Hindawi

Mobile Information Systems

Volume 2022, Article ID 2093631, 8 pages
https://doi.org/10.1155/2022/2093631

Research Article

@ Hindawi

Binocular Vision-Based Recognition Method for Table Tennis

Motion Trajectory

Chunfeng Lu and Xiyu Tang

Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310000, China

Correspondence should be addressed to Xiyu Tang; 102108@zust.edu.cn

Received 10 May 2022; Revised 28 June 2022; Accepted 13 July 2022; Published 10 August 2022

Academic Editor: Abid Yahya

Copyright © 2022 Chunfeng Lu and Xiyu Tang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The latest development in computer technology in sports has increased the popularity of ping pong among people. It calls for
designing an intelligent table tennis robot using computer technology to cooperate with table tennis enthusiasts and professional
table tennis players to practice. Much research work has already been done in this area. However, this study explores the use of
binocular vision to precisely identify, locate, and anticipate the flight trajectory and landing position of table tennis balls. Major
issues addressed in this study include identifying fast-moving ping pong balls, calibrating the camera, obtaining the camera’s
internal and external settings, and localizing the ping pong balls in three dimensions. A new target recognition method is proposed
in combination with the actual needs of the combat ping pong robot. The method combines colour segmentation, background
subtraction, and ellipse fitting, which can detect the tail range of flying ping pong balls and find the centre position of the balls.
Based on the ellipse fitting analysis of the image, characteristics of the tail of the flying ping pong ball are studied. This study can aid
in tracking the trajectories of high-speed flying objects, which is helpful for both aerospace and military industries.

1. Introduction

The table tennis robot has become an automated machine
capable of competing with human sports through percep-
tion, prediction, decision making, and coordination of table
tennis motion [1]. As a real-time, intelligent robot motion
servo platform, it shows good system integration and
technology and has a promising application. However, for a
robot to play table tennis correctly and position with correct
posture and speed, it needs to identify, track and estimate the
trajectory of fast-moving ping pong balls, which involves
several complex operations such as stereo vision and in-
telligent control. For this purpose, the development of vision
systems is the first task in the development of table tennis
robots. The perceptual part of the human visual system is the
retina, which is equivalent to a three-dimensional world
sampling system. After light hits the visible part of an object,
it is projected onto the retina, producing a two-dimensional
image of the object [2]. Based on this image, the human
brain can understand the object from a three-dimensional
perspective. By three-dimensional understanding, we imply

knowing the object’s size, dimensions, form, motion di-
rection, and speed. The vision system of the table tennis
robot uses a camera instead of the retina and a computer
instead of the human brain to simulate this human visual
function to recognize and understand objects in a three-
dimensional environment.

The study of modeling table tennis trajectory tracks and
forecasts the table tennis ball’s flight allowing the robot to
calculate, where it will land and when to hit it. [3]. These
robots can replicate human vision using a table tennis robot
vision system. The table tennis ball movement data are then
transferred to a PC for further processing. Vision systems are
classified as monocular, binocular, or triangular based on the
number of cameras utilized. Multilocular vision has higher
recognition accuracy and a wider field of view. However, at
present, most researchers employ binocular vision systems.
Binocular vision views the same object from two angles, like
human vision.

In this study binocular vision system has been employed
to examine and model table tennis motion trajectory. Major
tasks involve
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(i) Combining camera calibration to enhance the per-
formance of the players

(ii) Image models with target detection technology to
find the centre of the moving table tennis ball in
three dimensions

In this way, tracking the ping pong ball’s flight trajectory
and retrieving its motion information will become easier.
Also, it will make the robot capable of playing table tennis.

The study is structured as follows. Related work in section
2 discusses the visual localization methods and table tennis
trajectory prediction based on physical and machine learning
models. In section 3, the methodology of this research work is
explained. It comprises the design of an experimental bin-
ocular system and mathematical modeling. Results and
conclusions are discussed in sections 4 and 5, respectively.

2. Related Work

In this section, the literature survey of different methods for
visual localization and techniques utilized for determining
the trajectory of a table tennis ball has been discussed in detail.

2.1. Visual Localization of Ping Pong Balls. Table tennis three-
dimensional trajectory extraction is the basis of trajectory
prediction research. Machine vision has aided researchers in
extracting the flight object motion trajectory. The key points
of the research are to meet the desired accuracy and real-
time stability simultaneously.

