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 e descriptions of complex events usually span sentences, so we need to extract complete event information from the whole
document. To address the challenges of document-level event extraction, we propose a novel framework named Document-level
Event Extraction as Relation Extraction (DEERE), which is suitable for document-level event extraction tasks without trigger-
word labelling. By well-designed task transformation, DEERE remodels event extraction as single-stage relation extraction, which
can mitigate error propagation. A long text supported encoder is adopted in the relation extraction model to aware the global
context e�ectively. A fault-tolerant event integration algorithm is designed to improve the prediction accuracy. Experimental
results show that our approach advances the SOTA for the ChFinAnn dataset by an average F1-score of 3.7.  e code and data are
available at https://github.com/maomaotfntfn/DEERE.

1. Introduction

 e aim of the Event Extraction (EE) task is to extract
structured event information from unstructured text [1]. EE
can be divided into Sentence-level Event Extraction (SEE)
and Document-level Event Extraction (DEE). Previous re-
search has focused on SEE, but the description of a complex
event usually involves multiple sentences, so we need to
extract more complete event information from the whole
document. SEE no longer meets our needs, and its methods
are ill-suited for DEE tasks.

 e twomain challenges of DEE are argument-scattering
and multievents. Argument-scattering means that the ar-
guments of an event are scattered in multiple sentences. As
shown in Figure 1, the arguments of Event-2 are scattered in
S18, S21, and S22. Multievents mean that a document in-
cludes multiple events, in which there may be arguments
that overlap. Depending on the degree of overlap, the re-
lationship between two events can be classi�ed as (1) no
arguments overlap, (2) arguments overlap between events of
di�erent types, and (3) arguments overlap between events of
the same type (e.g., both Event-1 and Event-2 contain the
argument Tacheng International). In addition, we will also

encounter the DEE task without trigger-word labelling,
which can be regarded as another challenge.

To address the above-given challenges, the most recent
SOTA method, DE-PPN [2], designed an end-to-end model,
where a document-level encoder is used to obtain the text
representations, and a multigranularity decoder is used to
generate events in parallel. DE-PPN encodes each sentence
separately and concatenates them into document encoding
after max pooling, which does not consider the interaction
between sentences and cannot be fully aware of the global
context.  e extraction process of DE-PPN includes candidate
argument identi�cation, event prediction, and role �lling.  is
kind of multi-stage structure is prone to error propagation.

In this paper, we propose an event extraction framework
named DEERE (short for Document-level Event Extraction
as Relation Extraction).  e key idea is to transform the
complex DEE task into a relatively simple relation extraction
task, which can deal with both challenges of argument-
scattering and multievents. DEERE adopts a single-stage
entity-relation joint extraction model to mitigate error
propagation. A long text supported Transformer is used as
the text encoder, which can e�ectively aware of the global
context.
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In summary, our contributions include:

(1) We propose a novel framework (DEERE) based on
task transformation, which is suitable for DEE tasks
without trigger-word labelling.

(2) We design two key algorithms in the framework.)e
role selection algorithm can reduce the probability of
event arguments overlapping, and the event division
algorithm can further deal with the case of argu-
ments overlapping mentioned.

(3) Experimental results show that DEERE significantly
outperforms the most recent SOTA method on the
widely used DEE dataset, with an average F1-score
improvement of 3.7.

2. Methodology

As shown in Figure 2, the architecture of DEERE includes
three modules: task transformation, relation extraction, and
event prediction. Labelled events are transformed into well-
designed relational triples, which are used as the training
data of a relation extraction model. )e relation extraction
model adopts a long text supported Transformer to encode
the whole document. During event prediction, the relational
triples extracted from the input text are reorganized into
basic events.

2.1. Task Transformation

2.1.1. Relational Triplet Creation. )e labelled events in the
training set are transformed into two kinds of relations: (1)
role relation describes the role assignments between argu-
ments, which is designed to resolve the challenge of argu-
ment-scattering and multievents without key role overlap;
(2) co-event relation describes whether two arguments be-
long to the same event, which is designed to resolve the
challenge of multi-events with key role overlap.

