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Under the current background, it is very important to study the key technologies of new power system edge-to-side security
protection for massive heterogeneous power IoT terminals and edge IoT agents, including defense technologies at the levels of
device ontology security, communication interaction security, and secure access. Meaning. �e new power system edge-to-side
security protection technology has a summary impact on the privacy protection of indoor positioning. �is paper proposes an
indoor positioning privacy protection method based on federated learning in Mobile Edge. Computing (MEC) environment.
Firstly, we analyze the learning mechanisms of horizontal, vertical, and transfer-federated learning, respectively, and mathe-
matically describe it based on the applicability of horizontal and vertical-federated learning under di�erent sample data
characteristics. �en, the risk of data leakage when data are used for research or analysis is greatly reduced by introducing
di�erential privacy. In addition, considering the positioning performance, privacy protection, and resource overhead, we further
propose an indoor positioning privacy protection model based on federated learning and corresponding algorithms in MEC
environment. Finally, through simulation experiments, the proposed algorithm and other three algorithms are, respectively,
compared and analyzed in the case of two identical datasets. �e experimental results show that the convergence speed, lo-
calization time consumption, and localization accuracy of the proposed algorithm are all optimal. Moreover, its �nal positioning
accuracy is about 94%, the average positioning time is 250ms, and the performance is better than the other three
comparison algorithms.

1. Introduction

Indoor positioning refers to the realization of positioning
in the indoor environment, mainly using wireless com-
munication, base station positioning, inertial navigation
positioning, motion capture, and other technologies to
integrate to form a set of indoor position positioning
system, so as to realize the positioning of personnel and
equipment in indoor space. Precise location monitoring
is also important. In order to solve the problem of weak
indoor positioning signal and to ensure the positioning
accuracy in the practical application environment, the
authors in the literature [1] proposed a high-precision
positioning algorithm compatible with the two posi-
tioning modes through the research on the principles of
the algorithms of satellite positioning and ultra wide band

(UWB) positioning modes. Under this algorithm,
seamless switching between the two positioning modes
can be achieved. �e high-precision positioning algo-
rithm is compatible with two positioning modes, and the
seamless switching between the two positioning modes
can be realized under this algorithm. Reference [2]
designed an integrated seamless positioning system
combining UWB and GNSS for the urgent needs of in-
door and outdoor integrated seamless positioning in
application scenarios such as power BeiDou security
applications and automatic driving navigation. Aiming at
the potential defects of traditional RSSI and Taylor series
expansion positioning algorithms, literature [3] proposes
a set of improved positioning algorithms suitable for
power production environments to serve diverse indoor
positioning application requirements under smart grids.
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Specifically, by introducing processing stages such as
Gaussian screening, wavelet transformation, and cor-
recting Taylor series expansion, redundant noise can be
fully removed, calculation results can be optimized, and
positioning efficiency can be improved.

)e rapid development of wireless communication
technology in new power systems has greatly promoted the
widespread popularization and application of smart power
IoT terminals, and location information is essential in the
related services of these smart terminal devices [4]. By
collecting specific location information, the intelligent ter-
minal realizes location query and acquisition services, path
planning and navigation services, target object recognition
services, and location sending and query services in emer-
gency situations [5, 6]. Location-based services (LBS) have
been widely used in various fields including smart grids.
While LBS brings convenience to people’s lives, it is also
accompanied by the risk of location privacy leakage. When
users enjoy indoor location services, they often have con-
cerns about their privacy and security [7–9].

In addition, the rapid growth in the number of users and
smart terminal devices has led to an exponential growth of
data at the edge of network. )us, the traditional method of
centrally storing data in cloud computing centers for data
processing has become increasingly infeasible [10–12].
Mobile edge computing (MEC) technology provides an
effective solution to the storage and processing of massive
data at the edge of mobile networks. It effectively solves the
huge pressure problem brought by massive data transmis-
sion and storage to network and cloud storage center by
sinking data storage and computing to network edge
[13, 14]. However, as a distributed data processing method,
MEC nodes may involve the mutual exchange of sensitive
data in the process of cooperative data processing, which
may lead to data privacy leakage [15].

At present, under the edge computing architecture, the
location model can be trained by collecting and sending
wireless signal strength information to the cloud through
intelligent edge devices, but how to protect some records
with sensitive information of electricity users (such as lo-
cation information, electricity operation, travel arrange-
ments, and work and rest time), and avoid using these
sensitive information to infer other privacy information that
users do not want to disclose, such as electricity preferences,
home furnishings, consumption levels, behavioral habits and
social relations, etc. are the problems that need to be solved
urgently at present [16, 17].

