization task scheduling problem,
there are traditional algorithms related to dynamic pro-
gramming, as well as various heuristic algorithms and al-
gorithms based on reinforcement learning. Xie et al. [14]
proposed a cloud scheduling algorithm driven by dynamic
basic paths, which computes the dynamic essential path of
the prescheduling task nodes based on the actual compu-
tation cost and communication cost of task node in the
scheduling process. References [15–17] describe how to
implement intrusion prevention and optimization on the
cloud.

Cui and Xiaoqing [18] proposed a cloud computing
workflow task scheduling algorithm based on genetic al-
gorithm, and designed a new genetic crossover andmutation
operation to generate new and different offspring, thereby
increasing population diversity. Junliang et al. [19] proposes
a task scheduling algorithm based on particle swarm ant
colony algorithm, which selects the fitness function
according to the multicore multitask system model. Dai and
Zhang [20] proposed a heuristic task scheduling algorithm
for static task scheduling in heterogeneous environments. In
the task sorting stage, there are three priorities in the al-
gorithm to select tasks. &ey all try to optimize the task
scheduling problem through heuristic algorithm, which is

also the mainstream algorithm for task scheduling problem
in cloud computing.

Qi and Zhuo [21] attempted to solve scheduling problems
with reinforcement learning and illustrated the drawbacks of
traditional algorithms. Chen et al. [22] solved the problem of
dynamic unloading in the Internet of &ings through in-
depth reinforcement learning. Siddique et al. [23] used neural
network algorithm to make air quality monitoring system.
Park and Yoo [24] has achieved good results in the vehicle
scheduling problem with the reinforcement learning method.
References [25–27] have achieved good results using deep
reinforcement learning in different scenarios in the IoT en-
vironment.&ey all pointed out that reinforcement learning is
more forward-looking than other algorithms, not limited to
the limitations of local optimal solutions and can have ob-
vious effects in many scenarios.

References [28–31] have proposed resource scheduling or
task unloading methods in mobile edge computing (MEC).
&ey also pay attention to the optimization problems in the
Internet of &ings or cloud environment. Yr and Champa
[32] applied IoT data scheduling fuzzy technology with ar-
tificial neural network (ANN) to optimize system resources
such as memory storage, CPU processing time, and energy
consumption. Huang et al. [33] proposed multiqueue ap-
proach of energy efficient task scheduling for sensor hubs.
Chen et al. [34] optimizes edge caching on IoT services.

In addition, many researchers have proposed new models
and frameworks.Wang et al. [35] proposed a binary nonlinear
programming model (BNP) model to optimize the task
deadline conflict problem. Zhang and Zhou [7] proposed a
cloud task scheduling framework based on a two-stage
strategy to improve cloud task scheduling and execution
results. Ali and Li [36] proposed a cloud test evaluationmodel
based on fuzzy multiattribute decision algorithm.

You et al. [37] decomposed the joint task scheduling
problem into multiple subproblems in MEC and formulated
an optimization problem to minimize the overall energy
consumption of all user UAVs. &e branch and bound
method and continuous convex approximation technique
are used to solve the optimal solution of the subproblem.We
also pay attention to the optimal solution of the subprob-
lems, perform global optimization on the combined solu-
tions of the subproblems, and design an effective algorithm
that know in advance about the task arrival.

3. System Model

In this paper, we focus on task scheduling in cloud com-
puting environment.We consider a computing environment
composed of multiple virtual machines in a cloud com-
puting environment. &ese virtual machines have com-
puting capacities for processing tasks. Table 1 summarizes
notations used in our model.

3.1. Task and Computing Model. &ere are T tasks,
t1, t2, . . . , tT, to be executed. If task ti is still not processedwithin
the maximum response time after it is generated, the task times
out. &e timeout amount ri of task ti is formulated as follows:
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ri � max si − gi − mi, 0 , (1)

where gi represents the generation time, mi represents the
maximum response time, and si represents the task start
processing time. &e total timeout amount R of all tasks is
defined as follows:

R � 
T

i�1
ri. (2)

We will count all tasks and no tasks will be discarded.
Because of the limited computing power of virtual machines,
it is impossible for us to have all tasks entering the system at
the same time. We put tasks that are not processed at any
time into the pending task queue Q, and the queue length is
L. We have a total of N virtual machines, each virtual
machine has vj threads. A task is assumed not to be reas-
signed to another virtual machine during its execution, i.e.,
the task is non-preemptive, due to reasons such as high
migration overheads and penalty. Each thread can only
process one current task until the current task is processed
by this virtual machine. Assuming that we generate n tasks at
the same time at time t and each virtual machine has threads
that hj does not use at this time, the maximum number of
tasks that can be calculated at this time Vmax(t) should
satisfy the following constraints:

