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Tis study investigates the research on nickel-cobalt-copper productive collaboration and intelligent decision-making technology
for symbiotic coupling enterprises in the Gansu Province of China. Te aim is to address the problems of low resource utilization
efciency, weak production collaboration, and an insufcient intelligent decision-making level in the nonferrous metallurgy
industry. First, the present situation of nickel-cobalt-copper industry chain-level collaboration in the agglomeration area is
analyzed extensively, and the corresponding problems are proposed. Second, the functional framework of productive collab-
oration and intelligent decision-making is presented from the industrial chain and industrial agent levels. In addition, the design
methods of various balance strategies in the production collaboration within the industrial agent are provided. Tese can realise
the daily balance of material, metal, and energy data in an individual industrial agent. Finally, with regard to intelligent decision-
making at the industrial chain level, six key measures surrounding diferent themes are provided to support the implementation of
productive collaboration and intelligent decision-making in the nonferrous metallurgy agglomeration area.

1. Introduction

Te nonferrous metallurgy industry plays an irreplaceable
role in ensuring the construction of key national projects
and promoting the steady growth of the national economy
[1–3]. Gansu, China, is a famous “hometown of nonferrous
metals.” Tere are 38 types of nonferrous metal reserves
ranking among the top fve in China. Tese include 10
minerals such as nickel, platinum, palladium, and gallium
(which are ranked frst in the country). Jinchang (the “capital
of nickel”), Baiyin (the “city of copper”), and Jiayuguan (the
“city of steel”) are three key industrial cities that have formed
the agglomeration area of nonferrous metallurgical enter-
prises [2]. In the agglomeration area, the nonferrous met-
allurgical industry chain is an upstream and downstream

chain between a series of interrelated and interdependent
links that are formed around nonferrous metallurgical
production and services. Tese mainly include mineral
exploration, ore mining, benefciation, smelting, metal
processing, and other main links. Te main upstream
businesses are the mining of metal ore and the recycling of
metal waste. Te main midstream business involves the
smelting and processing of nickel, cobalt, and copper. Te
corresponding products include electrolytic nickel, nickel
powder, nickel shot, ferronickel alloy, nickel salt, cobalt
metal, cobalt salt, cobalt oxide, copper foil, copper base alloy,
copper strip, |and copper bar. Te downstream products are
sold to the construction, machinery manufacturing, auto-
mobile manufacturing, household appliance, power indus-
tries, transportation industries, petrochemical industries,
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and pharmaceutical industries. Among these products,
power and construction account for a large proportion of the
end consumption of copper [4, 5].

Based on various information fows which are generated
by relevant professional information systems within the
enterprise, the idea of intelligent decision-making in non-
ferrous metallurgical enterprises is to support the optimi-
zation management and independent decision-making of
enterprise business processes at the level of production
execution and operation management through the inte-
gration of traditional mechanism modeling and data-driven
intelligent modeling so as to achieve the optimization op-
eration objectives of improving quality and efciency, saving
energy, reducing consumption, and reducing the environ-
mental pollution. To realise the intelligent decision-making
in the symbiotic coupling area of nonferrous metallurgy, the
productive collaboration at the industrial chain level is re-
quired to support it. For the nickel-cobalt-copper industrial
chain, productive collaboration refers to the integration of
decentralized production entities with mutual dependence
in the agglomeration area through the self-organization and
operation mechanism of “competition-cooperation-coor-
dination” to cooperate with each other and work in a co-
ordinated manner to complete the tasks that any single
production entity cannot complete or can complete, but the
economic benefts are not up to standard. Furthermore,
productive collaboration can standardize the business
process of symbiosis and interaction between enterprises in
the agglomeration area and build a standard production
collaboration network to form a production form with
overall benefts better than the sum of individual benefts. In
recent years, data-driven machine learning methods are
more and more widely used in the related research of in-
telligent decision-making and productive collaboration. Te
basic idea is to use the above data resources to realise the
related functions of prediction, evaluation, scheduling, de-
cision-making, and optimization in the production and
manufacturing process. Te machine learning method does
not need to pay attention to the specifc mechanism in-
formation of the system [6]. It can efectively mine the
correlation between variables based on data [7], mainly
including supervised learning (such as linear regression [8],
deep learning [9], transfer learning [10]), unsupervised
learning (such as clustering [8], principal component
analysis [8], and so on), and reinforcement learning (RL)
[11, 12].