Suppose the event type Ek includes m roles, denoted as
[r1, r2, . . . , rm]; an event instance of Ek also includes m
arguments correspondingly, denoted as [a1, a2, . . . , am].
Select one from the roles of Ek as the key role, and the
argument that plays the key role in a specific event is called
the key argument. )e key argument of the event is com-
bined with each nonkey argument to form a role relation
triple (akey, Ek ri, ai), where akey represents the key argu-
ment of a specific Ek event, and ai represents a nonkey
argument playing the i-th role in the same event (i ≠ key).

In a document, a key argument may involve several
events of the same type. In order to distinguish these events,
a subkey role is selected from the nonkey roles of the event
type, and the argument that plays the subkey role in a specific
event is called the subkey argument.)e subkey argument of
the event is combined with every other argument to form a

 S12: Tacheng International originally pledged 13,000,000 shares of the Company's unlimited shares for
sale to Bank of Shanghai Corporation Hongkou Sub-branch were released from pledge at China Securities
Depository and Clearing Corporation on December 29, 2016.

 S18: Now Tacheng International re-pledges its 23,550,000 restricted shares of the Company with
Huarong Securities Co. Ltd for stock pledge repurchase transactions, accounting for 3.61% of the total share
capital of the Company, with the initial transaction date on January 12, 2017 and the repurchase transaction
date on January 10, 2019.

 S21: As of January 19, 2017, the total share capital of the Company was 65,300,7263 shares, and Tacheng
International held 286,383,516 shares, accounting for 43.86% of the total share capital of the Company.

 S22: After this pledge, Tacheng International pledged a total of 226,160,000 shares of the Company's
restricted shares for sale.

Event Table of Equity Pledge

Event Role Event-1 Event-2

Pledger Tacheng International Tacheng International

PledgedShares 13,000,000 23,550,000

Pledgee Bank of Shanghai Corporation Hongkou Sub-branch Huarong Securities Co. Ltd

TotalHoldingShares null 286,383,516 

TotalHoldingRatio null 43.86%

TotalPledgedShares null 226,160,000

StartDate null January 12, 2017

EndDate null January 10, 2019

ReleasedDate December 29, 2016 null

Figure 1: A sample of document-level event extraction.
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coevent relation triple (askey, co event, ai), which represents
that askey and ai belong to a same event (i ≠ key and i≠ skey).

According to the definition, there are multiple types of
role relation, whose number is related to the total roles of all
the event types. )ere is only one type of coevent relation,
which ignores event types and roles. )ese relational triples
will be used as the training data and prediction targets of the
relational extraction model.

2.1.2. Key Role Selection. Based on the above-given task
conversion rules, in order to reduce the situation of a key
argument involving multiple events of the same type, we
hope to select the role that can best distinguish different
events as the key role. For a group of events with the same
type, we define role discrimination as the average probability
that each argument on a role can accurately identify the
event to which it belongs.

Formally, suppose that a document d contains n events
of Ek, denoted as [e1, e2, . . . , en]T; the argument list of ei is
denoted as [a1

i , a2
i , . . . , am

i ], the argument matrix for all
events can be represented as follows:
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. (1)

)e discrimination of role rj to events of Ek in single
document d can be expressed as follows:

discrimination Ek, rj, d􏼐 􏼑 � 􏽘
n

i�1
p ei( 􏼁∗ q a

j
i􏼐 􏼑. (2)

In equation (2), p(ei) represents the probability of the
occurrence of event ei, and q(a

j

i ) represents the probability
that the argument a

j
i can accurately identify the event to

which it belongs. We assume that each event has an equal
probability, that is, p(ei) � 1/n, so the formula can be
simplified as follows:

discrimination Ek, rj, d􏼐 􏼑 �
1
n

􏽘

n

i�1
q a

j
i􏼐 􏼑 . (3)

In a group of events of the same type, the higher the
repetition rate of arguments on a role, the lower the role
discrimination for events. It is not difficult to prove that the
summation part in equation (3) is numerically equal to the
count of nonrepeated arguments on the role, where argu-
ments with null value are not counted. We can get the
following equation:

discrimination Ek, rj, d􏼐 􏼑 �
1
n
count distinct a

j
1, a

j
2 . . . , a

j
n􏼐 􏼑. (4)

In equation (4), count distinct represents the count of
nonrepeated arguments, which can be easily obtained by set
operation in practice. Suppose that there are Tdocuments in
the training set that contain events of Ek, we can calculate the
discrimination of role rj in each document dt separately, and
regard the average as the global role discrimination:

discrimination global Ek, rj􏼐 􏼑 �
1
T

􏽘

T

t�1
discrimination Ek, rj, dt􏼐 􏼑.

