
Research Article
Virtual Reality Software and Data Processing Algorithms
Packaged Online for Videos

Li Zeng and Keke Guo

Hunan Mass Media Vocational and Technical College, Changsha, Hunan 410100, China

Correspondence should be addressed to Li Zeng; 33115225@njau.edu.cn

Received 6 May 2022; Revised 10 June 2022; Accepted 18 June 2022; Published 4 July 2022

Academic Editor: Muhammad Muzammal

Copyright © 2022 Li Zeng and Keke Guo. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Aiming at the problem of virtual reality and data processing algorithm of online video packaging, one transmission scheme uses
TILES in HEVC to block the video and then applies MP4Box to pack the video and generate a DASH video stream. A method is
proposed to process the same panoramic video with di�erent quality. By designing a new index to measure the complexity of the
coding tree unit, this method predicts the depth of the coding tree unit by using the complexity index and spatial correlation of the
video, skipping unnecessary traversal range, and realizing fast division of coding units. Experimental results show that compared
with the latest HM16.20 reference model, the proposed algorithm can reduce the coding time by 37.25%, the BD-rate only
increases by 0.74%, and the video image quality is almost not lost.

1. Introduction

At present, the main form of a virtual reality video is a 360-
degree video, which can meet the experience of 360 degrees
in the horizontal direction and 180 degrees in the vertical
direction from any perspective switch. In order to encode a
spherical 360-degree video content, it is necessary tomap the
spherical mode to two-dimensional plane mode �rst [1]. �e
Joint Video Experts Team (JVET) has proposed a variety of
projection formats, of which equirectangular projection
(ERP) is the most widely used. In the projection format, the
polar regions of the 360-degree video in virtual reality will
cause excessive stretching, adding a large amount of re-
dundant data, leading to a signi�cant increase in coding
time. �e research on reducing intraframe coding time is
divided into two aspects: intraframe mode decision and
coding unit (CU). In CU partition, complexity evaluation or
depth prediction is used to terminate the partition in ad-
vance to reduce the unnecessary rATE-distortion optimi-
zation process [2]. �ere are obvious di�erences between
panoramic video creation and ordinary 2D video creation in
expression and narrative mode. However, as a large number
of creators continue to explore and try, a lot of high-quality

panoramic video content has been produced. �ey enter
their creations into competitions or share them with other
VR creators on a small scale, but even the winning entries are
almost unknown to the general public. As content pro-
ducers, they want their work to be experienced by the public,
and they are also eager to put into the market to get feedback
as a guide for subsequent creation [3]. Panoramic video, due
to its own characteristics, covers 360 degree ∗ 180 degree
view information, supports users to change the view di-
rection for experience, and includes video, audio, subtitles,
interactive, and other types of data.�e transmission process
requires a great amount of bandwidth. �e bandwidth re-
quirement for a high-quality VR experience is about 5Gbps.
�e simultaneous head motion and �eld-of-view latency
(MTP) should be less than 20ms. �e requirements of
network bandwidth and delay seriously limit the panoramic
video-on-demand service and pose a challenge to the
transmission of the panoramic video. Traditional streaming
media transmission scheme is di¤cult to meet the real-time
transmission requirements of panoramic video-on-demand
service [4]. As the variety of virtual reality 60degree video
increases, the scene becomes more and more complex. It is
di¤cult to edit video frames according to latitude to adapt to
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various kinds of video sequences. -is paper analyzes the
characteristics of 360degree virtual reality video in ERP
projection format, designs a new index to measure the
complexity of CTU, categorizes video frames at the CTU
level, predicts the depth of CTU by using video spatial
correlation, and realizes CU rapid division by skipping
unnecessary depth traversal [5].