Machine vision uses computers to measure and judge the
objective environment in three dimensions. Human per-
ception of the objective world is 70% through the visual
system [4]; the human visual system collects image infor-
mation through the retina; the visible part of the object is
projected into the retina, whereas the brain analyzes the
shape, size, spatial relative distance, colour texture, and
motion characteristics of the observed object using two-
dimensional imaging in the retina for three-dimensional
processing in a short period. To function like the human eye
imitates the human visual system through the camera for
image acquisition and the computer for data analysis and
processing. Machine vision systems for visual positioning
are classified as monocular, binocular, or multivision [5].

2.1.1. Monocular Vision. Monocular vision extracts the
target object’s motion trajectory by image acquisition with
one camera, but the image depth information cannot be
extracted directly due to the single camera. The first pro-
posed a single camera for ping pong ball localization,
identifying the small ball, and the shadow of the small ball on
the table and determining the 3D position coordinates of the
ping pong ball through the geometric relationship between
the camera, the light source, the ping pong ball, and the
shadow of the small ball in space [6, 7]. Image coordinates of
a table tennis ball and its shadow were recovered using a
monocular camera system initially used to compute its
spatial 3D coordinates. A single camera has also been used
for ping pong ball localization, segmented the ball motion
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from the background motion using the displacement frame
difference method, and tracked the ball in 3D using the
parameter calibration of a single CCD (charge-coupled
device) camera [8]. It has determined the magnitude and
direction of the ball’s spinning speed in real-time by pho-
tographing the difference between the long and short axes of
the elliptical trajectory formed by the markers on the ping
pong ball during its rotational motion in the air [9].

2.1.2. Binocular Vision. Binocular vision has a broader
detection range than monocular vision. Monocular vision
can only utilize one camera and has strict environmental
conditions. In binocular vision, the spatial object is mapped
to the same name pixel point parallax in the image plane of
the two cameras using geometric triangulation [10]. Also, the
latest studies use binocular vision systems for table tennis
trajectory extraction.

A wall-mounted binocular vision system has been
designed using two coloured cameras with 50fps and
320 x 240 resolution [11]. In contrast, the camera’s field of
view was about 50° from the horizontal plane. By using a
simple colour segmentation scheme to detect balls in each
image, the system could finally extract ping pong ball tra-
jectories with a velocity range of 5-6 m/s. Similarly, a dis-
tributed parallel processing high-speed vision system based
on smart cameras has also been designed [12]. The two high-
speed cameras with a 250 fps acquisition rate build a bin-
ocular vision system that captures and processes images in
parallel mode. They also proposed a grayscale image-based
ball recognition and tracking algorithm. Thus, allowing the
system to capture and process a grayscale image frame
within 6 ms. The longer the binocular vision baseline, the
higher the accuracy, but in practice, the table tennis robot
does not have space to assemble a long-baseline binocular
vision system. To solve this problem, a short baseline bin-
ocular vision system was developed with a baseline length of
0.18 m [13]. Two cameras with 640 x 480 were used for image
acquisition. A projection matrix direct calibration and
Gaussian fitting-based ball centre localization algorithm
were used to limit the detection area of little tennis balls,
improving the system’s real-time performance.

For the problem of accuracy degradation caused by the
nonsynchronous triggering of binocular vision, an onboard
stereo vision system was designed to solve the problem of
asynchronous observation between different cameras by
considering the consistency of ping pong ball motion and
achieve an accurate real-time estimation of ball trajectories,
which can achieve the same effect as hardware synchronous
triggering [14].

2.2. Table Tennis Trajectory Prediction. The current research
for table tennis trajectory prediction predicts based on the
classical physical motion model and machine learning model.

2.2.1. Prediction of Trajectories Using the Physical Model.
Landing friction, gravity, Magnus force, air resistance, and
ball rebound must be kept in mind in traditional table tennis



Mobile Information Systems

trajectory prediction models [14], which results in high
model complexity and low robustness. An analytical model
of the rebound between the table tennis ball and table/racket
rubber was derived [15]. Where it is assumed that the kinetic
energy of the tangent velocity is stored as potential energy
because of the rubber’s elasticity, and the impulse in the
horizontal direction is proportional to that tangent velocity.
A motion model proposed that it does not consider the
rotation of a ping pong ball [16]. A nonlinear bounce model
was developed that considers the spin of a ping pong ball
based on the momentum theorem and the momentum
moment theorem model [17]. It describes the collision
process of the ball with the object table. The collision of a
ping pong ball with a table was analyzed using an ultrahigh-
speed camera and established a physical model of the self-
spin and collision effects of the table tennis ball [18].