In order to solve the problems of low positioning ac-
curacy, long time-consumption, and difficulty to resist cross-
attack in traditional indoor positioning privacy protection
methods, this paper proposes an indoor positioning privacy
protection method based on federated learning in MEC
environment. Compared with the traditional indoor posi-
tioning privacy protection method, the innovation of pro-
posed method is as follows:

(1) )e possibility of user privacy data leakage is greatly
reduced, and the risk of data destruction is elimi-
nated by introducing differential privacy

(2) )e corresponding model is constructed by com-
prehensively considering the positioning perfor-
mance, privacy protection, and resource overhead,
which improves the comprehensive performance of
the privacy protection algorithm

)e remaining chapters of this paper are arranged as
follows: the second chapter introduces the relevant research
in this field; the third chapter introduces the privacy pro-
tection method based on federated learning; the fourth
chapter is the experimental part, which verifies the per-
formance of the proposed method; and the fifth chapter
summarizes the research.

2. Related Work

For the privacy protection method of user indoor posi-
tioning in MEC environment, scholars have done related
research and achieved certain research results.

Reference [18] proposed a user location privacy pro-
tection algorithm based on the improved k-means algorithm
and l-diversity idea using the Laplacian mechanism. )ey
proposed a user query privacy protection algorithm based on
the k-anonymity algorithm and then proposed a differential
privacy-based LBS privacy protection scheme. However, this
method did not consider the privacy issues of data collection
and aggregation operations and has a limited scope of ap-
plication. Reference [19] divided the entire fingerprint da-
tabase based on the E-M clustering algorithm. On this basis,
a privacy protection scheme is proposed in Wi-Fi finger-
print-based positioning PPWFL using Wi-Fi devices, but
this method cannot use corresponding indicators to evaluate
high user privacy. Reference [20] proposed an RPL algo-
rithm that can divide the privacy level of sensitive road
segments based on the topology relationship of the road
network. On this basis, the differential privacy location
protection mechanism DPLPM was used to allocate privacy
budget for sensitive road sections to realize the privacy
protection of location data. However, this method can only
work in completely trusted indoor scenes, and it was difficult
to resist differential attacks in untrusted situations. Refer-
ence [21] proposed a fingerprint-based high-precision in-
door positioning system with positioning accuracy,
operating ability in changing nonline-of-sight environ-
ments, and computational simplicity as objective functions,
and realized user privacy by using multipath propagation to
disguise the user’s location. However, this method cannot
meet the high computational requirements of user privacy
protection. Aiming at the balance between geographic lo-
cation protection and semantic location protection, refer-
ence [22] proposed an optimized privacy differential privacy
scheme with reinforcement learning in vehicular ad hoc
networks based on differential privacy. However, this
method led to low localization accuracy due to destruction of
the original data distribution. Reference [23] analyzed the
reasons for leakage of mobile user location privacy and the
deficiencies of existing privacy protection technologies in 5G
environment. Combining the preliminary processing of
dimensionality reduction, fusion privacy algorithm, and
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transmission encryption method, a fusion positioning pri-
vacy protection method suitable for 5G environment was
proposed. However, this method cannot achieve robustness
to the changing environment of moving objects. Reference
[24] proposed edge crowdsourcing indoor localization ar-
chitecture to address the problem of privacy leakage in the
development of large-scale indoor localization systems.
Besides, a privacy-aware indoor positioning algorithm based
on secure multiparty computation was presented to protect
location privacy. However, the positioning time of this
method was long and the efficiency was low.

3. Privacy Protection Method Based on
Federated Learning

3.1. Federated Learning Mechanism. Traditional machine
learning methods are facing two major challenges: data silos
and data security and privacy. Federated learning has been
proposed as a possible solution due to its ability to provide a
learning protocol for collaboration and security. As a new
modeling mechanism, federated learning can uniformly
model data from multiple parties without compromising
data privacy and security. )at is, many clients jointly train
the same model under the coordination of central server and
cannot disclose their respective data and keep the training
data decentralized. It can be better applied to fields where
data cannot be directly aggregated for training machine
learning models due to factors such as intellectual property
rights, privacy protection, and data security.