In the process of nonferrous metallurgical production,
the trajectory fow of various materials along the life cycle of
processed products is called material fow. Furthermore, the
trajectory fow of various energies along the path of con-
version, use, and emission is called energy fow [13]. In
recent years, some works are focused on decision-making
and collaborative relationships among material analysis,
energy management, and metal balance based on machine
learning techniques. Based on artifcial neural network
technology, the authors in [14] coordinated the model
prediction with an amplifcation factor with the plant re-
sponse and studied the prediction of the material and
metallurgical balance of the zinc processing plant. Based on

the developed neural network model, the authors in [15]
studied forecasts of the mass and metallurgical balance at a
gold processing plant. Te authors in [16] tested random
forest, SMO (variation of SVR), linear regression, M5 and
M5P (variation of the decision tree), and other machine
learning techniques to forecast six geometallurgical variables
at the Leveäniemi iron ore mine. Based on linear and
quadratic regression, ACE (alternating conditional expec-
tations), ridge regression, random forest, and gradient-
boosted models (GBMs), the authors in [17] evaluated the
results obtained to forecast the acid consumption, recovery,
and impurity in a copper ore processing plant.

Various production departments are involved in the
production process of nickel, cobalt, and copper, and the
material data are complex [18, 19]. Tis results in a low
overall level of internal and external production coordina-
tion and intelligent decision-making of enterprises in the
nonferrous metallurgy agglomeration area. Te related en-
terprises in the industrial chain are called industrial agents.
Te industrial agent has not realized the cross-domain
optimization of the process, and the internal production
processes and logical production units are relatively inde-
pendent [18, 20–22]. Tese cannot realise efective coordi-
nation between upstream and downstream processes
[23–26] or the fow coordination of materials and energy
among agents [27–30]. Te aforementioned circumstances
generate a scenario wherein the production command and
management at the industrial chain level cannot share on-
site information in real time or make correct intelligent
decisions [31–34]. Consequently, the production scheduling
and comprehensive control business would lag behind
[35–39].

It is necessary to comprehend the distribution and co-
ordination of the production business relationship network
in the agglomeration area [40, 41], the distribution and
operation status of each logical production unit, warehouse,
instrument [42–44], and the business of resource recycling
[45–47]. Te key problems include (1) realising an inter-
active coordination of materials and energy and (2) ratio-
nalizing the analysis of interactive information. Tese two
problems must be solved to track the material information
and energy information. Te balance calculation and
analysis [48–53] based on the data obtained from the system
can support the technical and economic production indi-
cators of the nickel-cobalt-copper industrial chain. In ad-
dition, the balance calculation and analysis determine the
weak links of production, tap the production potential, and
support intelligent decision-making at the industrial chain
level. Finally, we can realise the coordination and decision-
making for the material and energy fow between industrial
agents and for that between logical production units.

To address the problems encountered in the production
process of nonferrous metallurgical enterprises in the ag-
glomeration area, we focus on the production process of the
nonferrous metallurgical process. It includes complex
physical and chemical transformations. Te present situa-
tion of the industrial chain and an example of the estab-
lishment of a collaborative relationship in the production
and processing process of nickel-cobalt-copper are
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presented considering the production coordination and
intelligent decision-making of symbiotic coupling enter-
prises in the agglomeration area as the core. Te main
structure of production collaboration and intelligent deci-
sion-making is designed, and the key measures to support
production collaboration and intelligent decision-making
are summarized.

2. Analysisof thePresentSituationof theNickel-
Cobalt-Copper Industry Chain-Level
Business Collaboration

2.1. Present Situation of the Industrial Chain. Te main
mineral resource associated with nickel and cobalt in the
Gansu Province of China is nickel-bearing sulphide ore. It
revolves around the nickel-cobalt-copper smelting in the
agglomeration area. Te upstream of the nickel industrial
chain is mainly aimed at the mining and benefciation of
sulphide and Indonesian laterite nickel ores in the ag-
glomeration area. Te midstream completes the smelting
and processing of nickel. Te main products include elec-
trolytic nickel, nickel powder, nickel pill, and nickel salt. Te
downstream involves the end-consumer products based on
nickel. Te upstream, middle, and downstream form a
complete industrial chain (see Figure 1).

Te upstream of the cobalt industrial chain in the ag-
glomeration area includes cobalt mining, secondary re-
covery of cobalt-containing waste, and other links. Te
midstream comprises cobalt products, which have diferent
downstream applications according to classifcation. Cobalt
mainly exists in the form of copper and nickel-associated
resources. Nickel cobalt-associated ore, copper cobalt-as-
sociated ore, and primary cobalt reserves account for 50%,
44%, and 6%, respectively, of the reserves. Te industrial
chain is formed based on the mining, smelting, and pro-
cessing of cobalt ore in the agglomeration area and
downstream end consumption (see Figure 2).