(5)

From the role list of Ek, we can select the role with the
highest discrimination as the key role and select the one with
the second highest discrimination as the subkey role.

2.2. Relation Extraction

2.2.1. Relation Extraction Model. )e triples obtained from
the task transformation will be input to the relation ex-
traction model together with the original text as training
data. In theory, any relation extraction model can be applied
here. However, since the results of relation extraction will
directly affect the results of EE, we adopt the recently
proposed GPLinker [3], an entity-relationship joint ex-
traction model based on GlobalPointer [4]. Preliminary
experiments show that the performance of GPLinker is
slightly better than the Casrel [5] and comparable to the

Ek: [r1, r2, r3, r4]

Key role
Sub key role

e1: [a1, a2, a3, a4]
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Figure 2: )e overall architecture of DEERE.
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TPLinker [6]. In addition, the GPLinker model has fast
training speed, high decoding efficiency, and theoretically no
exposure bias.

GlobalPointer is essentially a token-pair recognition
model, which can be used in nested and nonnested NER.
Multilabel categorical cross-entropy is used as the loss
function during training. GPLinker converts the extraction
of relational triples (subject, predicate, object) into three
kinds of token-pair recognition: entity head/tail pair, sub-
ject/object heads pair, and subject/object tails pair. Each
kind of token-pair is recognized by a specific GlobalPointer,
and all GlobalPointer modules share the same text encoder.

2.2.2. Long Text Encoding. In recent years, the relationship
extraction SOTA models (Casrel, TPLinker, etc.) are mostly
based on BERT [7] or other pretrained language models.)e
original BERT uses absolute position encoding and can
handle a maximum text length of 512 tokens. )e text length
of document-level extraction tasks is usually beyond the
above range. If the long text is truncated or segmented, it will
inevitably affect the model’s perception of the context of the
full text, which is also a common problem with previous
DEE models. For this, we try to use RoFormer [8], a
Transformer that uses relative position encoding, to encode
every document as a whole. Of course, other pretrained
language models that support long text encoding can also be
used here.

2.3. Event Prediction. Shown as the event prediction module
of Figure 2, we first extract relational triplets from the input
text and then integrate these triplets as basic events. Since the
triples are predicted by the relation extraction model, there
are inevitably some errors or omissions, which requires the
event integration algorithm to have a certain fault tolerance.
In this regard, we first construct event-clusters by the key
argument and role relation. If an event-cluster contains
multiple basic events, it will be further divided according to
the subkey argument and coevent relation.

2.3.1. Event-Cluster Construction. Based on the predicted
role relation triplets, a special structure called event-
cluster is constructed around each key argument. Every
event-cluster includes a key argument and related nonkey
arguments, all of which belong to the same event type. An
event-cluster can be classified as a single event-cluster or
compound event-cluster according to the number of basic
events included.

According to the construction rules, there is only one key
argument in an event-cluster, but there may be several ar-
guments on a nonkey role, which is called a multivalued role.
)e higher the proportion of multi-valued roles in an event-
cluster, the more likely it contains multiple events. If there
are more than one subkey argument and the proportion of
multivalued roles exceeds a certain threshold, it will be
judged as a compound event-cluster; otherwise, it will be
judged as a single event-cluster. )e threshold can be ad-
justed as a hyperparameter.

2.3.2. Event Division. A compound event-cluster needs to be
further divided into basic events. In detail, we first create one
basic event for each subkey argument and then assign ar-
guments to other roles of each event according to the
predicted coevent relations. If there are more than one
candidate arguments for a role, it can be selected by relation
strength.

We have also considered the maximal clique search
algorithm for event division, which requires that any two
arguments of the same event must be accurately judged as
coevent relation. Assuming that an event has n arguments,
even if only one-way relations are considered, n∗ (n− 1)/2
coevent relations need to be extracted. )e missing of just
one relation can lead to serious errors in event division. As
shown in Figure 3, there is a complete event with 5 argu-
ments [A, B, C, D, E], if the relation <B, D> is missing, it will
be divided into two incomplete events [A, B, C, E] and [A, C,
D, E].