A motion model of a rotating table tennis ball was
proposed [19]. Three second-order polynomials fitted the
starting trajectory, and the ping pong ball’s initial velocity
comprised the flight and rotation velocity, which were
calculated using polynomials. In the experiments, their
proposed method demonstrated good prediction ability at a
sampling time of 1 ms, but the accuracy of the flow velocity
estimation was affected if the consecutive trajectory points
were not dense enough or the sampling frequency was too
low. Inserting those estimates into the complex equation
calculation increased the distortion of the results. A motion
model, in which the motion trajectories were first clustered
using the K-means algorithm and then fitted to get the
extended continuous motion model (ECMM) [20]. A novel
strategy based on expectation-maximization was presented
to anticipate motion trajectory better. ECMM’s category is a
potential variable that is represented as the difference be-
tween ballistic prediction and observation.

2.2.2. Machine Learning-Based Trajectory Prediction. In
recent years, Machine learning methods have also been used
to determine the trajectory of the table tennis ball. A Kalman
filter-based table tennis ball trajectory prediction method
was devised [21]. In the first step, the top, rear, left, and
mixed spin dynamics of the ball were modeled, and then
using the Kalman filter for curve optimization, flight tra-
jectory was obtained, which was then used to simulate and
predict the ball position. The misconceptions caused by
blurred images, air resistance, and camera imaging distor-
tion in table tennis’ high-speed movements were addressed
[22]. It was proposed that the adaptive measuring covariance
discrete Kalman trajectories estimation. The algorithm
tracks the target motion trajectory by dynamizing the
measurement covariance, providing the ground for ping
pong ball tracking prediction and hitting the arm. Experi-
mental results show that the algorithm can effectively
overcome the interference of measurement noise and data
loss while achieving good tracking results when the image
acquisition rate is greater than 70 frames/s, and the ping
pong ball motion speed exceeds 5m/s.

A new trajectory prediction model was proposed [23],
where a nonlinear filter based on fuzzy logic was employed

to eliminate the noise in the table tennis coordinate system.
Then the least square method was used to calculate the initial
flight speed and rotation speed based on the filtered ball
position. Second, postbounce speed prediction was made
using memory-based local modeling, and finally, a ball flight
and bounce model was established to predict the subsequent
trajectory of the ball. A deep conditional generative tra-
jectory prediction model for the characteristics of table
tennis trajectories belonging to time series data was pre-
sented [24].

A dual artificial neural network to mimic the table tennis
ball was utilized [25], which divides the table tennis ball
trajectory into two segments bounded by the landing point.
Here, historical data were used to learn the patterns in them,
with a final experimental error of 39.6 mm. Similarly, a deep
conditional generation model based on the deep learning
algorithm optimized method for ping pong ball trajectory
prediction was proposed [26]. It first constructs a dataset of
ping pong ball spatial location images with accurate labeling
in various environments by utilizing the basis of traditional
deep learning.

Meanwhile, a recurrent neural network-based ping pong
ball trajectory prediction algorithm was proposed using a
convolutional neural network as the location recognition
algorithm, and the effectiveness of the method was verified
by comparative analysis of multiple experiments.

While previous research work has been on motion de-
tection and trajectory prediction of the table tennis ball using
various complex methods. This study utilizes a tracing and
tracking algorithm of the table tennis ball based on the
binocular vision method that makes use of both hardware
and software structures for this purpose. Key features for
camera calibration are proposed, and trajectory prediction is
made using the ellipse fitting technique.

3. Methodology

In this section, a prototype for designing a binocular vision
system is proposed comprising both hardware and software
structures. CV software identifies, track, trace, and predict
table tennis ball trajectories. Mathematical modeling of
target identification and extraction is done using the ellipse
fitting method.