Kumar et al. proposed a 360-degree virtual reality video
optimization algorithm based on CU depth range prediction
and fast mode decision. By analyzing the video character-
istics under ERP format, the video frame was divided into
two poles and equatorial regions, and different reference
blocks and judgment conditions were set according to the
distortion degree, so as to ensure the quality and reduce the
coding time [6]. Sun et al. proposed an algorithm based on
CU complexity and CARTdecision tree to judge whether the
current CU is divided and skip unnecessary traversal range.
-e research objects of the above optimization algorithms
are mainly traditional video sequences. However, the pro-
jected 360-degree video of virtual reality shows character-
istics significantly different from traditional video sequences,
which need to be optimized according to these character-
istics [7]. By analyzing the texture characteristics of the polar
and equatorial regions, we can judge whether to terminate
the CU partition in advance from the texture complexity and
texture direction, so as to reduce the number of unnecessary
traversals [8].-e basic idea of the data processing algorithm
is to search the region with the most dense sample in the
feature space through repeated iteration, which is called the
modal of the sample. -e principle of the data processing
algorithm is simple, and the iterative efficiency is high, but
the size of the search area in the iterative process has a great
impact on the accuracy and efficiency of the algorithm.

In this paper, functional and nonfunctional tests of the
platform were designed and implemented, and the test re-
sults met the expected goals. Besides, users were invited and
organized to conduct subjective experimental tests by
watching videos. -e experimental results show that pan-
oramic content, as a new media, is well-liked by users, and
the application of block transmission and DASH strategy to
achieve a better playback experience verifies the feasibility
and effectiveness of the panoramic content playback plat-
form [9].

2. Algorithm Idea

Virtual reality 360-degree video images projected by ERP
format often have a large number of flat areas. -is is be-
cause, on the one hand, virtual reality 360-degree videos
often have a large number of background areas such as sky,
ground, and water, which are generally relatively flat. On the
other hand, in the ERP projection process of the spherical
video, the region near the upper and lower poles requires a
large amount of data interpolation, which leads to a large
amount of redundant data [10]. -erefore, in the process of
coding 360-degree virtual reality video, many algorithms
divide the video frame into the equatorial region and polar
region according to latitude and then optimize the CU
division. It should be pointed out that, with the increase of

360-degree virtual reality video types and increasingly
complex scenes, it is difficult to use fixed latitude to divide
video frames to adapt to various types of video sequences.
For example, there are still a large number of complex
textures in high latitude regions of some videos, while a large
number of flat regions exist in low latitude regions [11]. In
this case, there are obvious limitations to partitioning video
frames only based on latitude. -erefore, we need to find a
more effective method of regional division. If we can find a
low complexity measurement index of region flatness and
use this index to judge whether a region is flat, so as to
optimize the CU partition, the adaptability of the algorithm
will be effectively improved.-erefore, this paper designed a
new index to measure the regional complexity, classified the
video frames at the CTU level, and proposed a fast CU
partition algorithm based on CTU complexity and spatial
correlation to speed up the coding process. -e algorithm
consists of three parts, including CTU complexity de-
scription based on gradient, CTU classification, and CTU
depth prediction [12].

2.1. CTU Complexity Description. Commonly used com-
plexity descriptionmethods include gray level co-occurrence
matrix and Sobel operator.-ere are toomany parameters of
gray co-occurrence matrix, and the calculation complexity is
large. Sobel operator can accurately judge texture direction,
but it is difficult to describe the complexity of the image.
Since there is a strong correlation between pixels of each
frame of the video image, the difference between the current
pixel and adjacent pixels (upper-left pixel, upper pixel, and
left pixel) can be used to roughly express the image texture,
that is, the image gradient is [13]

Grad(x, y) � |dx(i, j)| +|dx(i, j)|, (1)

dx(i, j) � p(i, j) − p(i, j − 1), (2)

dx(i, j) � p(i, j) − p(i − 1, j). (3)

Gradient can reflect the direction and speed of pixel
change, reflect the fluctuation range of pixels in the block,
and highlight the pixel jump.-us, the texture complexity of
a block can be represented by a CTU gradient. Formula (1) is
designed to calculate the complexity of CTU for the special
points of 360-degree virtual reality video in ERP projection
format [14].