Although the maximal clique search algorithm is more
complete in theory, its application conditions are too de-
manding. In contrast, our proposed algorithm only needs
n− 2 coevent relations to divide a basic event, which not only
reduces the application conditions of the algorithm but also
has stronger fault tolerance. )is point will be confirmed in
the experiments.

3. Experiments

3.1. Evaluation Dataset

3.1.1. Dataset. Our proposed method will be evaluated on
the ChFinAnn dataset, which is also applied by DCFEE [9],
Doc2EDAG [10], and DE-PPN [2]. ChFinAnn is a DEE
dataset without trigger-word labelling, which is automati-
cally annotated by distant supervision. )e dataset contains
5 financial event types: Equity Freeze (EF), Equity
Repurchase (ER), Equity Underweight (EU), Equity Over-
weight (EO), and Equity Pledge (EP). It includes a total of
32,040 documents, about 30% of which contain multiple
events.

3.1.2. Evaluation Metric. We follow the evaluation metrics
used in Doc2EDAG and DE-PPN. For each predicted event,
the most similar ground truth is selected without replace-
ment to calculate Precision, Recall, and F1-score. Micro-
averaged role-level scores are considered as the final metric
for each event type. For the global performance, the previous
literature only reported the macro-averaged F1-score of all
event types, which does not consider the imbalance of
sample distribution. )erefore, we will additionally report
the microaveraged F1-score that can better reflect the
practical performance.

3.2. Experimental Setup. )e head size of the GlobalPointer
in the relation extraction model is set to 64.)e text encoder
adopts the char-based RoFormer (Chinese_r-
oformer_char_L-12_H-768_A-12), whose parameter scale is
comparable to BERTand the vocabulary is reduced to 12000.
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Since most of the documents in the dataset are within 2000
tokens, the maximum encoding length (max_len) of
RoFormer is set to 2000. )e threshold of multivalued roles
proportion for multi-event judgement is set to 0.2. For each
event type, we select the role with the highest discrimination
as the key role and select the second highest one as the
subkey role. )e selection results are shown in Table 1.

All experiments run on a workstation with RTX3090.
)e model is trained for 20 epochs with the optimizer of
exponential moving average Adam and the learning rate of
1e− 5. )e best performing model on the development set is
saved and its performance on the test set is used as the final
test result.

3.3. Main Results

3.3.1. Baseline. Our framework DEERE is compared with
the previous SOTA methods as follows: DCFEE [9] pro-
posed a DEE method based on key-event detection and
argument completion. DCFEE-O and DCFEE-M are the
single-event version and multievent version, respectively.
Doc2EDAG [10] is an end-to-end model that transforms
event table filling into a path expending of entity-based
directed acyclic graph. GreedyDec is a simple version of
Doc2EDAG, which only fills one event table entry greedily.
DE-PPN [2] is the most recent SOTA model that aggregates
the document-level context to predict events in parallel. DE-
PPN-1 is the simple version that only generates one event.

3.3.2. Compare with SOTA. As shown in Table 2, our
framework DEERE achieves the best performance in all 5
event types compared to baseline methods. Specifically,
DEERE improves 1.0, 5.4, 6.0, 2.1, and 3.5 F1-score over the
DE-PPN on the event type EF, ER, EU, EO, and EP, re-
spectively. Table 3 shows that our model gets the highest
score in both single-event and multievent parts for every
event type. As to global performance, the macro F1-score of
DEERE is 3.6 higher than that of DE-PPN (3.7 higher for the
single-event part and 3.4 higher for the multi-event part). In
addition, the micro F1-score of DEERE on the test set is 83.7
(90.8 for the single-event part and 75.9 for the multi-event
part), which is not reported in the previous literature.

3.4. Ablation Experiments. To verify the effect of the two key
mechanisms in our framework, we conducted a series of
ablation experiments. As shown in Table 4, RoleSe-
lection +means to select the key roles and subkey roles
according to the discrimination for events, and

RoleSelection-means to select them sequentially from the
role list. EventDivision +means to perform the event divi-
sion operation on event-clusters, EventDivision-means to
treat every event-cluster as a single event.

