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The success of deep learning is based on a large number of tagged data, which is challenging to satisfy on many occasions.
Especially in industry fault diagnosis, considering the cost of data collection, the fault data are few and severely unbalanced.
Therefore, it is not enough to support a reliable data-driven deep learning model. Few-shot learning effectively solves the few
sample problems, but traditional methods pay little attention to the impact of unbalanced data. However, imbalanced data exists
in large quantities. At the same time, unbalanced data often causes decision boundaries to be biased towards categories with larger
sample sizes, resulting in lower accuracy. This study proposes a prototype network incorporating center loss for diagnosing
industrial faults with few-shot samples. Based on the prototypical networks, by adding center loss at the loss level, the mapping
points of the samples in the feature space play the role of intraclass contraction and interclass separation, thereby improving the
classification effect. The experiment takes the TE process industrial data set as an example. Comparing various current few-shot

learning methods reflects the superiority of the method proposed in the few-shot imbalanced scenario.

1. Introduction

Industrial Internet plays a significant role in society, and a
variety of sensors are embedded in the actual industrial
process to collect experimental data, and the data in this
study are based on this. With the evolution of industrial
intelligence skills and the emergence of Industry 4.0 [1, 2],
the identification and diagnosis of industrial engineering
faults are particularly critical in maintaining mechanical
equipment safety and availability. Industrial failures will lead
to a shorter life of components, mechanical damage, and
even casualties. Meanwhile, the need for experts to diagnose
through specific technical means often consumes a lot of
human resources and property and has a certain chance of
missing the golden opportunity to deal with the fault.
Therefore, accurate prediction and diagnosis of various
failures in real industrial scenarios are significant. The fault
diagnosis in the real world has a problem, that is, the same
fault varies significantly under different working conditions,

so it is often quite challenging to acquire a sufficient sample.
For example, labeled data are expensive. This situation can
arise for several following reasons: First of all, the industry
system does not allow some failures that can bring huge
losses to occur frequently. Second, most electromechanical
failures occur as a slow process and follow a degradation
path, making the system’s failure degradation a lengthy
process, which brings substantial time costs to collecting
relevant data sets and is challenging to obtain. Third, the
operating conditions of mechanical systems are very com-
plex and constantly change from generation to generation
depending on manufacturing requirements. Collecting and
labeling sufficient training samples is impractical [2].
Therefore, using a data-driven fault inspection and analysis
method based on few-shot learning is very relevant. In FSL
methods, three categories can be distinguished as follows:
incremental learning, metalearning, and metric learning.
Data augmentation [3, 4] is a method of synthesizing
new sample data by mining existing data information. Data
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augmentation methods can be classified into two levels,
namely, data level and feature level. The data level takes the
picture data as an example to achieve the purpose of syn-
thesizing new data samples by simply rotating, flipping,
clipping, and adding a little noise to the picture. However,
this method cannot bring helpful information for the
training of the model based on existing data. It may even lead
to a decrease in inaccuracy due to the addition of noise. The
feature level is to generate useful information to synthesize
new data samples by fully mining the characteristics of
existing data. Nowadays, the popular feature-level data
augmentation methods include feature trajectory transfer
(FFT) [5] and attribute-guided augmentation (AGA) [6].
Through the transfer of feature trajectories, FFT can obtain
the feature trajectories by learning one and transferring the
feature trajectories to other categories with fewer samples to
enhance the feature-level data [5]. However, this method
needs to have a fine-grained and continuous description,
which is a prohibitive cost for data preparation. AGA trains
an encoder-decoder network with the ability to synthesize
another comprehensive feature and obtain its mapping
relationship by using the sample input features, to synthesize
the missing features with the help of the existing features of
the sample, to realize data augmentation. However, this
method needs to have side information [6]. In summary, the
data augmentation method needs to fully mine the feature
information provided by the existing data samples, which
often requires side information. Therefore, mining side
information becomes a difficult problem in data
augmentation.

Metalearning [7] is seeking to directly optimize a fast-
learning algorithm by using a dataset of tasks [8] as a new
and efficient cross-task learning strategy. Metalearning has
an essential role in few-shot learning. Snell et al. [9] pro-
posed measure prototypical nets by solving the overfitting
problem caused by less training data. The model-agnostic
metalearning (MAML) proposed by Finn et al. [10] can be
combined with any task based on gradient update to
maximize the accuracy of the model under iteration by
learning its initialization parameters. Mishra et al. [11]
proposed a simple neural attentive metalearner (SNAIL),
which applied the new combination of sequential convo-
lution and causal attention mechanism to achieve a com-
mendable prediction effect in new samples. However,
metalearning has some limitations. The similarity between
tasks should not be too high. Otherwise, it will degenerate
into supervised learning and fail to achieve memorization.