Copper smelting in the agglomeration area is completed
by two systems: copper synthesis furnace smelting and
electric furnace smelting. In the copper smelting system, the
copper industry chain is divided into three stages: the up-
stream is mainly the mining stage and recycling of waste
copper, the midstream mainly includes the smelting stage of
roughing and refning of copper concentrate or waste
miscellaneous copper, and the downstream involves the
stage of deep processing of copper. Te copper processing
products include copper rod, copper tube, copper plate,
copper foil, copper wire, and copper-based alloy (see
Figure 3).

2.2.CollaborativeRelationshipbetweenMaterials,Metals, and
Energy. In the entire production chain of raw material
mining, smelting, processing, and end-products of nickel-
cobalt-copper, the movement and tracking of materials,
energy, and metals have not realized agent-level coordina-
tion. Various balance operations have not realized online
generation. It is difcult to evaluate and adjust the material,
metal, and energy balance.Te efciency of the generation of

balance reports of agent-level raw materials, semifnished
products, and fnished products is low. Tis cannot satisfy
the decision-making requirements of intelligent production
scheduling. To improve the economic and management
benefts of nickel-cobalt-copper industrial chain, it is nec-
essary to develop toward diversifcation, refnement, pro-
duction coordination, and intelligent decision-making for
nickel-cobalt-copper series products.

From the control and optimization of the production
process to process monitoring and management decision-
making, the comprehensive utilization of process data of
material fow, metal fow, and energy fow plays a vital role in
the safe and efcient production by relevant enterprises in
the nonferrous metallurgy agglomeration area. Te nickel-
cobalt-copper production in the agglomeration area involves
a long process and displays a complex material trend. Te
entire processing process presents a network structure. For
example, an industrial agent would produce a variety of
fnished or semifnished nonferrous metallurgical products,
and it generally uses and consumes materials. Te pro-
duction data can be obtained using the instruments at the
production site. However, in the actual production process,
the unit conversion of the volume and quality of material,
metal, and energy data must be addressed, as well as the
interference of random and signifcant errors. Tis causes
the fnal collected production data to be inaccurate and poses
signifcant difculties for the monitoring of the production
process. Tis, in turn, results in a decrease in the perfor-
mance of production optimization and process control, e.g.,
decision-making based on incorrect process data.

For the nickel-cobalt-copper industrial chain, a collab-
orative production network is established for the material,
metal, and energy fow between diferent agents and between
logical production units in the agglomeration area. Te
business process of material, metal, and energy fow trends
and interactions among symbiotic coupling enterprises are
standardized in the agglomeration area. In addition, a
standard production collaboration network is constructed.
Te relevant departments of nickel-cobalt-copper produc-
tion must arrange the business processes of the material,
metal, and energy balance. Tis can formulate the corre-
sponding management institution. Tereafter, the estab-
lishment of full-time material balance posts must be
promoted and the organizational structure of the enterprise
altered. Te standard fow diagram of the material, metal,
and energy fow between two industrial agents is shown in
Figure 4.

3. Framework of Production Collaboration and
Intelligent Decision-Making

3.1. Nickel-Cobalt-Copper Production Coordination and In-
telligent Decision-Making in the Industrial Chain. Te pro-
duction process of the nonferrous metallurgical industry is a
complex system with signifcant integration of the physical
and information processes. Te collaborative production
and intelligent decision-making of the entire system involve
the information regarding production, quality, sales, and
inventory of symbiotic coupling enterprises in the
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agglomeration area. Te collaborative production and in-
telligent decision-making are controlled by market infor-
mation, industrial policy, and other external environmental
information. Te objective of industrial chain-level nickel-

cobalt-copper production coordination and intelligent de-
cision-making is to establish IT capability of intelligent
optimization decision-making in the process of the non-
ferrous metallurgical industry. It can generate the
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production indicators of coupling enterprises under the
conditions of dynamic demand of market information and
industrial policy, dynamic adjustment of the production
status of symbiotic enterprises, the dynamic constraint of
material metal energy consumption, and the dynamic
constraint of safety and environmental protection. All of the
above aspects can guide production coordination within the
industrial agent. Simultaneously, the enterprise in the in-
dustrial chain realizes the production collaboration among
the logical production units, captures the production data of
the entire process in the shortest time, and realizes intelligent
decision-making at the industrial chain level. Te specifc
architecture is shown in Figure 5.

