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Due to the lack of accurate modeling information in environment modeling, the traditional path planning algorithm for robot
obstacle avoidance is of low accuracy.  erefore, this paper designs an obstacle avoidance path planning algorithm for embedded
robot based on machine vision. First, the method of target edge detection is optimized in this paper. e edge detection results are
obtained by color space transformation, and the complete target is obtained by edge fusion combined with surrounding pixel
attributes. en, the distance of the obstacle is measured by binocular depth ranging, and the longitudinal positioning of the robot
is obtained, and the position of the obstacle is further obtained. Finally, a fuzzy control method for obstacle avoidance path
planning is designed to obtain a complete planning scheme. e performance test results of the obstacle avoidance path algorithm
show that the obstacle avoidance path planning scheme obtained by the algorithm designed in this paper has better performance
in di�erent obstacle avoidance test environments and can successfully avoid obstacles when the robot runs at high speed.

1. Introduction

Mobile robots are widely used at present.  ey can replace
manpower for production, detection, farming, and other
work so as to save manpower cost. Generally, the movement
of robot is mainly through independent identi�cation of
working environment, making decisions, and completing
work. With the maturity of robot technology, the working
space of robot is expanding, which can replace human beings
to detect in dangerous environment [1]. To put an embedded
robot in a workplace, it �rst needs to recognize the nearby
state of the sports place and have the ability to reach the
destination. When encountering obstacles in the site, the
safety path can be updated in time [2, 3]. At present, the
embedded robot generally uses infrared or ultrasonic for the
perception of the surrounding environment. However, such
a perception method is greatly a�ected by the environment.
It is easy to misjudge the location of obstacles in path
planning, resulting in poor performance of path planning
scheme. Machine vision technology is becoming more and
more mature. Due to its large amount of information and

rich content, it is widely used in di�erent �elds, such as
defect detection, unmanned technology, and many other
�elds [4, 5]. In recent years, with the development of deep
learning and its visual technology, it has expanded its scope
of application. For the obstacle avoidance path planning of
embedded robot in practical application, the traditional path
planning algorithm lacks complete site modeling informa-
tion, so the obtained path planning scheme is lack of per-
formance [6].  erefore, this paper combines machine
vision technology with the obstacle avoidance path planning
algorithm in order to improve the performance and accuracy
of robot obstacle avoidance scheme.

2. Obstacle Avoidance Path Planning
Algorithm of the Embedded Robot

2.1.OptimizeTargetEdgeDetection. In the process of obstacle
avoidance route planning, analyzing the movement envi-
ronment is the basis of obstacle avoidance route planning. In a
moving environment, edge detection of target obstacles can
lay a foundation for spatial segmentation and obstacle
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extraction. General object edge detection is to construct a
difference operator to detect the edge of gray image. However,
the images currently used are generally color images.
)erefore, in the original detection operator, we also need to
carry out gray conversion. Gray conversion will cause the loss
of image information and the waste of color details [7, 8].
)erefore, the edge detection operator is optimized in this
paper. For color images, we have to intercept and enlarge a
small part of the local image, as shown in Figure 1:

In the figure above, a small part of the edge of an object is
intercepted and enlarged. It can be seen that the intercepted
part is composed of different pixel color bands. Transform
the color space of the color image, convert the original RGB
color into HSI color, and cooperate with the gray color space
for edge detection [9, 10].)e component of the small image
in HSI color space can be obtained. According to the ob-
tained component information, edge detection is carried out
in H, S, and I spaces, respectively. )e edge detection result
corresponding to H space is recorded as EH, the edge de-
tection result corresponding to S space is recorded as ES, and
the edge detection result corresponding to I space is
recorded as EI. Under the above edge detection results, carry
out edge fusion, and the formula is as follows:

ET � EH⋃ES( | EH⋃EI( | ES⋃EI( . (1)