T � 
H

j�2


W

i�2
η pij − pi,j−1



 +(1 − η) pij − pi−1,j



 , (4)

whereW is the width of CTU, H is the height of CTU, pi,j is
the current pixel, pi,j−1 is the top pixel, and pi−1,j is the left
pixel; η � h/ H is the ordinate of each CTU’s upper left
corner, the two ends of the image are defined as 0, and the
middle of the image is defined as 1000. H is the height of the
image. In the ERP projection format, images of different
dimensions have different stretching degrees, -erefore, the
closer CTU is to the poles, the smaller the η become and the
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smaller the reference to the upper pixels. -e larger 1- η‘s
value is, the greater the reference to the left pixel [15–18].

2.2. CTU Classification. Statistical methods are used to
determine the number of CTU classifications and
thresholds. A total of 334,770 experimental data were
collected, and data distribution statistics are shown in
Figure 1. Polynomial functions were used to fit the data
[12]. As can be seen from Figure 1, a large number of CTUs
have low texture complexity, and the number of CTUs
gradually decreases with the increase of texture complexity.
-e determination process of classification quantity and
classification threshold is as follows: firstly, the x-coordi-
nate of the fitting curve is selected at equal intervals, and the
corresponding y-coordinate value is taken as the initial
classification threshold value. After that, all the video se-
quences are tested repeatedly. Under the premise that the
performance of the control algorithm is basically un-
changed, the classification intervals are merged gradually,
and finally, the optimal CTU classification number and
threshold are obtained [19].

2.3. CTU Depth Prediction. It is easy to calculate that the
CTU’s predicted depth is 0,1 when the average depth of CTU
is between 0 and 1. When the CTU’s average depth is 1.25 to
1.75, the CTU’s predicted depth is 1 and 2. When the CTU’s
mean depth is 1.3125 to 2.5 (which does not include depths
1.5 and 1.75), CTU’s predicted depths are 1, 2, and 3. When
CTU’s average depth is greater than 2.0625, the CTU’s
predicted depth is 2 and 3.2, the optimized depth traversal
range. -e initial depth traversal scope does not take into
account video characteristics and spatial correlation. In this
paper, based on the initial depth traversal range, considering
the characteristics of ERP projection video, and combined
with the complexity index of CTU, the depth prediction
interval of each category of CTU was optimized [20].

-e CTU of category 5 is less complex, the CTU of this
class is flat, and the depth traversal range is only 0 and 1.-e
CTU of category 1 is relatively complex, and the depth
traversal scope only includes 2 and 3. CTU of categories 2, 3,
and 4 is complex. In this paper, the depth of adjacent blocks
is used to predict the depth of the current block. If the
average depth of the CTU on the left is D1, the average depth
of the CTU on the top isDu, the average depth of the CTU on
the top left isDu1, and the CTU complexity category is LCTU,
the average depth of the current CTU is defined as follows:

DCTU �
D1 + Du + Du1( 

3
+

1
LCTU

. (5)

For example, if the current CTU is classified as category 3
and the average depth of the left, upper, and upper-left CTU
are 2.185, 2.4375, and 2.9375, respectively, then the average
depth of the current CTU is 2.8542. -e final depth traversal
range is shown in Table 1 after the threshold value is adjusted
under the condition that the guaranteed rate distortion cost
is basically unchanged.

2.4. Analysis of Client Function Requirements

2.4.1. Personal Module. First of all, 3D models are needed to
display facial expressions of the client, which requires an
engine that can support 3D models and a game engine fits
this need perfectly. -e most commonly used game engines
are Ogre, Unity, Unreal, etc. After investigation, Ogre has a
good production effect and strong openness, but it is not
good enough to support the client-server mode. It is good at
making PC games, and the tools in Ogre are not complete
and convenient enough to use because it requires a lot of
energy. -e multiplatform support for Unreal was not good
enough, so Unity3D was considered. Personal module in-
cludes user login and registration, basic information editing
and filling in, the content and the creator of the collection of
thumbs up, and other operations. After login, users can like
the content they are interested in, download the content,
create the collection, and add the content they are interested
in to the collection. And, they can go to the personal module
at “my” page to view the collection of content and download
the content of the creator of his choice. If the user does not
log in to the account, the functions related to the account
such as liking and collecting cannot be used, and it will jump
to the login and registration module to guide the user to
complete the account registration or login. -e downloaded
content can be viewed offline. Authenticated user creators
can upload content, delete content, etc.