Te main structure of nickel-cobalt-copper production
collaboration and intelligent decision-making at the in-
dustrial chain level consists of three layers from the bottom
to the top: the production index optimization decision-
making layer of the symbiotic coupling enterprise at the
industrial chain level, production collaboration and intel-
ligent decision-making layer at the industrial agent-level,
and the intelligent optimization control layer at the logical
production unit-level.

Te production index optimization decision-making
layer of the symbiotic coupling enterprise at the industrial
chain level can perceive the production data of the entire
process. In addition, it can receive market information and
policy information in real time. Tis layer can achieve the
production index of “safety, stability, long-term, satisfaction,
and excellence” of all enterprises in the agglomeration area
to obtain a high-end, intelligent, and green industrial chain.
In addition, it can realize integrated production collabora-
tion and intelligent decision-making for planning, pro-
duction, sales, and service. Tis layer can enable individuals’
wisdom to interact and collaborate with the intelligent
decision-making system and can help management

decision-makers make accurate decisions in the real-time
dynamic internal and external environment.

Te industrial agent-level production coordination and
the intelligent decision-making layer accept the production
indicators of symbiotically coupling enterprises in the ag-
glomeration area from the upper layer. In addition, it must
coordinate each logical production unit (intelligent opti-
mization control system) at the lower layer to complete
specifc production tasks. Tis layer can support the opti-
mization of production indicators at the nickel-cobalt-
copper industrial chain level and can automatically obtain
information regarding working condition transitions and
resource transformations (materials, metals, and energy) in
the production process. Tis layer can intelligently perceive
the variations in material, metal, and energy information,
and it can conduct independent learning and independent
decision-making. Finally, the layer can achieve an optimal
allocation of resources, self-adaptation of working condi-
tions, and an intelligent generation of decision-making. It
would assign the optimal production index for the logical
production unit of the next layer.

Te intelligent optimization control layer of the logical
production unit level mainly includes four parts: metal-
lurgical production link, advanced controller, intelligent
production optimization, and working condition identif-
cation. Te intelligent optimal control can extensively in-
tegrate the intelligent control system with specifc
metallurgical production links. Te fusion body would have
a series of functions such as perception, monitoring, control,
optimization, and self-healing. In particular, it has highly
advanced capabilities of perception, control, and decision-
making in terms of material fow, energy fow, metal fow,
and information fow. Tese include adaptive, self-learning,
self-diagnosis, and self-adjustment capabilities, which can
address the variations in complex working conditions.
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3.2. Agent-Level Nickel-Cobalt-Copper Production Coordi-
nation and Intelligent Decision-Making. For each industrial
agent in the industrial chain, the overall objective of agent-
level production coordination and the intelligent decision-
making level involves realizing the three types of coordi-
nation of materials, metals, and energy within the agent and
establishing the ITsupport capacity of intelligent production
planning and intelligent production scheduling at the in-
dustrial agent-level. Te following are the specifc objectives:
the industry agent can count the loss of materials, metals,
and energy consumption in a timely manner by accurately
integrating the measurement data of materials, metals, en-
ergy and the revenue expenditure, and inventory of each
logical production unit. Te above circumstances can ensure
that the three types of balance calculation are more accurate
and that the calculation cycle is shorter. Moreover, these can
further enhance measurement, quality, planning, schedul-
ing, and statistics.

Te timely account and actual diference data of ma-
terials and metals are provided to the management of the
industrial agent, and the causes of the diferences are ana-
lyzed for the management. Based on the above data, the next
rectifcation plan can be established, and the balance reports
of raw materials, semifnished products, and fnished
products at the industrial chain level can be published
regularly. Furthermore, we can ensure the scientifc and
efcient allocation of materials, metals, and energy and
provide a decision-making basis for intelligent production
planning and scheduling. Tis can realize the management
of the entire process comprising the issuance and execution
of planning and dispatching instructions and feedback.
Considering the management of material, energy, and metal
fows in the production process as the main line, the
framework will integrate production planning and optimi-
zation, production scheduling and optimization, material,

metal, and energy balances into a whole body. Tis is to
ensure the visualization of information management in the
production process, scientizationof intelligent decision-
making, optimization of resource utilization, and econo-
mization of intermediate materials.

3.2.1. Functional Architecture of the Industrial Agent Level.
Based on the design objectives of the above industrial agent-
level production collaboration and intelligent decision-
making layer, the functional architecture of collaborative
production and intelligent decision-making within an in-
dividual industrial agent is proposed in this study. It is
shown in Figure 6.