Test results show that using either of the two mecha-
nisms can improve the performance, but the improvements
overlap significantly when both mechanisms are used. )e
reason is that after using role selection, the situation that the
same key argument involves multiple events is greatly re-
duced, and the effect of event division will be relatively
limited. Although the performance of using only role se-
lection on the ChFinAnn dataset is close to that of using both
mechanisms simultaneously, it does not mean that event
division is dispensable. If the key roles selected in other EE
tasks are not so ideal (i.e., the discrimination for events is not
high enough), event division will become more important.

In addition, we also test the event division method based
on maximal clique search. )e micro F1-score is 81.3 with
role selection and 76.8 without role selection. Compared
with our event division method, it drops by 2.4 and 5.0,
respectively.

3.5. Effect of Maximum Encoding Length. We investigate the
influence of the max_len of the text encoder on the per-
formance. As shown in Figure 4, with the increase of
max_len, the F1-score and Recall increases rapidly, while the
Precision is basically flat (with a slight decrease). )e model
performance no longer improves significantly after the
max_len exceeds 2000, which is consistent with our default
value. )e results affirm the idea of global context awareness
and the feasibility of whole document encoding.

3.6. Effect of RelationExtractionModel. Our framework does
not rely on specific relation extraction models and text
encoders, which can be freely chosen. With other settings
unchanged, we try to adopt different combinations of re-
lation extraction models and text encoders. )e training
results are shown in Figure 5, where Casrel [5] is a two-stage
entity-relationship joint extraction model, and NEZHA [11]

CB

A

E
D

C
B

A

E

C

A

E
D

Figure 3: An error case of event division based on the maximal clique search algorithm.

Table 1: )e result of key and subkey role selection.

Event type Key role Subkey role
EquityPledge PledgedShares Pledgee
EquityRepurchase RepurchasedShares LowestTradingPrice
EquityOverweight TradedShares EndDate
EquityUnderweight TradedShares EndDate
EquityFreeze FrozeShares LegalInstitution
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is another pretrained language model using relative position
encoding. )e performance of EE is basically synchronized
with that of relation extraction, and the combination of
GPLinker and RoFormer obtains the best score. )e results
show the single-stage relation extraction model (GPLinker)
is significantly better than the multistage model (Casrel),
while the effect of text encoder changes is much smaller.

4. Related Work

SEE uses only features obtained from intrasentences, and
traditional feature engineering-based approaches [12, 13],

Table 3: F1-score for all event types on single-event (S.) and multievent (M.) parts.

Models
EF ER EU EO EP Macro-avg Micro-avg

S. M. S. M. S. M. S. M. S. M. S. M. S&M S. M. S&M
DCFEE-O 56.0 46.5 86.7 54.1 48.5 41.2 47.7 45.2 68.4 61.1 61.5 49.6 58.0 —
DCFEE-M 48.4 43.1 83.8 53.4 48.1 39.6 47.4 42.0 67.0 60.0 58.9 47.7 55.7 —
GreedyDec 75.9 40.8 81.7 49.8 62.2 34.6 65.7 29.4 88.5 42.3 74.8 39.4 60.5 —
Doc2EDAG 80.0 61.3 89.4 68.4 77.4 64.6 79.4 69.5 85.5 72.5 82.3 67.3 76.3 —
DE-PPN-1 82.4 46.3 78.3 53.9 82.2 45.6 78.1 39.3 82.8 38.5 80.7 44.7 66.2 —
DE-PPN 82.1 63.5 89.1 70.5 79.7 66.7 80.6 69.6 88.0 73.2 83.9 68.7 77.9 —
DEERE (ours) 84.8 65.4 95.6 71.2 84.5 75.1 83.7 71.1 89.2 77.6 87.6 72.1 81.5 90.8 75.9 83.7

Table 4: F1-score of ablation tests on DEERE variants.