2.4.2. Content Discovery Module. -e content discovery
module includes the home page and the search page. -e
home page is the page displayed after the application of the
content recommendation strategy. Users come to the pan-
oramic video content platform with the expectation of
discovering and experiencing the content. In order to fa-
cilitate the user to browse and view the content, the client
uses one line to display multiple individual contents on the
home page and flip the page to display the contents of the
previous page and the next page. Each individual piece of
content consists of a thumbnail of the video, a description of
the content, and the author of the content. For paid content,
they show the price of the content.

3D models can be created using professional modeling
software. At present, there are many excellent modeling
software in the market, such as Maya and 3DMax. -e
common feature of these software is to use simple geometric
models, such as cubes and balls, to build complex models
through translation, stretching, and rotation. 3Dmodeling is
an important part of the performance of virtual games. 3D
models can also be generated from digital signals scanned by
3D scanners or modeled from pictures or videos. -e face
model used in this topic is a 3D model made by traditional
modeling software.

2.5. AlgorithmProcess. (1) Get current CTU pixel values and
calculate the texture complexity as equation (4). (2) De-
termine the CTU category according to the texture com-
plexity classification interval. (3) Deep prediction is
determined according to the CTU category: if category is 1,
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only depths 2 and 3 are traversed; if category is 5, only depths
0 and 1 are traversed; if category is 2, 3, and 4, then the
average depth of the corresponding reference CTU is ob-
tained. Substitution formula (5) calculates the average depth
of the current CTU and then obtains the predicted depth
according to the corresponding average depth threshold
interval. (4) CU is divided according to the predicted depth.

3. Experimental Analysis

-e above algorithm was integrated into HM16.20 and
360lib-4.0 to test the performance of the algorithm. -e
hardware parameters of the experimental platform are as
follows: Intel(R) Core(TM) I7-7700 CPU@3.60GHz CPU,
8.0GB memory. -e main encoding parameters of the ex-
periment are as follows: all Intra Main10 (AI-Main10)
encoding mode, the number of encoding frames is 100, and
the initial QP is 22, 27, 32, and 37. In order to evaluate the
comprehensive coding performance of the algorithm, the
BD − rate calculation method provided by JVET is used to
measure the relationship between the bit rate and the image
quality. If ΔBD − rate is negative, the overall coding per-
formance is improved. In addition, the WS − PSNR index
defined by WMSE is also used to evaluate the image quality,
as follows:

WS − PSNR � 10log
MAX2

WMSE
 , (6)

WMSE � 
width

i�0


height−1

j�0
y(i, j) − y′(i, j) 

2
, (7)

W(i, j) �
w(i, j)


width−1
i�0 

height−1
j�0 w(i, j)

, (8)

where MAX is the maximum value of the image pixel, y(i, j)

and y′(i, j) represent the original pixel and reconstructed

pixel, respectively, and w(i, j) is the weighting scaling factor
of the normalized sphere. -e calculation of ΔWS − PSNR
formula is as follows:

ΔWS − PSNR � WS − PSNRproposed. (9)

-e percentage of time saved compared to the reference
algorithm is represented by ΔTime, using the following
formula:

ΔTime �
Tproposed − THM16.20

THM16.20
× 100%. (10)

In this paper, 16 standard test sequences recommended
by GoPro, InterDigital, Nokia, and Letin VR were used to
test the algorithm. For the accuracy of the quality assess-
ment, the sequence was converted to low resolution ERP
projection format video before coding. For 8K and 6K video,
the encoding size is 4096× 2048 pixels, and for 4K video, the
encoding size is 3328×1664 pixels.