As is evident from Figure 6, the architecture is divided
into two layers: the collaboration layer and the intelligent
decision-making layer in the industrial agent. In the ar-
chitecture, the functions of intelligent planning and intel-
ligent scheduling are arranged and deployed mainly at the
intelligent decision-making level. Planning and scheduling
include the main bases of production and operation activ-
ities and contribute signifcantly to the advantages of in-
dustrial agents. Production planning is the determination of
the production volume in a certain period according to the
product market demand, raw material supply, production
capacity, device operation, and maintenance plan. In ad-
dition, a production plan comprehensively considers the
enterprise’s management cost and the cost of fnished
products and semifnished products in the production
process. Furthermore, it considers the production, man-
agement, and marketing status of the enterprise as the
objective to obtain the maximum economic advantages.

Production scheduling and dispatching are the deter-
mination of a production and processing solution according
to the planning to minimize the total cost, waste, product
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Figure 5: Main structure of industrial chain nickel-cobalt-copper production coordination and intelligent decision-making.

6 Mobile Information Systems



deviation, or time. Intelligent production scheduling mainly
includes the generation of an intelligent scheduling model,
automatic scheduling, optimal scheduling, and other
functions. Intelligent production dispatching mainly in-
cludes dispatching model generation, abnormal emergency
dispatching, and so on. Intelligent production statistics and
prediction mainly include multivariate statistics, balance
prediction and correction, energy consumption prediction,
and other functions. Te material balance strategy of in-
telligent correction, scheduling balance, and statistical bal-
ance is proposed. Te shortage of measuring instruments is
compensated for by using mobile error detection and alarm
technology based on balance out of tolerance. Finally, the
problem of excessive measurement data deviation caused by
the shortage of measuring instruments is solved completely.

Te collaboration layer in the industrial intelligent agent
mainly includes the production collaboration among ma-
terials, metals, and energy between logical production units.
Te main functional modules include the following: basic
information management, tracking of material, metal, and
energy movement, generation of material, metal, and energy
balance model, evaluation of this model, adjustment of this
model, alarm to indicate abnormal movement of material,
metal, and energy, and comprehensive statistics and decision
support for the material, metal, and energy.

3.2.2. Design Method of the Balance Strategy in Production
Collaboration. It is necessary to design a daily balance
strategy through online calculations to realize the daily
balance of material, metal, and energy data in an individual
industrial agent by improving the three types of balance
models in Figure 6 and to realize shift tracking, daily balance,
ten-day verifcation, and monthly settlement. Tese would,
in turn, improve the convenience of use of the three types of

balance. Te material, metal, and energy data in the logical
production unit are summarized in the statistical post of the
logical production unit on a daily basis. Tereafter, the
relevant data are preliminarily verifed and balanced by the
statistical post of the logical production unit. Te next step
involves reporting and summarizing the verifed data to the
planning department at the agent level. Te statistical post of
the planning department is responsible for the daily balance
within the agent. Te balanced convenience of use is im-
proved by designing the self-learning of material and metal
routing, automatic data inspection, visual inspection of data,
and automatic alarm.Te specifc designmethod is shown in
Figure 7.

Te material, metal, and energy balance model with
automatic correction function can support the realization of
the statistical objective of “shift tracking and daily balance.”
Te material, metal, and energy balance model are provided
mainly to the production statistics department for statistics
based on the movement information at the logical pro-
duction unit level. After the balance results are summarized,
these would be used as the data source of statistical balance
in the current month. In addition, these can be released to
other relevant industrial agents as the data source. Te key
aspect of the design balance strategy is that the logical
production unit manages the data of material, metal, and
energy movement and allocation by shift. Te statistics post
summarizes the data of the three shifts into daily data and
reports it to the planning management department. Te
settlement and mutual material supply data of the pro-
duction agent are summarized to the agent-level planning
department on a daily basis. Te agent-level planning de-
partment conducts daily balance according to the reported
data. At the end of the month, the daily data are summarized
to provide an interface for statistical balance. Furthermore,
these function as the data source for statistical balance.
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Te following are the specifc implementation methods:

Step 1. before the end of each shift, the staf shall verify the
automatically collected information of material movement,
metal movement, and energy allocation on duty in each
logical production unit. Te staf shall verify the manually
entered information regarding material movement, metal
movement, and energy allocation on duty in each logical
production unit.

Step 2. the approver of the logical production unit reviews
the entered data. If the data fail to pass the review, the
operator would fll it in again.