3.1. Design of the Binocular Vision Experimental Platform
System. The system structure used in this project is based on
the ontology of the parallel optical axis vision system. This
structure requires the focal length of the left and right
cameras and their internal parameters to be equivalent and
the optical axis perpendicular to its imaging plane, the two,
left and right cameras in the three-dimensional coordinate
system, the X-axis and Y-axis coincide with parallel to each
other.

As shown in Figure 1, the right camera will be moved in
the opposite direction along the X-axis covering baseline
distance denoted as b, where it can fully coincide with the left
camera. In the polar plane, the optical centre of the left
camera is determined by O; the optical centre of the right
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FIGURE 1: Schematic diagram of the ontology vision system based
on a parallel optical axis.

camera by O,. A point “A” is taken in three-dimensional
space, which intersects the imaging planes C; and C, of the
left and right cameras, respectively. The P, and P; inter-
section lines represent the conjugate polar pairs, the coor-
dinate axis u; represents the coordinate system of the
imaging plane of the left camera and the coordinate axis u,
represents the coordinate system of the imaging plane of the
right camera. Both u; and u, coincide and are parallel to P,
and P,, respectively.

This structure is ideal, and the geometric relationship
between the left and right cameras is the simplest. It is
relatively convenient to solve the matching relationship
between the points g; and a, projected the spatial point A
onto the left and right imaging planes in this structure.

There are two key components to a computer: hardware
and software. A binocular stereo vision system includes both
hardware and software components. To create the ontology
vision system of the humanoid robot, we first select the
relevant hardware components and develop the software
program structure. Figure 2 shows the specific structure
diagram.

3.1.1. System Hardware Structure. Stereo binocular vision is
divided into hardware and software structures, as shown in
Figure 3. The hardware structure is subdivided into three
major components. The necessary hardware tools required
are discussed in this section. Two cameras are used to
capture video data. They are connected to an image capture
card through a camera controller.

The vision processing computer used in this project is
configured with CPU: AMD Athlon (TM) II X2 245 Pro-
cessor 2.90 GHz, memory 1.75GB, and WINDOWS XP
system. When choosing a camera, the following points must
be kept in mind [27].

(1) Frames per Second (FPS). The binocular vision sys-
tem’s [28] key aims are speed and precision. Exposure time
for a table tennis ball having a velocity of 5m/s and a 40 mm
diameter (international standard ball) is 40 mm/5m/
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F1GURE 2: Stereo binocular structure (hardware and software).
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FiGure 3: Vision software architecture.

s=8ms. The table tennis ball moves 40 mm within the
exposure time, which will produce a “trailing shadow” on the
2D image, which will result in a big inaccuracy in the table
tennis ball identification. The better the camera’s frame rate,
the more continuous picture might well be made.
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(2) Colour. The object’s colour conveys detailed information;
hence the colour camera is chosen.

(3) Pixels. Many pixels give better discrimination ac-
curacy, but more data means longer transmission times,
which results in lower frame rates. So, choose the biggest
pixel value possible to satisfy the frame rate size.

(4) Transmission Interface. The size of the transmission rate
has a greater impact on the real-time system, which directly
impacts the camera’s frame rate. It is necessary to have the
optimal frame rate value for a faster transmission rate.

3.1.2. System Software Architecture. The system’s software is
written in Visual Studio 2008 using the OpenCV vision
library, as shown in Figure 3. Using the target identification
method, the left and right cameras detect the area and locate
the centre of the captured photos with ping pong balls. The
3D position of the table tennis balls is reconstructed and
estimated using the left and right projection pictures. To
achieve fast-tracking, the ping pong ball’s future position is
estimated using its historical position information.

3.2. Table Tennis Target Identification. Target recognition is
the basis of the whole binocular vision, providing raw data
for the subsequent segments. Table tennis target recognition
first requires detecting the target region of interest from the
image, then retrieving the target region’s two-dimensional
picture coordinates, i.e., the table tennis ball’s centre co-
ordinates. The accuracy of the ball centre coordinates ob-
tained from recognition has significant effects on target
localization, tracking, and trajectory prediction accuracy. At
first, the threshold range of the target’s colour in the YCbCr
colour space is determined offline, this colour space allows
the computer to focus on moving the target in an image
while keeping the high-resolution value. The target is then
separated from the complete picture by the threshold seg-
mentation technique, and then the centre point of the
separated target, i.e., the ball centre coordinates, are ob-
tained by the ellipse fitting technique. In this study, we
analyze the trailing image characteristics of flying ping pong
balls and the actual needs of a real-world ping pong robot.
Integrate and complement colour segmentation, back-
ground subtraction, and ellipse fitting to detect the trailing
range of flying spheres and find the centre of the sphere.
The experimental results show that the method can
effectively overcome trailing shadow, identify, and track the
high-speed flying spheres more accurately, and has good
anti-interference and real-time performance.