For the case that multiple data owners want to combine
the data, they have to train a machine learning model, and
the traditional method is to integrate all data together and to
use the integrated data for training to obtain the final model
Ms. However, this scheme is usually difficult to implement
due to legal issues such as privacy and data security.
However, federated learning can solve this problem very
well. Federated learning is the ability to obtain a model Mr

through training without the data owner having to disclose
its own data. Federated learning can ensure that the per-
formance gap between model Ms and model Mr is small
enough. When the following formula (1) is established, it
means that the accuracy loss of the federated learning al-
gorithm is λ:

Xs − Xr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< λ. (1)

In formula (1), Xs represents the performance of model
Xs. Xr represents the performance of model Xr. λ is a non-
negative real number.

)e data owned by k data owner is represented by a
matrix Dk. In matrix Dk, each row represents a sample, and
each column represents a feature.)e feature space of data is
denoted by T. In addition, some data of users may contain
specific labels, such as customer value in the field of elec-
tricity, health in the field of medical care, and purchasing
power in the field of sales.)e label space is represented by L.
)e ID space of the sample is denoted by I. )e feature space
T, the label space L, and ID space I constitute the complete
training dataset (I, T, L). Since the feature space and sample

space of data subject may not be the same, it is necessary to
distribute the data according to the location of data among
the parties in the feature and sample ID space. )e federated
learning is divided into horizontal-federated learning, ver-
tical-federated learning, and transfer-federated learning.
Different types of federated learning architectures are shown
in Figure 1.

Different types of federated learning architectures are
used in different situations. When there is a large overlap of
dataset features and a small sample overlap between par-
ticipants, horizontal-federated learning is used. When the
feature overlap is small and the sample overlap is large,
vertical-federated learning is used. Transfer-federated
learning is used when both features and samples overlap less.
)is paper mainly studies horizontal-federated learning and
vertical-federated learning.

In the dataset of federated learning participants, when
the same sample ID is few but the same data features are
many, we often use the horizontal-federated learning
technology. For example, for two telecom operators with
the same business but different users, the datasets they
generate have less overlapping in sample IDs but larger
feature overlaps. If we need to combine the data of both
parties to build a machine learning model, we often do not
copy data directly due to data privacy issues. At this point,
we can use the horizontal-federated learning method to
model the data. Horizontal-federated learning is to com-
bine samples with the same characteristics from multiple
participants for modeling. We take out the part of data with
different sample IDs and the same characteristics to train
the model. In the horizontal-federated learning solution
proposed by Google for Android mobile phone model
update, users using Android mobile phones can update the
parameters of the model locally and upload the parameters
of the model to the Android cloud server. Other data
owners can collaborate with the user to train a centralized
model.

Horizontal-federated learning is also known as feature-
aligned federated learning; that is, the features of the par-
ticipants’ data samples are the same. )e word “horizontal”
in horizontal-federated learning can be understood as
“horizontal division.” )e training samples of each partic-
ipant can be regarded as horizontally divided from the total
samples. Horizontal-federated learning expands the number
of training samples.)erefore, horizontal-federated learning
can be summarized by

Ta � Tb, La � Lb, Ia ≠ Ib,∀Da, Db a≠ b. (2)

Vertical-federated learning can also be called feature-
based federated learning. It is suitable for cases where there
are many overlapping sample IDs in multiple model training
participant datasets but few common features. Vertical-
federated learning is to combine samples with the same ID
frommultiple participants for model training.)e dataset of
each party is divided vertically (that is, divided according to
the feature dimension), and the part of data with the same
sample ID and different characteristics is taken out to train
the model. For example, in two different organizations with
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different businesses but the same users, the same users in-
dicate that their users will overlap greatly, and different
businesses indicate that each organization has different user
characteristics. When both parties want to jointly build a
user consumption prediction model, due to the require-
ments of data privacy protection, neither party can directly
obtain the other party’s data. At this time, the two parties can
use the vertical-federated learning technology to jointly
build a model. Before performing longitudinal-federated
learning, it is first necessary to find out the samples shared by
the participants, that is, sample alignment. In longitudinal-
federated learning, the participant’s dataset can be viewed as
being longitudinally sliced from an overall big data table.
Vertical-federated learning expands the feature dimension
of training samples. Vertical-federated learning is to com-
bine different features possessed by participants without
directly copying data to each other to enhance model ac-
curacy. At present, vertical-federated learning has realized
the modeling of many machine learning models such as
neural network models, logistic regression models, and tree
models. )erefore, vertical-federated learning can be sum-
marized by

Ta ≠Tb, La ≠Lb, Ia � Ib,∀Da, Db a≠ b. (3)

3.2. Differential Privacy. Differential privacy is a strictly
provable mathematical framework whose basic idea is to add
carefully designed noise to the input or output of a function

so that the modification of any single record in the dataset
will not have a significant impact on the output. )us, the
attacker cannot infer the private information in datasets by
analyzing the output results.