Step 3. before the end of each shift, the agent-level mea-
surement department obtains the measurement movement
information of the incoming and outgoing units from the
movement process of materials and metals and the energy
allocation process. For the completed movement, the set-
tlement data would be entered according to the settlement
document. For the incomplete movement, the measurement
department would issue the movement information within
this time.

Step 4. before the end of each shift, the measurement de-
partment settles the mutual material supply data between
logical production units and enters the settlement data of
mutual material supply into the measurement system.

Step 5. after the collection of the three-shift data on each
day, the agent-level dispatching post summarizes and re-
views the production data and generates a daily dispatching
report.

Step 6. the statistician summarizes and reviews the data of
the three shifts and reports it to the agent-level planning
department for statistics.

Step 7. the measurement department releases the daily
settlement data and mutual supply data. Tese would be-
come one of the data sources of the material balance model,
metal balance model, and energy balance model.

Step 8. the statistician of the planning department generates
the balance of the current day according to the data of the
24 h statistical cycle and adjusts the daily balance data. Te
adjustment process can be the balanced setting of the logic
production unit or the entire industrial agent. Furthermore,
the chain-level adjustment can also be performed through
the planning department of the industrial chain level.

Step 9. after the balance adjustment, the planning depart-
ment can publish the data to other relevant departments. At
the end of the month, the data results of the entire month
can be summarized and shared with other industrial agents.

4. Key Measures to Support Production
Coordination and Intelligent Decision-
Making inNonferrousMetallurgical Industry

Certain corresponding measures need to be proposed
around diferent themes to support the implementation of
production coordination and intelligent decision-making at
the industrial chain and industrial agent levels. Te specifc
measures include the following:

4.1. Consider Collaborative Ofce Management as the Core of
Intelligent Decision-Making andHighlight theTeme of Ofce
Collaboration. We establish the IT capability to support the
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Figure 7: Design method of the balance strategy.
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collaborative ofce management business. Te objective of
establishing the collaborative ofce management IT capa-
bility is to develop the collaborative work mechanism for
administrative and daily afairs at the industrial chain, in-
dustrial agent, and logical production unit levels, through
the event-driven desktop and mobile ofce environment.
Tis is conducted to improve the work level and efciency.
Te intelligent decision-making related to the IT capability
of collaborative ofcemanagement shall satisfy the following
requirements: front-end-oriented presentation, business
process-oriented approval, digital document-oriented
management, daily afairs-oriented management, and data
information-oriented display.

4.2. Consider Enterprise ResourceManagement as the Core for
Intelligent Decision-Making and Highlight the Teme of Re-
source Collaboration. We establish the IT capability to
support the enterprise resource management business. Te
objective of establishing enterprise resource management IT
capability is to develop a unifed operation and management
platform that integrates production planning, sale man-
agement, procurement management, equipment manage-
ment, project management, fnancial management,
warehouse management, quality management, and other
functions. Trough efective integration with production
execution ITcapabilities, the key data and business processes
are unifed, and the resource allocation efciency of the
enterprise is improved. Intelligent decision support is
provided for the management at the industrial chain level
with the aid of data analysis capabilities. Te intelligent
decision-making related to enterprise resource management
IT capability shall address the following six core aspects:
human resources, fnance, materials, assets, equipment, and
project.

4.3. Consider Production Execution as the Core for Intelligent
Decision-Making and Highlight the Teme of Production
Collaboration. We establish the IT capability to support the
production execution business. Te objective of establishing
the production execution IT capability is to develop the
information link of material fow, metal fow, and energy
fow through all levels of nickel-cobalt-copper production
business and form the material, metal, and energy mobile
network model that addresses the entire industrial chain.
Furthermore, we can efectively integrate and utilize pro-
duction information based on the production data inte-
gration at the industrial chain level. Te above aspects can
provide an efective means for symbiotic coupling metal-
lurgical enterprises to efectively supervise, guide, and op-
timize production and operation. Te intelligent decision-
making related to the IT capability of production execution
should focus on the two core lines of planning and pro-
duction. Furthermore, based on the IT capability, we can
realize the closed-loop collaborative management of quality,
energy, and other businesses. It specifcally involves plan-
ning management, production management, quality man-
agement, and energy management.