In the above formula, the obtained ET is a matrix form,
which is recorded as

ET �

0 0 1 0

0 0 0 0

0 0 0 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In the matrix of the above formula, 0 represents nonedge
pixels and 1 represents edge pixels. Taking the above matrix
as an example, the edges are not connected, and the pixels of
the edge nodes consist of multiple regions. )e pixels that
make up nonedge nodes share a region, and there is no real
separation between different obstacle targets. )erefore,
after expanding the image, we can see that there are many
breakpoints in the edge detection results. In this way, the
connection of edge lines can be considered [11]. In the
original algorithm, the edge fracture will affect the calcu-
lation of the surrounding environment and ultimately affect
the separation of targets. )erefore, in the target edge
monitoring of this paper, we should first detect an isolated
edge point. Taking this point as the center and combining
with the surrounding pixels, we can form a whole. At this
time, we can detect the overall edge. Such a target edge
detection method can avoid the isolated detection of pixels
and can make a macro judgment from the whole image after
combining the surrounding pixel attributes. After the above
improvement of edge pixel recognition, the edge breakpoints
can be repaired so as to obtain better edge detection effect.

2.2. Obstacle Distance Measurement. For the robot, the
premise of path planning is its longitudinal positioning.
)erefore, it is necessary to rely on the robot’s binocular

vision tomeasure depth.Within the action range of the robot,
the robot obtains relevant obstacle distance information from
the machine vision shooting area and determines the ordi-
nate of the robot [12] based on this information. In the
process of depth estimation, the depth information is mainly
obtained by measuring the parallax of obstacles on different
imaging planes. If the same object is in different imaging
planes at the same time, there will be some parallax. Parallel
binocular distance measurement is generally used to measure
depth because the measurement value obtained by using this
method is more accurate. )e principle diagram of parallel
binocular distance measurement is shown in Figure 2.

In the above figure, CL and CR are the optical centers of
two cameras in binocular vision, respectively, andB represents
the distance between the two optical centers.)e optical center
distance is determined through calibration calculation.OL and
OR represent the center point of the imaging surface, and f is
the focal length of the camera [13]. In the measurement and
imaging process of binocular vision, we need to get a point P

in the normal physical space, and the default is that the point is
the idealized coordinate of the obstacle. )e position of the
obstacle in the aerial coordinate system is expressed as
(xs, ys, zs), and it is assumed that the position coordinates on
the respective imaging planes of binocular vision are expressed
as PL(xL, yL) and PR(xR, yR), respectively. In the actual
operation, in order to simplify the operation steps, assuming
that the spatial coordinate system is the same as the imaging
plane coordinate system, the following can be obtained by
using the triangle similarity principle:

zs − f

zs

�
a

a + xR

zs − f

zs

�
B − xL + xR + a

B + xR + a

⟶ zs �
fB

xL − xR

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

In the above formula, the obtained xL − xR is the parallax
of binocular vision in the imaging process. During the
calibration of obstacles, the measurement of spatial depth is
completed through the values of focal length and baseline
obtained by calibration [3, 14]. Further processing can
obtain the specific location information of the obstacle as

Figure 1: Schematic diagram of edge detection.
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xs �
BxL

xL − xR

,

ys �
ByL

yL − yR

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

Under the calculation of the above formula, since the
main imaging points of the two cameras are different, the
measurement results need to be further revised. )e revised
equation is

xs �
B xL − u0L( 

u0L − u0R(  − xL − xR( 
,

ys �
B yL − u0L( 

u0L − u0R(  − yL − yR( 
,

zs �
Bf

u0L − u0R(  − zL − zR( 
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

In the above formula, u0L and u0R are the revision co-
efficients in the two imaging planes, respectively. Based on
the above principle of binocular depth distance calculation,
it is integrated into the process of obstacle depth estimation.

2.3. Design Obstacle Avoidance Path Planning Control
Method. For the obstacle avoidance path planning of
embedded robot, the core of the algorithm is the design of
control algorithm. )e designed obstacle avoidance path
planning scheme needs to meet the high real-time per-
formance of the embedded robot and also get the path
planning scheme quickly and accurately. In the process of
designing obstacle avoidance planning, this paper uses the
method of fuzzy control to realize efficient data processing.
A fuzzy controller is embedded in the path planning al-
gorithm. According to the characteristics of the embedded
robot in the walking process, the corresponding fuzzy
controller is designed, and its structure is shown in
Figure 3.