Vmax(t) � min L(t) + n, 
N

j�1
hj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (3)

At the same time, we can choose the number of tasks
V(t) to be processed at this moment should satisfy the
constraint:

0≤V(t)≤Vmax(t). (4)

During every moment, some computation tasks would
be taken from the task queue and then processed by the
virtual machine. Meanwhile, some new computation tasks
would also arrive. &us, the queue length evolves as the
following equality:

L(t + 1) � L(t) + n − V(t). (5)

Since there are many types of tasks, different virtual
machines need different computing times for different types
of tasks. Mjp represents the time required for the j-th virtual
machine to process the p-th type of tasks. If the k-th thread
of a virtual machine j-th starts to process a task of the p-th
type at time t, the time it can process the next task follows.

Pjk(n + 1) � Pjk(n) + Mjp. (6)

3.2. Optimization Problem. Since this paper focuses on ef-
ficiently processing all tasks with limited virtual machines in
the cloud computing environment. We want to know which
virtual machine should be allocated to handle which task at
each moment in order to complete all tasks eventually. &e
amount of timeout is the smallest, which is obviously an NP-
complete problem, and our optimization is to minimize the
total timeout amount which is expressed in equation (2). We
first sort all tasks by generation time, satisfying the following
constraints:

gi ≤gi+1, ∀i ∈ T. (7)

If we want to optimize the optimal solution of all
problems, we can consider splitting the problem into several
subproblems and finding the optimal solution of the sub-
problems. Being a subproblem is obviously not a particularly
efficient way to deal with it, we want to decompose the
problem as little as possible and we want the solution to the
subproblem to be as good as possible.

4. Algorithm Design

For the task scheduling problem in cloud computing, the time
complexity required by conventional algorithms to solve is
too large or the solution given in a given time is not excellent.
Heuristic algorithms often have better results in solving these
NP problems, but for heuristic algorithms, especially for local
search and tabu search algorithms, the quality and charac-
teristics of its initial solution are very important.

We know that for all tasks, the optimal solution to solve,
it is not necessarily transferred from the optimal solution of
its subproblems. Specifically, we solve the optimal solution
for all T tasks, where how do we assign ti, ti+1, . . . , tu to
which virtual machines these tasks may not be the same as
the solution where we only need to solve these tasks, because
we not only need to consider this part of the task, but also
need to consider other tasks, even the tasks that may arrive in
the future. If we only consider the fastest solution for the
current task, it may seriously affect the other tasks efficiency,

Table 1: Notions and definitions.

Notation Definition
T &e set of tasks
N &e set of virtual machines
R &e total timeout for all tasks
Q &e queue
L &e length of the queue of pending tasks
gi &e time when the i-th task was generated
mi &e maximum response time of the i-th task
pi &e type of the i-th task
si &e time when the i-th task started to be processed
ri &e amount of timeout for the i-th task

hj

&e number of idle threads of the j-th virtual
machine

Vmax(t)

&e maximum number of tasks that can be
computed
At time t

V(t)

rowhead
Choose the number of tasks that can be computed

at time t
L(t)

rowhead &e length of the queue of pending tasks at time t.

Mjp

rowhead

&e time that the j-th virtual machine needs to
process

&e p-th type of task

Pjk rowhead &e next idle moment of the k-th thread in the j-th
Virtual machine
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but if we divide this batch of tasks into as few parts as
possible, our subproblem is not to deal with a single task, but
to deal with a batch of tasks, we only need to ensure that the
efficiency of processing these tasks is very high, and then
through the local search to adjust the solution, our algorithm
will be able to give a better solution in the given time.

4.1. ProblemTransformation. In order to better calculate the
task scheduling problem in the cloud computing environ-
ment, we will transform the scenario of assigning tasks to
virtual machines into a bipartite graph with weights, in
which the task ti is assigned to the virtual machine j for
processing, and then it is transformed into a bipartite graph
with weights. &e task in the graph connects a directed edge
to the virtual machine, and the weight is the completion time
of the current task processed by the virtual machine. Of
course, if we connect each task to all virtual machines and
determine whether to select this edge, many unnecessary
edges need to be calculated, we are concerned that all tasks
are responded by the virtual machine as quickly as possible,
so in order to reduce unnecessary calculations, we only
compare the tasks currently in the idle queue with tasks that
are not currently being processed in the virtual machine and
only when the number of idle tasks and the number of
currently idle virtual machine threads reaches a certain
number or when no tasks will arrive in the future, we will
perform a calculation on this batch of tasks. Since we want to
divide the task scheduling problem into as few subproblems
as possible, we process as many tasks as possible at a time.