Differential privacy is defined as follows. Let S: D⟶ R

be a random algorithm, D and D1 are two datasets with at
most one record different, sO ∈ R is the output of algorithm
S, and if algorithm S satisfies the following formula (4), it is
said to satisfy (α, β) differential privacy.

P[S(D) � O]≤ e
α
P S D1( 􏼁 � O􏼂 􏼃 + β. (4)

In formula (4), α is the differential privacy budget. )e
smaller the value is, the higher the degree of privacy pro-
tection is, but at the same time, the greater the accuracy loss
of algorithm S is. β represents the probability that strict
differential privacy is allowed to be violated, and the general
value is small.

Sensitivity is defined as follows. For any query function
C: D⟶ Rm, D is the input dataset, and Rm is the m di-
mensional vector output by the function, then the sensitivity
of function C is shown as

ΔC � max
D,D1

C(D) − C D1( 􏼁
����

����p
. (5)

In formula (5), D and D1 are adjacent datasets that differ
by at most one record, and ‖ · ‖p represents the Lp norm.
Sensitivity reflects the maximum variation in the output of
query function C on a pair of adjacent datasets. )e smaller
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Figure 1: Different types of federated learning architectures. (a) Horizontal-federated learning. (b) Vertical-federated learning. (c) Transfer-
federated learning.
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the sensitivity, the less noise needs to be added to the output
to achieve differential privacy.

)e definition of Gaussian mechanism is as follows. If
the L2 norm is used to calculate the sensitivity of function C,
then differential privacy (α, β) can be achieved by adding
Gaussian noise to the output of function C as

S(D) � C(D) + N 0, (ΔCσ)
2

E
→

􏼔 􏼕. (6)

In formula (6), Gaussian noise is a Gaussian distribution
with a mean of 0 and a covariance of (ΔCσ)2 E

→
, and E

→
is the

identity matrix.
Differential privacy has the following two properties:

(1) Postprocessing. If the output of an algorithm satisfies
differential privacy, any operation on this result will
not cause additional privacy loss.

(2) 3e principle of serialization combination. )e seri-
alized combination of differential privacy algorithms
still satisfies the differential privacy property.

3.3.ModelArchitecture. Aiming at the problems faced by the
current indoor positioning methods, this paper proposes an
indoor positioning privacy protection model based on
federated learning in an MEC environment by compre-
hensively considering positioning performance, privacy
protection, and resource overhead. )e system architecture
is shown in Figure 2.

)e system architecture shown in Figure 3 is a 3-layer
MEC framework, which divides the entire indoor posi-
tioning federated learning protocol into cloud server layer,
edge server layer, and terminal device layer. Federated
learning protocols with multiple participants are well sup-
ported. It is assumed that user group 1, user group 2, and
user group 3 possess terminal devices and have collected a
large amount of indoor positioning data, respectively. In
order to be able to enjoy the indoor positioning service
deployed on the edge server, they all voluntarily participate
in the indoor-federated learning protocol. At the same time,
they all try their best to prevent leaking their data to
untrusted entities in the system (such as edge servers and
cloud servers) during the entire federated learning process.
)e edge server performs aggregation and local submodel
training after receiving the data that the terminal device has
perturbed, and share the trained submodel parameters to the
cloud server to obtain the optimal global positioning model.
)e cloud server receives the submodel parameters sent by
the edge server, performs global model aggregation and
collaborative update, and sends the updated model pa-
rameters to each edge server. )e indoor positioning fed-
erated learning model is divided into two stages: offline
training and online positioning. )e specific description of
entire system framework is as follows:

(1) Terminal device. It refers to a set of smart terminal
devices (such as smartphones, tablet computers,
smart monitoring equipment, and smart power
terminals) owned by federated learning participants,
with computing, storage, and communication

capabilities. In the offline training phase, the ter-
minal device can be used to obtain and store local
datasets frommultiple wireless sensor beacons in the
indoor area and independently perform data pre-
processing and noise addition on the collected
datasets.)e perturbed data are then sent to a nearby
edge server. In the online positioning stage, edge
devices send their measured real-time data, and it is
perturbed with noise to the edge server to obtain
positioning services.