3.3. Target Extraction of Ping Pong Balls. Due to the length of
exposure, the camera used in the acquisition of high-speed
movement of the ping pong ball will produce the phe-
nomenon of “motion blur,” also known as trailing shadows.
Table tennis target extraction is based on segmenting out the
flying table tennis body and extracting the image coordinates
of its centre point. The ping pong ball is a circular sphere,
and the binarized image obtained after image segmentation,

which is the motion area of the ping pong ball target, is
approximately elliptical, so this study takes the least squares
ellipse fitting algorithm to extract the centre point coordi-
nates of the target.

The basic idea of ellipse fitting is to find an ellipse that
can be as close to these data points as possible per the given
set of data points on the plane. In other words, it is to fit a
dataset on the image plane using the elliptic equation as a
model. The equation is used to find the closest dataset. The
parameters obtained are then inserted into the elliptic
equation. Finally, the centre point of the ellipse is extracted.

3.4. Mathematical Modeling. The least square ellipsoid fit-
ting method minimizes the total error rates. Using the ellipse
fitting algorithm, the mathematical modeling is done in the
following steps:

Step 1. Find a set of parameters.

Step 2. Minimize the distance between data points and
ellipse.

Here, the distance metric uses algebraic distance. Making
an integer multiple of the solution is considered the same
elliptic representation. To avoid the generation of zero so-
lutions, a restriction is made on the parameters with the
constraint A + C= 1. The extracted target contour points are
subjected to least squares to obtain the coefficients of the
equation.

N
flx,y) = Z (Axf + Bx;y; +Cyi2 + Dx; + Ey; +F)

i=1

2
>

(1)

that is, find the minimum value of the function f (x, y) in
(1). By the extreme value principle, when (0f/0B = df/0oC
=0f/0D =0f/0E =0df/0F =0), the f(x,y) value is
minimum.

This results in a linear system of equations and solving
this equation with the constraints leads to the values of the
five parameters (A, B, C, D, and E).

Then, according to (2), the centre coordinate position
(x9> ¥) of the moving target can be found.

BE-2C D
x0:72’
4CD-B

(2)
B D -2AE
N =UAC-B

3.4.1. Identifying the Ping Pong Ball Body in a Trailing
Shadow. The tennis ball’s exposure time is 8 ms, and the
ping pong ball moves 40 mm within the exposure time,
resulting in a “trailing shadow” phenomenon on the 2D
image. Therefore, we solve this problem by identifying the
ping pong ball with high-speed movement.

The combination of the above two methods is used to
obtain the binarized contour corresponding to the trailing
image of the ping pong ball body, which is approximated by



an ellipse. So, the ellipse fitting method can obtain the
trailing contour representation.

Figure 4 shows the coordinate diagram of ellipse fitting
and sphere centre position, where the solid line represents
the fitted ellipse, (x,, y.) is the centre coordinate, “b” is the
long axis, “a” is the short axis (can be regarded as the radius
of the sphere), the long axis of the ellipse (can be regarded as
the flight direction of the sphere), and these parameters are
obtained by ellipse fitting.

{xp:xc+(b—a)c030

. (3)
Yp =Y+ (b—a)sin b

The long axis of the ellipse in each frame represents the
ball’s instantaneous flight direction, while the short axis’
length is approximately equal to the ball’s radius. Derivation
of the 2D centre of the ping pong ball is done after fitting
ellipses. The dashed circle in Figure 4 can be regarded as the
position of the sphere and (x,, y,) is the coordinates of the
centre of the sphere, which can be calculated using equation
(3), i.e., the centre of the ellipse (x., y.) is obtained by
translating the difference between the lengths of the long and
short axes (b-a) along the direction of the long axis (0 angle).

4. Experimental Results and Analysis

In this section, the experiment dataset has been explained,
followed by model training and target recognition, trajectory
extraction and error analysis, and prediction of bounce
coeflicients of table tennis trajectories.