We can better calculate and express the relationship
between tasks and threads or virtual machines by building a
bipartite graph. In the bipartite graph, each idle virtual
machine thread has an edge with the current idle task.

4.2. Distributed Online Algorithm for Task Scheduling.
Given a bipartite graph G � (V, E), the vertex V is divided
into two disjoint subsets (X, Y), where the set of idle threads
in the virtual machine belongs to X, and the set of tasks to be
processed belongs to Y. In a subgraph F of G, if any two edges
in the edge set E of F are not attached to the same vertex, then
F is said to be amatch. Since wewant to work onmore tasks at
a time, this divides the problem into fewer subproblems. We
hope to find a set of maximal matching, which means that
under the currently completed matching, the number of
matching edges cannot be increased by adding unfinished
matching edges. &e edge weights selected in this set of
maximal matching are weight1,weight2, . . . ,weightv(t)max

.
When we construct a bipartite graph every time, it can be
calculated, then the problem can be transformed into how to
find the minimum weight matching in all maximal matching
of this graph. In other words, we want to select some edges in
the graph to satisfy the following formula:

cost � min 

V(t)max

e�1
weighte

⎧⎨

⎩

⎫⎬

⎭. (8)

To find the minimum weight matching of a graph, we
can convert it into a network flow algorithm [38] to solve its

minimum cost flow. First, when the calculation conditions
are met, the effect of building a graph is shown in Figure 1.

At this time, the left side represents the number of all idle
threads in our virtual machine at the moment and the right
side represents the tasks in the pending queue at the mo-
ment, as shown in formula (8), we need to find the minimum
weight matching of the bipartite graph. We use the Dinic’s
algorithm to solve the optimal solution of this problem in
strong polynomial time. Compared with the Edmonds–Karp
algorithm [39], Dinic’s algorithm can have great advantages
on dense graphs, such as bipartite matching. Dinic’s algo-
rithm finds all augmentation paths each time, and then
augments it. If there is a ring, there will be countless aug-
mented paths. &is problem can be solved with the help of
the idea of hierarchical graphs, use the SPFA algorithm to
build a hierarchical graph, start from the source point, and
expand one layer at a time, each layer is given a number.
&en, use the DFS algorithm for each layer to find all paths
that can be augmented. &e above SPFA algorithm has two
functions: (1) establishing a hierarchical graph and (2)
judging whether there is an augmentation path.

After each time using SPFA algorithm to build a hier-
archical graph, we will use the DFS algorithm to find all
augmenting paths corresponding to the current hierarchical
graph, in which we can use the current arc optimization.
Current arc optimization: for each point, we record which
edge it should traverse from, instead of traversing all from
the beginning.

We process a batch of tasks each time, so that the
processing efficiency of this batch of tasks is the highest, so
that when we keep repeating this process until we have
completed all tasks, our initial solution is formed, of course,
we set different parameters in solving the initial solution,
which will cause us to generate different initial solutions. We
set A and B to different values, and the initial solution will be
different, but no matter what the value is set to, what we seek
each time is the optimal solution for a batch of tasks.

4.3. Optimize the Initial Solution. For the initial solution,
what we seek is the optimal solution of multiple subprob-
lems and combine them, but this is not necessarily the global
optimal solution, so we introduce a heuristic algorithm to

task1

task2

task3

task4

task5

thread1

thread2

thread3

Weight = scheduled finish time

Figure 1: &read and task relationship diagram.
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optimize the initial solution. We know that for heuristic
algorithms, especially local search algorithms, tabu search
algorithms, etc., we are very dependent on the performance
of the initial solution. If we are in a poor initial point at the
beginning, the final result often not be very ideal, but by
using Algorithms 1 and 2, we can construct a better initial
solution and we can easily change the initial solution by
changing the parameters, which is very beneficial for us to
use heuristic algorithms optimized for it.