(2) Edge servers. )is is the core entity of MEC archi-
tecture, usually implemented at user premises (such
as parks, malls, and shopping centers) and may be
deployed in fixed locations. )ey have more pow-
erful storage and computing resources than terminal
devices and act as computing units between cloud
servers and terminal devices. Edge servers mainly
perform trusted data aggregation, local submodel
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Figure 2: Indoor positioning privacy protection model based on
federated learning in edge computing environment.
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training, and service feedback. In the offline training
phase, the edge server first receives the perturbed
data uploaded by the nearby terminal devices and
aggregates the fingerprint data into data containing
multiple user information. It uses these aggregated
data to perform credible training of local positioning
submodel, uploads the trained local submodel pa-
rameters to the cloud server, and repeats this iter-
ation until the model converges. In the online
positioning stage, the edge server uses the trained
positioning model to provide users with high-
credibility and high-precision indoor positioning
services according to the real-time data submitted by
users after privacy protection processing.

(3) Cloud server. As a data center, it has more powerful
storage and computing power than edge servers. It
receives the submodel parameters shared by each
edge service, uses the federated average optimiza-
tion algorithm to update the globally shared model
parameters, and sends the updated model param-
eters to each edge server for the next round of it-
erative training until the optimal training model is
obtained. In order to prevent untrusted cloud
servers from inferring the private training data of
each participating user through model inversion
attacks or gradient reverse inference attacks, privacy
protection processing is required when aggregating
and updating global parameters. Here, differential
privacy technology is used to add appropriate
Laplace noise to the model parameters of each
participant in the federated learning protocol and
then the global parameters are aggregated and
updated to achieve privacy protection. Among these
entities, the end device is assumed to be trusted. It
processes the collected data correctly and does not
disclose it to other participants. Also, the edge
servers and cloud servers are assumed to be honest
and curious; that is, they can faithfully execute the

federated learning protocol process and correctly
compute and send real computation results.
However, they are curious about the privacy con-
tained in the data and do their best to analyze and
mine the privacy of users. During the entire offline
training process, the edge server only communi-
cates with the cloud server. It cannot obtain any
information about the rest of edge servers except for
the jointly maintained global parameters, which
guarantees the confidentiality of user data. In ad-
dition to privacy issues, the federated learning
protocol in the MEC framework may also face the
problem of resource constraints of end devices.
Because executing complex deep learning models
require huge computational overhead, resource-
constrained terminal devices cannot afford the
training process of complex deep learning models.
)erefore, it is essential to design an effective po-
sitioning model that does not require too much
computational overhead, does not violate the fed-
erated learning mechanism, and can protect the
privacy of user data at the same time.

3.4. Algorithm Description. Under the MEC architecture,
users collect and send received signal strength (RSS) in-
formation to the cloud through intelligent edge devices to
train the positioning model. Based on the proposed indoor
positioning privacy protection model based on federated
learning under MEC, a corresponding indoor positioning
privacy protection method is proposed below. )e method
can update the user’s local model and cloud model while
providing (α, β) differential privacy protection and perform
timely collaborative update in the form of device-cloud
collaboration according to the location and demand changes
of participating users.

)e proposed algorithm mainly includes the following
steps:

Privacy protection budget

0.00001 0.001 0.01 0.05 0.08 0.1 0.2 0.5 0.8

Po
sit

io
ni

ng
 ac

cu
ra

cy
 (%

)
80
82
84
86
88
90
92
94
96
98

100

PEDT = 5 m
PEDT = 4 m
PEDT = 3 m

PEDT = 2 m
PEDT = 1 m

Figure 3: )e positioning effect of the proposed algorithm under different privacy protection budgets.
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(1) )e user collects RSS information data required for
positioning on the terminal device and locally per-
forms privacy protection processing on the private RSS
information data that satisfies differential privacy. )e
processed data are then sent to nearby edge nodes.

(2) )e edge nodes package and aggregate RSS infor-
mation data sent by users, use the multiuser com-
posite data of RSS information processed by the
privacy protection mechanism to train the local
submodel, and upload the trained model parameters
to the cloud server.