Compared with the standard algorithm, the proposed
algorithm reduces the coding time by 37.25%, reduces the
WS − PSNR by 0.10 dB, and increases the B D − rate by
0.74% on average. Among them, sequence Balboa, sequence
Broadway, sequence Skateboark-trick, and sequence
Train le save more time. -is is because the low-complexity
areas in these videos make up the majority of the entire
region, while the higher complexity areas are extremely
complex. A large number of CTUs in these video sequences
can be divided directly according to the set depth range,

Table 1: Predicted depth and CTU mean depth.

Prediction depth CTU average depth
0, 1 [0, 1.25]
1, 2 (1.25, 1.4375]
1, 2, 3 (1.4375, 2]
2, 3 (2, 3.5]
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Figure 1: CTU complexity data distribution: (a) 4K video sequence acquisition data and (b) 6K video sequence acquisition data.
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skipping unnecessary traversal and thus saving a lot of time.
ChairliftRide and KiteFlite sequences save less time, an
important reason is that there are many CTU with an av-
erage depth of 1.4375∼2 in these video sequences, and
traversing depths 1, 2, and 3 consume more time. Figure 2
shows the comparison of RD curves for different sequences.
As can be seen from the figure, the RD curve of the proposed
algorithm is basically coincident with HM16.20 at both high
and low bit rates, indicating that the algorithm reduces the
coding time and has almost no loss of video quality. -is is
because the algorithm in this paper fully considers the
characteristics of 360-degree virtual reality video in ERP
projection format and takes CTU as the basic unit for
classification processing. It provides a quick decision scheme
for CTU of categories 1 and 5 and sets up a depth prediction
scheme based on spatial correlation for CTU of categories 2,
3, and 4. Compared with the method that divides the video
image directly into the poles and the equator, the method
presented in this paper is more applicable and more accurate
in predicting the depth of CTU.

According to the subjective experimental results, the
720P resolution content was consistently evaluated by
users, with blurred images and serious distortion. Under
the condition of excellent network environment, the
higher the code rate of video, the higher the perceived
quality of video. However, when playing the 4K video, the
full view of the transmission scheme has a significant
increase in the number of times. Despite the improved
picture quality, the user experience was affected by the lag.
So, the score is about the same as the lower resolution. In
the case of high-quality video transmission scenes in the
range of FOV, the number of times of lag is significantly
reduced, and the picture quality perceived by users is
about the same as 2K sharpness, which is scored more
than 4 points. In the case of a good network environment,
the 2K resolution viewing experience is very poor, which
is only about 1 point. -e perceived quality of the video
stream provided by the adaptive transmission scheme
using DASH can reach around 3 points, also higher than
other resolution cases. -rough the comparative analysis
of subjective and objective scores of the above experi-
ments, it can be concluded that the DASH whole-view
delivery scheme can provide users with a higher quality of
user experience.

-is paper discusses the research background and sig-
nificance of data processing algorithm, analyzes the research
status, summarizes the key problems involved in motion
tracking and the existing common algorithms, and sum-
marizes the problems in the tracking algorithm. -e motion
tracking algorithm MS, based on the mean shift, and the
continuous adaptive mean shift algorithm CAMS are
implemented. -e mean shift is a common iterative algo-
rithm for probability density estimation, with simple
principle and high iteration efficiency. In motion tracking,
the template matching problem can be transformed into the
process of the mean shift convergence by constructing
proper kernel function. -e tracking algorithm has good
real-time performance and can solve the partial occlusion
problem to a certain extent.

4. Conclusion

-e research and design of the panoramic content playing
platform based on the adaptive strategy of streaming media
has completed requirement analysis, outline design, detailed
design, coding implementation, and testing. -e subjective
test is designed, and the evaluation of the broadcast expe-
rience is obtained through the subjective test. In order to
reduce the coding time and coding complexity of 360-degree
virtual reality video, experimental results show that com-
pared with the standard algorithm, the proposed algorithm
reduces the coding time by 37.25% and the BD-rate increases
by 0.74% on average, with almost no loss of video quality.
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