Metric learning [12-14], the main genre of the minority
learning field, categorizes query samples by learning the
feature extraction agents on the underlying classes, extracts
sample features from novice classes in the testing process,
and gauges the separation or likeness between labeled
supporting samples and unaffected query samples. The two
most representative classes of metric learning are twin
networks and prototype networks, respectively. Unlike
standard classifiers, conjoined networks [15, 16] can perform
the classification of samples from a new class without any
retraining of the new category. Training is initially per-
formed offline on many sample pairs which belong to the
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same category or different categories. After the Siamese
network is downloaded, the data to be categorized is
matched against marked proxy examples of each category. It
is referred to as prototypes in the remainder of this work.
Incoming samples do not need to belong to the class seen
during training. The category that wins is the one that
corresponds to the maximum likeness between the sample of
interest and the preserved prototype. The design of the
prototypical network [17] presumes the presence of an
embedded space, in which the sample projects of each class
are clustered around a single prototype (or centroid).
Classification is then performed by counting the separation
from the prototype representation of each category in the
embedding space. By doing this, the generic adaptation is to
use one prototype, which represents the distribution of each
class and matches the prototype of each class in the em-
bedding space learned on the data from different domains.
However, most existing probability learning methods
[9, 18-21] focus on the relevance among the supporting and
query samples and do not take sufficient advantage of the
information in the foundation classes, resulting in sample
imbalance that is not well addressed.

The above approaches can achieve promising results in
solving the few-shot-learning problem but do not involve
the class imbalance problem. The category imbalance
problem is very widespread in the industry, and the data sets
of different categories of industrial failures are often not
uniformly distributed ideally. The data will show a “long-tail
distribution” [21] when sorted by the frequency of different
categories of data from high to low. It is supposed that the
unbalanced samples are given to the model for training. In
that case, the model will learn the prior information of the
sample proportions in the training set to minimize the value
of the loss function, resulting in the actual prediction will be
concentrated on the primary class and the generalization
ability of the second class will be poor, which will affect the
robustness of the model learning.

For classical machine learning models [22-25], it can be
divided into the sample level and the model algorithm level.
At the sample level, it can be subdivided into under sampling
[26] to decrease the number of majority classes, over-
sampling [27] to increase the number of minority classes,
and data augmentation methods. These aspects aim to
equalize the gradient contribution of the sample to the
model learning, eliminate the bias of the model towards
different classes, and learn more essential features. At the
model algorithm level, they can be subdivided into the use of
classification models that are insensitive to imbalance,
weighing penalties for small class misclassifications, and
processing at the reconfigured classifier level. In this case, the
learning algorithm is modified. For example, at the classifier
level, the misclassification of examples from different classes
is performed by introducing different weights [28] or by
explicitly adjusting the prior class probabilities [29]. How-
ever, none of these methods is used based on a few-shot-
learning framework. Since fault diagnosis is very critical in
industry, industrial fault samples are often characterized by
unbalanced categories, a tiny number of some samples, and
small differences between similar categories.



Mobile Information Systems

At present, in industrial faults, the diagnosis of faults is very
important. Deep learning has been widely used in the detection
of industrial faults, such as adding schedulers to communi-
cation infrastructure to solve crashes [30]. At the same time,
artificial intelligence models have also been applied to auto-
mated decision-making, such as explainable artificial intelli-
gence (XAI) systems in the role of the health care field [31, 32],
although these methods have good results for fault diagnosis,
then for some faults, due to the relative difficulty, the fault
diagnosis of small sample learning is also very important.

This study is motivated by the fact that on the one hand,
the problem of insufficient sample data is fully considered
and small sample learning is taken into account; on the other
hand, the problem of sample imbalance is further considered
and the prototype network ideas are combined to effectively
address the decision bias caused by sample imbalance and
make industrial fault classification more accurate.