(3) )e cloud server performs differential private model
aggregation on the local submodels from each edge
node, confuses the contributions of each submodel
to the global model, and obtains the cloud global
model.

(4) Repeat steps (2) and (3) continuously, optimize and
update the local submodel and cloud model, and
finally realize the common benefits of each edge
node.

On the terminal device, users can add controllable
random noise N(1/δμ) to their own private real RSS in-
formation data (x, y). Differential perturbation of RSS in-
formation data is performed before data sharing to ensure
the privacy and security of RSS information data sent to edge
nodes. RSS information data x0 after differential pertur-
bation can be expressed by

x0 � x + N
ΔC
δμ

􏼠 􏼡, (7)

where N(·) represents the controllable random noise sat-
isfying Laplace distribution, and the amount of added noise
is controlled by the sensitivity ΔC. δμ denotes the privacy-
preserving budget allocated to users for differential per-
turbation on end devices. )e edge node packages the re-
ceived RSS information data from different users into a local
submodel training dataset (X0, Y). where X0 � x01,􏼈

x02, ..., x0n}.
)e cloud server receives local submodels uploaded from

M different edge nodes and performs aggregation and
update operations on these models that satisfy differential
privacy protection. )e update method of cloud model is
shown as

G �
1

M
􏽘

M

k�1
Gk + N

ΔC
δμ

􏼠 􏼡⎛⎝ ⎞⎠. (8)

In formula (8), G represents the target parameter of
cloud model. Gk denotes the k local submodel parameter,
k � 1, 2, 3, ..., M. Based on this principle, it is continuously
iterated to obtain the coevolution and update of cloudmodel
and local submodel.

4. Experiments and Analysis

4.1. Simulation Environment and Datasets. In order to
simulate the indoor positioning federated learning protocol

inMEC environment, an indoor positioningmodel was built
using TensorFlow, and two edge servers with the same
amount of data were simulated. )e socket protocol is used
to realize the communication between the edge server and
the parameter server, and the optimizer adopts AdaDelta.
Instead of accumulating all past gradients, AdaDelta adjusts
the learning rate based on the gradient update moving
window without setting an initial learning rate. )e number
of iterations is 1000, and the batch size is 32. )e hardware
environment is as follows: Inter(R) Core(TM)i7-8750HCPU
@2.20GHz, NVIDIA GeForce GTX1060 graphics card, and
24GB RAM, 6GB video memory.

)e dataset employs real data collected using smart-
phones in a realistic indoor environment. )e Wi-Fi access
point AP and BLE beacon are preset in two indoor public
areas to collect RSS information data, respectively.

)e office area dataset is collected from a 12.5× 7.5m2

office area. A total of 20 BLE beacons are deployed in the
area, which can stably detect signals from 30 Wi-Fi APs. A
total of 4232 samples were collected at the set 100 data
collection points, and each sample contained two-dimen-
sional position coordinates (x, y) and 50-dimensional RSS
information features including 20-dimensional BLE features
and 30-dimensional Wi-Fi features. )e mall area dataset is
collected from a shopping mall area of 32.5×15.38m2. )e
entire area is divided into 500 grid cells, as the size of each
cell is 1m2, and each grid cell is used as a data collection
location point. A total of 22 BLE beacons are deployed near
all collection locations, and signals from 35Wi-Fi APs can be
stably detected. A total of 9852 valid samples were collected,
each containing 2D position coordinates (x, y) and 57D RSS
information features including 22D BLE features and 35D
Wi-Fi features.

4.2. Simulation Result Analysis. )e (α, β) differential pri-
vacy guarantee provided by the algorithm results in a loss of
localization accuracy. Based on the above datasets, first
assume that the training sample labels are complete and the
learning features are sufficient, and the positioning accuracy
is only affected by the added controllable random noise. )e
preset error distance threshold is 1meter to 5meters, and the
influence of different α on the positioning accuracy is
compared under different error distance thresholds (PEDT),
and the value range of α is from 0.00001 to 1.)e positioning
effect of the proposed algorithm under different privacy
protection budgets is shown in Figure 3.