4.4. Consider Health, Safety, and Environmental Protection as
the Core for Intelligent Decision-Making and Highlight the
Teme of Resource Recycling and Coordination. We establish
ITcapability to support the health, safety, and environmental
(HSE) business. Te objective of establishing the HSE-IT
capability is to highlight the main line of comprehensive
utilization of tailings and waste rock, nickel-cobalt-copper
smelting slag, and nickel-cobalt-copper refning solid waste
under the constraints of the safety, environmental protec-
tion, and health objectives of symbiotic coupling enterprises
in the agglomeration area. Tereby, we can realize a close
connection of operation management, dispatching opera-
tion, and on-site automation. Furthermore, we could re-
spond to risks in advance, eliminate potential hazards,
strengthen emergency disposal, and develop an efcient
green production environment. In addition to the con-
ventional intelligent decision-making in the production
feld, intelligent decision-making with health, safety, and
environmental protection should also involve the control of
managing risks, e.g., health management and environmental
protection early warning in the process of operation and
management. Te above aspects can establish comprehen-
sive risk prevention and control system at the industrial
chain level in the nonferrous metallurgy agglomeration area.
Intelligent decision-making related to health, safety, and
environmental protection should pay attention to two core
lines: production management and operation management.

4.5. Consider Production Decision-Making and Decision
Feedback as the Core and Highlight theTeme of Closed-Loop
Decision-Making. Te realization of intelligent production
decision-making is to ① adopt advanced and mature in-
formation technologies such as real-time database, Internet
of things, and virtual reality and② integrate the basic data of
operation management and production operation, which
can conduct in-depth data analysis and visual display. In
addition, intelligent production decision-making integrates
the decision-making feedback mechanisms such as emer-
gency and scheduling. Tereby, it develops the operation
decision-making capability with real-time performance and
integrated performance in the industrial chain-level of
nonferrous metallurgical enterprises in the agglomeration
area, which can conduct the real-time command and reg-
ulation of production and operation. Te production de-
cision-making capability should focus on the following two
main lines: the comprehensive display of production deci-
sion-making data and the decision feedback linkage related
to emergency/scheduling.

4.5.1. Main Line of Comprehensive Display of Production
Decision Data. Te production decision-making data in-
volves the goal setting of operation and production and the
entire process monitoring of a specifc production process.
Te integration based on this main line would provide a
platform for the management and production decision-
makers at all levels of nonferrous metallurgical enterprises to
comprehensively understand the production and operation
objectives and the overall state of production in a timely
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manner. Te integration of IT capabilities and functions
involved mainly includes the IT capabilities of enterprise
resource management. Meanwhile, the integration of IT
capabilities focuses mainly on the integration of business
information such as that on production planning and
scheduling, raw material entry, production and processing,
product inventory, and product sales. Tereby, the pro-
duction situation of the enterprise is displayed
comprehensively.

Te integration of IT capabilities related to production
execution can realize the combination of enterprise pro-
duction and operation plan with real-time operation pro-
cesses and dynamic resource tracking. Te integration of IT
capabilities can realize real-time and visual management of
production and operation business (including production
planning, production scheduling, metallurgical production,
direct supply of raw materials, product sales, device oper-
ation, and health, safety, and environmental protection) to
improve the level of enterprise production and operation
management.

Te integration of IT capabilities related to real-time
operation monitoring can combine the real-time production
data with industrial video and image data of the logical
production unit level. Furthermore, it can realize the
functions of operation monitoring, inventory monitoring,
early warning, and key site video monitoring at the in-
dustrial agent-level. Tereby, it can provide support for the
production and operation command andmanagement at the
industrial chain level. In addition, all types of information
can be displayed intuitively with the help of digital plants,
Internet of things technology, and various advanced display
technologies.

4.5.2. Production Decision Feedback Linkage Main Line
Related to Emergency/Scheduling. Te integration objective
of production decision feedback is to establish linkage
feedback and monitoring mechanism for industrial chain-
level integration and can thereby improve the capability of
professional production management. Te linkage feedback
mechanism refers to the professional regulation of the daily
production and operation process (including the optimi-
zation of the production planning and scheduling strategy)
as well as the response mechanism for key production
events, the variation and adjustment of key production
plans, and emergency management of emergencies. Te IT
capabilities mainly include production scheduling and
command IT, emergency management IT, and advanced
plan management IT capabilities.

4.6. Consider the Coordination of the Enterprise Strategy and
Performance as the Core andHighlight theTeme of Decision-
Making Coordination. Te establishment of enterprise
strategic decision-making is based on technologies and
concepts such as data platforms, business intelligence
analysis, and big data management. Enterprise strategic
decision-making must integrate the data assets at the in-
dustrial chain level of nonferrous metallurgical enterprises.
Te integration can improve the data analysis capability,

refect the value of data assets, and provide timely and ef-
fective information support for the production and opera-
tion decisions of the management. Te strategic decision
should focus on the business scenarios addressed by the
business decision-making of nonferrous metallurgical en-
terprises in the agglomeration area. It performs data in-
duction, analysis, and multidimensional display in the form
of thematic scenario analysis. In the initial stage, we can
focus on factors such as performance and cost. In the
subsequent stage, we can establish diferent element models
according to diferent business focuses to deepen the special
topic.