In this paper, we optimize our solution using a local
search algorithm [40], a heuristic algorithm for solving
optimization problems. &e concept of neighborhood is
used to describe the algorithm. &e so-called neighborhood
is simply a collection of other points near a given point. In
the distance space, the neighborhood is generally defined as
a circle with a given point as the center. In combination
optimization problem, the neighborhood generally defined
as the transformation of each node on the given problem
domain by the given transformation rule. A collection of
nodes on the problem neighborhood, the formula is de-
scribed as follows:

N: S ∈ D⟶ N(S) ∈ 2D
. (9)

&en, N(S) is called the neighborhood of N. In our
initial solution, we defined the following three
neighborhoods:

N: S ∈ D⟶ N(S): swap ti, tu( , ki ≠ ku,

N: S ∈ D⟶ N(S): move ti behind tu, and

N: S ∈ D⟶ N(S): swap ti, tu( , i< u, ki � ku.

(10)

For these three neighborhoods, the relationship of the
two tasks we operate on is described, where the two tasks are
separated on different threads, and the exchange needs to
satisfy.

si ≥gu and

su ≥gi.
(11)

After the swap, the start time of the tasks processed after
the i and u tasks on these two threads needs to change. &e
second kind of neighborhood is defined as the task i in
thread A, which is moved to the task u in thread B for
postprocessing. Similarly, the following constraints need to
be met:

gi ≤ su + Mjp. (12)

&e third neighborhood is defined as the exchange of the
processing time of tasks i and u in thread A. In other words,
if task i is processed in threadA, then task u is processed, and
the neighborhood is defined as the thread A processes task u,
and then process task i. &e prerequisite for the neigh-
borhood to be legal is as follows:

gu ≤ si. (13)

We have defined the neighborhood of a solution. Of
course, the neighborhood of a solution is very large. If we
search in such a large neighborhood, it may take a very long

time to optimize the initial solution. We found that although
many neighborhoods meet the definition, it is impossible to
make our solution better. For example, when the generation
time of task i and the generation time of task u are far away, if
we still have to exchange these two tasks, at least one of task i

and task u incurs a large number of timeouts, so the task we
operate each time needs to satisfy the task start time in the
original solution that does not exceed, that is, it conforms to
the following formula:

si − su


≤. (14)

Moreover, we set up two tabu tables to prevent our
search from falling into an infinite loop. One of them is a
one-dimensional tabu table, which records when we operate
on a task and the other is a two-dimensional tabu table,
which records which task we operate on each time and on
which thread it is currently being processed. We have set up
two tabu periods, which correspond to two tabu tables. We
need to satisfy the following equation when performing
neighborhood transformation:

time − operatei > tt1 and

time − operatei,j > tt2.
(15)

To prevent getting stuck in a local optimum, we accept
this solution with a certain probability if the quality of the
neighborhood solution degrades within our allowable range
(Algorithm 3) [40].

We represent the relationship between tasks and virtual
machines or threads by constructing a bipartite graph and
construct an excellent initial solution through the minimum
cost flow algorithm to ensure the quality of the initial so-
lution. Because we only need to change the parameters, we
can generate different initial solutions , so we can generate k

groups of initial solutions with different parameters under
the condition of time permitting, and then use the local
search algorithm to find the optimal solution of each groups.
We compare the k groups of initial solutions and choose the
best one as our final solution.

5. Experiments

In this section, we conduct experiments to evaluate our task
scheduling method in various performance metrics and
analyze the results.

5.1.ExperimentDesign. We conduct experiments to evaluate
the efficiency of the scheme given by our final solution. In
the system, we have 100 virtual machines and 7000 tasks
arrived in 1440 seconds. We tested the efficiency of the
EDTSA under different conditions in our experiments. We
can adjust the efficiency of the virtual machines, the number
of threads each virtual machine has to dynamically change
the difficulty of task scheduling problems.

In this paper, we designed different scenarios to test the
effect of EDTSA, and selected two benchmark algorithms.

(1) &e MIN-MIN algorithm [41], which is similar to
our algorithm, is used to process the optimal solution

Mobile Information Systems 5



Input: All tasks sorted by task spawn time
Output: Bipartite graph between tasks and threads

(1) for All task ti ∈ T do
(2) if L≥A, 

N
j�1 hj ≥B then

(3) for all q ∈ Q do
(4) for all j ∈ N do
(5) if hj > 0 then
(6) add edge q⟶ h

(7) weight � Pjk + Mjp

(8) end if
(9) end for
(10) end for
(11) calc Vmax(t) task
(12) erase calc task in Q

(13) And the length of L also changes accordingly
(14) else
(15) ti⟶ Q

(16) L + +

(17) end if
(18) end for

ALGORITHM 1: Construct a bipartite graph.