It can be seen from Figure 3 that the positioning accuracy
increases with the increase of α. When α increases, the
positioning accuracy changes significantly. )is is because a
smaller α means more noise is added and therefore a larger
actual error distance. When α≥ 1, the positioning accuracy
almost reaches a steady state. )is shows that by adding
appropriate noise, the proposed algorithm can achieve good
and stable localization accuracy while guaranteeing privacy.
Under the same privacy budget, a larger PEDT corresponds
to a higher localization accuracy. In the case of α, the po-
sitioning accuracy of proposed algorithm is about 95% when
PEDT= 5m and about 93% when PEDT= 3m. )is is
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because in the case of adding the same noise, a larger PEDT
means that the perturbed position satisfying the condition
that the actual error distance is less than the preset error
distance is more likely to be the correct result. A smaller
value of α ensures higher privacy, which will also sacrifice
more positioning accuracy and cause more time con-
sumption. )erefore, in order to strike a balance between
location privacy, localization accuracy, and time con-
sumption, α is set to 0.1 in subsequent experiments.

4.3. Comparative Analysis. When the office area dataset and
the mall area dataset are used, respectively, and the privacy

protection budget is set to 0.1, the indoor positioning privacy
protection method based on federated learning in edge
computing environment is proposed in this paper using
Refs. [18], [20], [22] for comparative analysis.)e changes in
the training accuracy of different algorithms are shown in
Figure 4 below. )e positioning time consumption of dif-
ferent algorithms is shown in Figure 5.

It can be seen from Figures 4 and 5 that with the increase
in the number of training iterations, the positioning accu-
racy of all algorithms in the office area dataset and the mall
area dataset gradually increases and finally tends to be stable,
and the model becomes gradually stable convergently.
Among them, the proposed algorithm has the fastest
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Figure 4: )e positioning accuracy of different algorithms under the two datasets. (a) )e training accuracy of different algorithms under
the office area dataset. (b) )e training accuracy of different algorithms under the mall area dataset.
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convergence speed and the highest positioning accuracy and
starts to converge after 50 iterations and 40 iterations, re-
spectively, under two different datasets, and their final
positioning accuracy is about 94%, which is higher than the
other three comparison algorithms, respectively.

In addition, for different user devices, the positioning
completion time of proposed algorithm is the smallest, with
an average of 250ms, which is much lower than the posi-
tioning time of other three algorithms. )is is because
different types of federated learning for different situations
can achieve the highest positioning accuracy and reduce
time consumption through training without the data owner
having to disclose its own data. Even when the edge server
and cloud server are not trusted, it can still provide user
training data privacy protection while resisting differential
attacks, model inversion attacks, and gradient reverse in-
ference attacks and obtain precise positioning accuracy.
Different types of federated learning are used to process
different private data, which improves the efficiency and
reliability of private data processing. )e introduction of
differential privacy adds carefully designed noise to the input
and output results so that the modification of any single
record in the dataset will not have a significant impact on the
output results. )is makes it impossible for attackers to infer
the privacy information in the dataset by analyzing the
output results, thus achieving a better privacy protection
effect.

5. Conclusion

Aiming at the problems of low positioning accuracy, long
time-consumption, and difficulty to resist cross-attacks of
traditional indoor positioning privacy protection methods,
this paper proposes an indoor positioning privacy protection
method based on federated learning in edge computing
environment.)e proposedmethod is verified by simulation
experiments. )e basic idea is as follows: (1) Firstly, the
applicability of different types of federated learning mech-
anisms to datasets with different characteristics is analyzed
and mathematically described, respectively. (2) Eliminate
the possible damage to private data caused by federated
learning by introducing differential privacy. (3) Build an
indoor positioning privacy protection model and design the
corresponding algorithm. Experimental results show that
using different types of federated learning for private data
with different characteristics can improve the efficiency and
reliability of data processing. Besides, the introduction of
differential privacy can greatly reduce the risk of leakage and
destruction for user privacy data.

Comprehensive consideration of positioning perfor-
mance, privacy protection, and resource overhead can
greatly improve the indoor positioning accuracy of the al-
gorithm. Due to the limitation of the dataset, there is no
research on the classification of more modal data. In the
future, we can carry out research on the simultaneous
classification of more modal data. Future work will be de-
voted to using federated learning to train a unified neural
network in the MEC scenario to achieve simultaneous
classification of multiple modal data and the corresponding

privacy protection schemes to serve diverse indoor posi-
tioning application requirements under the smart grid.
Effectively improve the reliability and positioning accuracy
of the indoor positioning algorithm and provide more ac-
curate position information for the terminal equipment and
power customer positioning demand services in the power
production environment.
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