As can be seen from the above figure, the input variables
in the fuzzy controller can be subdivided into two. One is the
angle deviation e, and the other is the change rate EC of the
angle deviation, and the output of the controller is the
steering angle U of the robot. After completing the design of
the structure of the fuzzy controller, it is also necessary to
divide the controller into fuzzy parts. Fuzzification mainly
describes the control rules in the process of robot travel
through more states. )e more the states accumulate, the
more flexible and accurate the process of selecting rules.
First, the input variable E of the fuzzy controller is fuzzy
divided. According to the actual parameters of the robot
during driving, the generally selected angle deviation range
is set at −20° ∼ 20°. Taking the motion direction of the robot
as the center line, the left side of the center line is negative
and the right side is positive. Converting the angle deviation
range into quantitative discrete universe, that is, dividing the
continuous angle deviation range into 2n segments, and the
fuzziness coefficient at this time can be expressed as

q �
2n

b − a
. (6)

In the above formula, a is the lower limit of the angle
deviation range and b is the upper limit of the angle devi-
ation range.)e fuzzification coefficient can also be used as a
quantization factor here. )e fuzzy set corresponding to the
angular deviation of state variables in the process of robot
walking is NB,NM,ZO,PM,PB{ }. )e corresponding
meanings of fuzzy set are negative large, negative middle,
zero, positive middle, and positive large, respectively. )e
shape of membership function is shown in Figure 4:

)e existence of membership function is mainly to
quantitatively describe the variables in the process of fuzzy
control, so the function used in this paper is triangular
function. Combined with the image of membership func-
tion, the assignment of angle deviation can be expressed as
Table 1.

Under the above fuzzy control rules, combined with the
target edge detection and binocular depth ranging of ma-
chine vision technology, the state detection in the robot
action environment can be effectively realized. Building an
accurate environment model based on the above informa-
tion is the key of the robot obstacle avoidance path planning
algorithm. After the actual physical space is constructed into
an abstract space, the global path planning can be carried
out. )e overall performance of path planning with global
coverage has certain advantages compared with local path.
In global planning, various traversal methods of local path
planning can be combined to improve the performance of
path planning scheme. In the process of path finding, the
path planning algorithm designed in this paper will use
heuristic distance to calculate and update the cost distance.
Under the above analysis, the flow chart of the embedded
robot obstacle avoidance path planning algorithm based on
machine vision is shown in Figure 5:

In the above process, the planning of obstacle avoidance
path of the embedded robot based on machine vision can be
effectively completed, and the perfect scheme of obstacle
avoidance in the process of robot movement can be obtained.
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Figure 2: Schematic diagram of binocular depth ranging.
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3. Algorithm Performance Test and Discussion

According to the above analysis, this paper uses machine
vision to optimize the obstacle avoidance path planning
algorithm of the embedded robot. In the following exper-
iments, the validity of the proposed algorithm is verified.

In order to verify the effectiveness of the embedded robot
obstacle avoidance path planning algorithm based on

machine vision in practical application, experiments are
needed. )e embedded robot is used to carry the path
planning algorithm designed in this paper and the tradi-
tional path planning algorithm, respectively. It is debugged
under the existing laboratory test conditions, and the path
planning schemes of the robot obtained by different algo-
rithms are analyzed.

3.1. Performance Test Environment. )e main running en-
vironment of obstacle avoidance path planning test of the
embedded robot is the laboratory paved with white tiles. In
such a laboratory environment, there is an obstacle envi-
ronment in the area where the robot runs. )e test platform
of the embedded robot used is shown in Figure 6.

In the test platform above, set the relevant parameters and
required equipment during the experiment, as shown inTable 2.

Under the experimental equipment and relevant parame-
ters in the above table, in order to reduce the obstacle avoidance
delay, use the multimeter, oscilloscope, and other experimental
instruments to debug the module of the robot, and then
complete the power on of the embedded robot, and debug to
ensure that each module of the robot can be used normally in
the test process. In the test process, the state changes of the
robot in the test movement, such as driving speed, turning
angle, and other parameters, will be obtained through the signal
coding feedback device installed on the embedded robot. In the
experiment, different robot velocity gradients are set up, ob-
stacles are set up and tested in the laboratory site, and the
experimental results are observed and analyzed.