4.1. Dataset. Table tennis balls have the characteristics of fast
speed and small size. To ensure that the trajectory of small
balls can be captured in real-time, a camera with a high
frame rate must be used for shooting. In this experiment, a
high-speed black-and-white industrial camera with specific
colour components of YCbCr space, a high resolution of
1280 x 1024, and a good frame rate of up to 210 fps (model
MV-CA013-21UM) have been used for image acquisition.
Because of the simple experimental setup with few sur-
rounding distractions, a large dataset was not required, and
1000 table tennis motion images were collected as the dataset
for the experiment. Its specific parameters for ideal cali-
bration are discussed in Section 3.1.1.

4.2. Model Training and Target Recognition. The experi-
mental platform for model training and target recognition is
i7-7700K CPU, 16 GB memory, TITAN X graphics card, and
Ubuntu 16.04 operating system. After the network is
compiled, the number of training iterations is set to 10000,
the learning rate is 0.00001, the batch is 64, the subdivision is
16, and the decay is 0.00001.16, and the decay is 0.0005.

4.3. Trajectory Extraction and Error Analysis. This experi-
ment extracts the ping pong ball trajectory. At first multi-
vision calibration is carried out, and the specific calibration
parameters are identified as discussed in the system hard-
ware structure.

Mobile Information Systems

FiGure 4: The ellipse fitting and coordinates of sphere centre
position.

TaBLE 1: The real-time coordinate values of trajectory points.

X (mm) Y (mm) Z (mm)

1 86.8 66.2 94.6
2 107.7 82.4 77.1
3 124.5 95.6 60.1
4 140.9 108.5 41
5 156.9 121.2 19.9
6 172.6 133.6 0.4
7 182.2 140.5 13.4
8 194 148.9 31.2
9 205.6 157.4 46.1
10 217.1 165.7 58.2

g

=

1 2 3 4 5 6 7 8 9
Times

10 Avg

B Information Convergence
M No information fusion

FIGUre 5: The comparison table showing the average error of
trajectory extraction.

Secondly, multiview image target recognition is con-
ducted, and then the centre point of the target frame is
extracted. The matching pixel point coordinates are inserted
into the multivision 3D positioning formula to get the 3D
coordinate values. This process is done using a multicamera
information fusion strategy.

Table 1 provides 10 sets of 3D coordinate values of table
tennis ball trajectory points in real-time, whose reference
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coordinate system overlaps with the physical coordinate
system of one camera.

In this study, ping pong balls are fixed at 9 different
spatial locations for error analysis, and the actual distance
and positioning distance between each fixed ball and its
neighboring balls are measured by a laser distance meter and
multivision system, respectively. Figure 5 shows the error
analysis graph.

Figure 5 shows the error comparison between the ad-
jacent positions of ping pong balls in the first trajectory
extraction. The average error is 16.65mm in the first test,
when the information fusion strategy is used, while the
average error is 30.74mm when no information fusion
strategy is used. After the first test, the placement of the balls
was adjusted, and the test was carried out 10 times.

4.4. Prediction of Bounce Coefficients of Table Tennis
Trajectories. The experiment takes the velocity before the
bounce as the horizontal coordinate and the velocity after
the bounce as the vertical coordinate and then uses the least
squares fitting to determine the bounce coefficients in the
horizontal and vertical directions, respectively. The fitted
bounce velocity curves are shown in Figure 6.

Figure 6 shows the bounce velocity curves for each
velocity component fitted by the least square method,
whereas the bounce coefficients can be specified based on the
slope and intercept of each fitted curve. The detailed coef-
ficients are given in Table 2.

5. Conclusion

This study develops a table tennis ball identification and
tracking system based on binocular vision. The system can
accurately identify the speed of the ping pong ball, combine
the camera imaging model, and realize the 3D positioning of
the ping pong ball body. The trajectory tracking of the ping
pong ball according to the ball motion identification and
positioning information based on theoretical study and
algorithm implementation of the position prediction model

method effectively overcomes ghosting, and the calculation
cost is low. The strong anti-interference ability for the actual
type of combat will help to achieve continuous, real-time
fast-flying table tennis position identification. In addition,
this method is not only applicable to orange ping pong balls
but also can be applied to other colour ghost images for rapid
target identification and object tracking.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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