Te main line of performance management is under the
guidance of the industrial chain development strategy of
nonferrous metallurgical enterprises. Te objective of per-
formancemanagement is to realize the business indicators of
diferent industrial agents. Te performance management
can control the overall progress through a comprehensive
plan, control the process execution through budget man-
agement, and complete the continuous closed-loop control
of the process and results through performance evaluation
and assessment. Te basic data involved may require the
support of budget management IT, enterprise resource
management IT, human resource management IT, com-
prehensive statistics management IT, and team performance
management IT capabilities.

Te main line of cost management is to organize pro-
duction under the guidance of a symbiotic coupling in-
dustrial chain-level comprehensive plan among enterprises
in the agglomeration area by considering the production
plan as the core. In addition, the main line involves col-
lecting the cost according to the production process to form
a closed-loop control with a production plan, process
implementation, cost collection, and plan feedback as the
elements. Te basic data involved may require the following
IT capabilities to support and share: enterprise resource
management IT, production execution IT, and compre-
hensive statistical management IT capabilities.

 . Conclusion

Te nonferrous metallurgical industry is a typical process
industry. It has certain characteristics such as complex
process fow, high energy and material consumption, harsh
equipment working conditions and environment, large
emissions of waste, and severe environmental pollution. Te
level of production coordination and intelligent decision-
making among enterprises with a symbiotic coupling rela-
tionship in the agglomeration area is generally low. In most
cases, it depends on individuals and knowledge workers.
When the market demand, industrial policies, and pro-
duction factors vary, the industrial chain cannotmake timely
and accurate assessments, provide corresponding guidance
and recommendations for production planning, production
operation, and quality control, or realize the optimization of
comprehensive production indicators such as product
quality, output, energy consumption, material consumption,
and various costs at the industrial chain level and industrial
agent level.
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Tis study designs the typical collaborative process of
materials, metals, and energy among diferent industrial
agents according to the present situation of industrial chain
level coordination in the nonferrous metallurgy agglomer-
ation area of the Gansu Province, China. It proposes the
framework of nickel-cobalt-copper industrial chain-level
production coordination and intelligent decision-making.
Tereafter, the framework of agent-level production coor-
dination and intelligent decision-making of nickel-cobalt-
copper is presented. In addition, it focuses on the design
concepts and methods of various balance strategies in the
production coordination of industrial agents. Finally, six key
supporting measures surrounding the six themes of ofce
coordination, resource coordination, production coordi-
nation, safety coordination, decision-making coordination,
and decision coordination are presented to support the
implementation of production coordination and intelligent
decision-making technology among coupled enterprises in a
nonferrous metallurgy agglomeration area.

Te framework of production coordination and intel-
ligent decision-making proposed in this paper has been
adopted by the research report “Enterprise Production
Coordination and Intelligent Decision-making Technology
under the Recycling of Resources in Nonferrous Metallurgy
Agglomeration Area” of the National Key Research and
Development Plan of China. Te study results proposed in
our paper will be used for the design of collaborative
manufacturing in the symbiotic coupling area of nonferrous
metallurgy in the following period.

With the application of the industrial chain level and agent
level nickel-cobalt-copper productive collaboration and intel-
ligent decision-making framework, a standard production
collaborative manufacturing network will be formed in the
symbiotic coupling area of nonferrous metallurgy based on the
design method of the balance strategy and relying on the key
measures supporting production coordination and intelligent
decision-making. Trough the implementation of the corre-
sponding support system, it can realize the visualization of
material information management, conscientization of pro-
duction intelligent decision-making, optimization of resource
utilization, reduction of intermediate materials, improvement
of scheduling efciency, and reduction of material consump-
tion and energy consumption in the production process. At the
same time, it can improve production operation efciency, save
labor costs, and reduce operating costs.

In short, with the advancement of production collabo-
rative manufacturing, the production organization coordi-
nation problem caused by the complex interaction in the
production and manufacturing process of enterprises will be
solved. Compared with the traditional production organi-
zation mode, it will enhance the competitiveness of enter-
prises, improve the proftability of enterprises, and more
importantly, it will be able to bring together relevant en-
terprises in the symbiotic coupling area to create more
economic and social benefts.
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