RoleSelection EventDivision EF ER EU EO EP Macro-avg Micro-avg
+ + 74.5 93.0 80.4 77.9 81.9 81.5 83.7
+ − 72.7 92.9 80.7 78.4 81.6 81.3 83.5
− + 72.6 92.2 79.8 75.0 79.6 79.8 81.8
− − 70.0 91.9 74.3 68.0 67.6 74.4 74.6
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Figure 4: Effect of maximum encoding length.
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Table 2: Precision (P), recall (R), and F1-score (F1) for 5 event types.

Models
EF ER EU EO EP

P R F1 P R F1 P R F1 P R F1 P R F1
DCFEE-O 66.0 41.6 51.1 84.5 81.8 83.1 62.7 35.4 45.3 51.4 42.6 46.6 64.3 63.6 63.9
DCFEE-M 51.8 40.7 45.6 83.7 78.0 80.8 49.5 39.9 44.2 42.5 47.5 44.9 59.8 66.4 62.9
GreedyDec 79.5 46.8 58.9 83.3 74.9 78.9 68.7 40.8 51.2 69.7 40.6 51.3 85.7 48.7 62.1
Doc2EDAG 77.1 64.5 70.2 91.3 83.6 87.3 80.2 65.0 71.8 82.1 69.0 75.0 80.0 74.8 77.3
DE-PPN-1 77.8 55.8 64.9 75.6 76.4 76.0 76.4 63.7 69.4 77.1 54.3 63.7 85.5 43.0 57.2
DE-PPN 78.2 69.4 73.5 89.3 85.6 87.6 69.7 79.9 74.4 81.0 71.3 75.8 83.8 73.7 78.4
DEERE (ours) 79.4 70.3 74.5 94.5 91.5 93.0 83.3 77.5 80.4 81.2 74.9 77.9 83.5 80.3 81.9
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cannot be adapted to tasks that rely on complex semantic
relationships. Recent work on EE is based on deep learning
to automatically learn features, mainly using pipeline and
joint models. Pipeline methods [14, 15], whether using CNN
or RNN, use a pipeline approach to split the extraction
process into two separate processes, extracting event trigger
words and detecting arguments. )is approach inevitably
causes error transfer and makes it difficult to capture long-
distance dependent information. To reduce error transfer,
joint methods [16, 17], consider simultaneous extraction of
trigger words and arguments. To address the problem of
overlapping roles, pretrained language models [18, 19], are
used to model intrasentence and intersentence contextual
information, improving the accuracy of the task overall.

Early classification models [20, 21], divide DEE into two
subtasks: recognition of event descriptors and detecting
arguments, using SVM as classifiers. Neural network-based
classification models [22, 23], use word embeddings as the
input to the decision tree, and then the structured infor-
mation of the document is obtained through the integration
of information.

To address the argument-scattering, one solution is to
transform the extraction task into a sequence annotation
task, which dynamically fuses two different levels of infor-
mation at the sentence level and the document-level [24].
Another solution is to use a sentence as the event-centered
sentence for arguments complementation. DCFEE [9] is
based on sequence annotation, main event discovery, and
arguments complementation strategy to construct the ex-
traction model, which solves the argument-scattering to a
certain extent. For the multievents, Doc2EDAG [10] utilizes
an end-to-end approach to integrate arguments scattered
across different documents and transforms the document-
level event table filling task into an entity-based path ex-
pansion task for directed acyclic graphs. )e multilayer
bidirectional network MLBiNet [25] fuses cross-sentence
semantic and associative event information to enhance the
discrimination of each event mention. In addition, there are
methods [26, 27], that transform EE into other tasks such as
reading comprehension and intelligent quizzing.

5. Conclusion

We propose a novel framework (DEERE) that cleverly
transforms the task of DEE into a relation extraction task.
)e new SOTA performance on the ChFinAnn dataset il-
lustrates the reasonability of the framework design, and
ablation experiments verify the effectiveness of the key
mechanisms in the framework. )e single-stage relation
extraction model can mitigate error propagation, and the
event integration algorithm with fault tolerance can com-
pensate for some errors of relation extraction. Increasing the
maximum length of the text encoder is beneficial to improve
document awareness, but it also requires more computa-
tional resources. )e ChFinAnn dataset used in our ex-
periments has a considerable scale, but labelled data in other
application scenarios are often insufficient. In future work,
we will focus on few-shot event extraction and data aug-
mentation for it.
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