3.2. Robot Testing in Different Obstacle Testing Environments.
In the test of obstacle avoidance path planning algorithm in
this paper, the test sites under single obstacle, multidirectional
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Figure 3: Structure of the algorithm fuzzy controller.
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Figure 4: Membership function.

Table 1: Comparison table of angle deviation assignment.

Quantization threshold NB NM ZO PM PB
−2 1 0 0 0 0
−1.5 0.5 0.5 0 0 0
−1 0 1 0 0 0
−0.5 0 0.5 0.5 0 0
0 0 0 1 0 0
0.5 0 0 0.5 0.5 0
1 0 0 0 1 0
1.5 0 0 0 0.5 0.5
2 0 0 0 0 1
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obstacle, and complex obstacle environment are set up, re-
spectively. After many experiments in a single obstacle test
environment, the obstacle avoidance planning path of the
robot under the algorithm in this paper is shown in Figure 7:

In the test above, the position of obstacles placed on the
laboratory floor changes a lot. )e obstacles are around the
moving direction of the robot. Under the above test envi-
ronment, change the starting position of the robot and carry
out multiple tests. In order to increase the contrast, the
traditional robot obstacle avoidance path planning

algorithm is used for many tests in the same experimental
environment, and the experimental results are recorded.

In the multidirectional obstacle testing environment,
obstacles are set in different directions on the experimental
site, and different path planning algorithms are used for
testing. )e expected route and obstacle position of the
embedded robot under the path planning algorithm in this
paper are shown in Figure 8.

In the multidirectional obstacle environment, that is, in
the test process of robot path planning algorithm, there are
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Figure 5: Algorithm flow chart.
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more than one obstacle that affects the normal travel of the
robot. As shown in the above figure, multiple obstacles are at
different positions in the forward direction of the robot.
Under the above test environment, change the starting
position of the robot and conduct multiple tests. In order to
increase the contrast, the traditional robot obstacle avoid-
ance path planning algorithm is used for many tests in the
same experimental environment, and the experimental re-
sults are recorded.

In order to verify the usability of the planning algorithm,
the complex and common obstacle environment in the
process of robot travel is simulated in the laboratory en-
vironment, and the obstacle avoidance test is carried out in
this environment. )e path of the robot under the algorithm
in this paper is shown in Figure 9.

In the above environment, the robot platform equipped
with this model and the traditional model is used for
multiple tests, the number and times of robot collision with
obstacles are recorded, the average value is obtained, and the
experimental results are compared.

In the above experiments, the obstacle avoidance path
planning of the robot is carried out for many times, and the
test results of the two algorithms are shown in Table 3:

According to the test results, the two obstacle avoidance
algorithms show good decision-making performance of
obstacle avoidance path planning in a simple obstacle test
environment. For a single obstacle, there is an accurate
ranging and prediction, and change the original route in
time to replan the route. In the case of multiple tests, it shows
a good performance. In the multidirectional obstacle

environment, the average number of collision obstacles and
the average number of collision obstacles in the traditional
obstacle avoidance path planning algorithm begin to rise
slightly. Under this algorithm, there is little change. In the
complex environment with a large number of obstacles, the
number of collision obstacles under the traditional algo-
rithm increases, and the effect of modified path planning
after collision is poor, resulting in multiple collisions with
unified obstacles. Based on the above experimental data, it
can be concluded that the performance of the path scheme
obtained in the obstacle avoidance path planning algorithm
designed in this paper is better, and the average number and
average times of collision obstacles are reduced compared
with the traditional methods.