Input: Bipartite graph between tasks and threads
Output: initial solution

(1) while we can use SPFA algorithm to find augmenting path do
(2) Augmentation with DFS algorithm
(3) Accumulate max flow, min fee
(4) Reduce flow on the forward side, add flow on the reverse side
(5) end while
(6) for all edge Ee in this graph do
(7) if Ee in least cost side then
(8) cost +� we

(9) pair +� k, i{ }

(10) end if
(11) end for
(12) Return initial solution and cost

ALGORITHM 2: Dinic’s algorithm to find the optimal solution.

Input: initial solution
Output: optimized solution

(1) while time < time limit do
(2) find neighborhood solutions
(3) if neighborhood transform operation ˂ tt then
(4) continue
(5) end if
(6) if Delta cost ≥ 0 then
(7) move the current solution to the neighborhood solution
(8) else if range <Delta cost < 0 then
(9) move the current solution to the neighborhood solution
(10) end if
(11) end while
(12) Return solution and cost

ALGORITHM 3: Optimize the initial solution.

6 Mobile Information Systems



of the subproblems and finally merge, but the dif-
ference is that the MIN-MIN algorithm only focuses
on the optimal solution of a single task, and each
time when a task is generated, the algorithm will
assign the task to the virtual machine that completes
first. Although the current task can be completed the
fastest, it ignores the impact on other tasks.

(2) Random algorithm, although the random algorithm
is not competitive with the current mainstream al-
gorithms, we can reflect the processing difficulty of a
set of tasks through the random algorithm. If the
random algorithm can handle a set of tasks well, then
it is proved that this set of tasks is very easy.

5.2. Comparison Experiment. We evaluate the algorithm
from two aspects: the amount of task timeout and the
proportion of overtime tasks. &e smaller the task timeout
amount and the smaller the proportion of overtime tasks, the
better the performance of the algorithm.

We compare the performance of our algorithm with
other algorithms in different scenarios. Figure 2 show the
change in the amount of timeouts and the proportion of
timed out tasks as the number of tasks to be processed
increases, where the unit of timeout amount is seconds.
Although the random algorithm is not competitive, it can
clearly reflect the difficulty of solving this group of tasks. We
can see that both our algorithm and the MIN-MIN algo-
rithm can complete the task on time when the task volume is
small at the beginning. As the amount of tasks increases, the
MIN-MIN algorithm begins to have tasks that have timed
out, and then when about 500 tasks are generated, our al-
gorithm will have task timeouts. As can be seen from Fig-
ure 3, when the amount of tasks increases, the performance
gap between different algorithms is very obvious. &e
random algorithm performed very poorly in this set of
experiments, which also shows that this set of tasks is dif-
ficult to handle.

When the number of tasks arriving is certain and the
efficiency of the virtual machine is certain, we adjust the
number of threads of each virtual machine. Figures 4 and 5
show the changes in the task timeout amount and task
timeout ratio in this scenario. Because the random algorithm
is only to reflect the difficulty of solving a set of tasks, we no
longer consider the random algorithm in other scenarios.
We set the number of threads of each virtual machine to 1, 2,
4, and 8 respectively. It can be seen that in different envi-
ronments, the performance of our algorithm is better than
that of the MIN-MIN algorithm, and as the number of
threads increases, the processing tasks speed has also
accelerated.

When the number of tasks arriving is certain and the
number of threads per virtual machine is certain, we adjust
the efficiency of the virtual machine to adjust the difficulty of
the problem. Figures 6 and 7 show the efficiency and
comparison of our algorithm in this scenario. We adjust the
efficiency of the virtual machine to 1/2, 1/3, 1/4, and 1/5 of
the normal efficiency, and the data show that our algorithm

is still better than theMIN-MIN algorithm in the case of very
low virtual machine efficiency.
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According to the experimental data, it can be seen that
our algorithm is better than the comparison algorithm in
various scenarios and as the task difficulty increases, the

performance gap between our algorithm and the compar-
ison algorithm will be larger, which indicates that the
proposed algorithms are efficient and practical.

6. Conclusions

In this article, we study the task scheduling problem in cloud
computing. We model the relationship between tasks and
virtual machines as a bipartite graph and propose a heuristic
algorithm EDTSA to solve the optimal solution. &e ex-
perimental results show that the EDTSA has high solution
efficiency in various environments. For our future work, we
will employ deep reinforcement learning techniques to solve
the task scheduling problem in cloud computing.
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