3.3. Analysis of Obstacle Avoidance Results. Four obstacles
are placed in a row in the direction of robot movement, and
the obstacle avoidance performance of the robot at different
speeds is tested. For the robot, its obstacle avoidance route is
shown in Figure 10:

In the test environment shown in the figure above, in
order to avoid obstacles in the middle, the robot will gen-
erally make the obstacle avoidance path planning, as shown
in Figure 10. In the test, this algorithm and the traditional
algorithm are used to test many times under different initial
running speeds of the robot. )e test results are shown in
Table 4:

In the obstacle avoidance path planning test in this
paper, the same robot was tested repeatedly for 100 times at

Figure 6: Embedded robot test platform.

Table 2: Experimental parameters and equipment.

Experimental equipment Parameter description Unit

AC servo motor driver
Input voltage 58V

Send PWM signal frequency 375KHz
Duty cycle 50%

Robot sensor Scanning cycle 4000ms

PC System win7
Memory 2G

Serial port extension cable 7 m
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the initial running speed. Generally speaking, when the
number of successful obstacle avoidance in the test results
reaches more than 85 times, the path planning scheme
obtained by the path planning algorithm is considered to be
effective. As can be seen from the data in the above table,
when the running speed of the robot is lower than 55 cm/s,
both path planning algorithms can effectively avoid obsta-
cles. When the running speed of the robot is 55–70 cm/s, the
successful obstacle avoidance times of the traditional

algorithm are reduced to 80 times, and the obstacle
avoidance is not effective. However, the obstacle avoidance
path scheme based on the algorithm designed in this paper
can still achieve effective obstacle avoidance. With the in-
crease of the initial speed of the robot, the number of
successful obstacle avoidance of the two algorithms cannot
reach the standard of successful obstacle avoidance. To sum
up, the embedded robot obstacle avoidance path planning
algorithm based on machine vision designed in this paper

Figure 7: Robot path planning trend under single direction obstacle environment.

Mobile Information Systems 7



Figure 8: Robot path planning trend under the multidirectional obstacle environment.

Figure 9: Obstacle environment in the complex environment robot path planning trend under this algorithm.
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Table 3: Comparison of experimental results of two embedded robot obstacle avoidance path planning algorithms.

Testing environment

Traditional obstacle avoidance path planning
algorithm

)e obstacle avoidance path planning algorithm in
this paper

Average number of
collision obstacles

Average number of
collisions with obstacles

Average number of
collision obstacles

Average number of
collisions with obstacles

Single obstacle
environment 0.11 0.29 0 0

Multidirectional obstacle
environment 0.73 1.23 0.07 0.15

Complex obstacle
environment 2.13 5.62 0.32 1.36

Robot target 
position

Starting 
position 
of robot

Successful obstacle avoidance path
Obstacle avoidance failed path

Z1 Z2 Z3 Z4

Figure 10: Different path classification of the obstacle avoidance test.

Table 4: Statistics of the robot obstacle avoidance test results under different initial speeds.
Initial motion speed
of the robot (cm/s)

Total number of
tests

)e number of successful obstacle avoidance under
this algorithm

Number of successful obstacle avoidance
under the traditional algorithm

10 100 100 100
15 100 100 100
20 100 100 100
25 100 100 99
30 100 100 97
35 100 98 94
40 100 97 94
45 100 95 90
50 100 93 88
55 100 92 86
60 100 90 84
65 100 88 82
70 100 85 80
75 100 82 78
80 100 80 75
85 100 80 72
90 100 78 70
95 100 73 67
100 100 70 61
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has a certain improvement in performance compared with
the traditional algorithm; that is, the validity of the algorithm
constructed in this paper is verified.

4. Conclusion

Aiming at the shortcomings of obstacle avoidance path
planning of the embedded robot, this paper designs an
obstacle avoidance path planning algorithm of the embed-
ded robot based on machine vision. It mainly uses machine
vision technology to perceive and model the surrounding
environment more quickly and accurately, designs the ob-
stacle avoidance path planning fuzzy control method in the
planning algorithm, and obtains the completed planning
process. Experiments show that the path planning algorithm
designed in this paper has a certain improvement in per-
formance. Although the research of this paper has achieved
some results, there are still many details to be improved in
the follow-up study and research. For example, how to use
machine vision for rapid modeling to improve the running
speed of the robot is the key content to be studied in the
future.
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