Considering the problem of insufficient samples, we
adopt the idea of the prototype. It is a metric-based approach
to modeling the distance across samples. However, the loss
function is used in the literature, which does not consider the
scaling strategy for the distance and the class imbalance. In
order to better measure the similarity between a query image
and a sample image, this study combines discriminant loss
function and prototypical network, which are suitable for
intraclass compression and interclass separation to solve the
problem of small sample imbalance. Specifically, this work
designs a novel prototypical network for industrial fault
diagnosis and tests it on a benchmark task with an industrial
dataset. The findings are indicated that the current approach
is superior to traditional approaches concerning FSL. The
contribution points of this study are concluded as follows:

(i) An improved prototypical network model is
designed combined with center loss. By compacting
the intraclass samples and separating the interclass
samples, the proposed method can resolve the
problem of class imbalance in few-shot learning.

(ii) The presented method was applied to an industrial
process in which several fault class imbalance cases
were designed to validate the methodology. In
contrast to several different learning methods, our
method yields the most excellent results.

The remainder of the study is organized as follows: in the
second subsection, we present the preparatory knowledge, in
the third subsection, we describe in detail the experimental
method, and in the next sections we present the experi-
mental method, the results, and the summary analysis.

2. Preliminaries

In this study, we briefly introduce the concept of few-shot
learning and the fundamental approach of the prototypical
network.

2.1. Few-Shot Learning. Few-shot learning seeks to resolve
machine learning tasks using a limited amount of data. FSL
can split the data into three sections, namely, the training set,

the support set, and the query set. The training set is a
category with a significant number of instances so that the
model can learn a model that can extract features from that
category. During the training phase, categories are randomly
selected, with samples from each category (shared samples)
being chosen as the supporting set from the training set. The
remaining data from the categories samples are then selected
as the query set for the model. When the support set includes
categories and each category has a category, this is termed a
c-way k-shot problem.
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2.2. The Prototypical Network. The prototypical network
would be a kind of metric learning [9]. It learns a mapping
that can extract pattern features from the training set to
realize the mapping from input to embedded space. The
metric chooses the space of one distance function
d: RM x RM — [0, +00), which computes the M-dimen-
sional representation or prototype of each class through
embedding functions with learning parameters. Typical
distance functions are Euclidean distance and triangular
chord distance, and in this study, the Euclidean distance is
chosen. Moreover, each prototype is the average of the
vector of embedding support points in its class. The pro-
totypical representation of this class is obtained after av-
eraging the samples. Finally, the same mapping operation is
performed for the query set, and classification can be done
by counting the separation from the prototype representing
every class. The smaller the distance, the higher the prob-
ability that the sample belongs to the class, and the final
classification result is the class with the highest probability.
Then, a loss function is chosen to optimize the parameters in
the mapping function. The specific formula is as follows:

exp (~d(fy (x).ci))
Seexp (=d(fy(x)er))

In this formula, the input data are the sample attribute
variable x and any class label y, and the output data are the
probability that the sample belongs to this class. The formula
represents the feature vector of the prototype representation of
the corresponding category, represents the feature vector of the
corresponding sample in the feature space, and is the mapping
function of the attribute vector of the sample to the feature
vector. It represents the Euclidean distance between the sample
feature vector and the prototype of the category representing
the feature vector. It can be seen from this formula that the
closer the distance between the sample and the prototype
representation of a certain category is, the greater the proba-
bility that the sample belongs to this category is.

pp(y=klx) = ®)

3. Method

3.1. Necessity of the Research. In FSL, sample imbalance will
have a great impact. The FSL method based on a prototypical
network is taken as an example to explain in detail. Each



class has four data when there are five classes to solve a
classification problem, which is called the 5-way 4-shot FSL
task. The data belonging to the same class are grouped, and
these supporting data are cast into the feature space using a
featured network. Then, the prototypes c;, ¢,,¢5, ¢4, C5 are
calculated as the average of the embedded supporting data
for each class. The mean of the eigenvectors generated by the
network ¢, ¢,, ¢35, ¢4, ¢5 is taken. Then, it takes the average of
the centers of the five classes to get x. The fresh query picture
is cast onto the characteristic or insertion space and com-
pared with these prototypes using the Euclidean method
distances to assign it to one of these classes. If x is closest to
the class-1 prototype in balanced data classification, it be-
longs to class-1 (Figure 1).

However, due to the imbalance of data classification in
industrial fault diagnosis, if the original 4 samples are re-
duced to 2 in the class-3 prototype, the range of judgment
area will change. The x is close to the class-5 prototype
during classification and may be misjudged as ¢, resulting in
classification errors. If we take the average method for the
samples with few categories, classification errors are easy to
occur, and the samples with few categories are not repre-
sentative, resulting in poor robustness of the model. In order
to maximize the value of each sample in the case of an
imbalance few-shot sample, the improvement of FSL based
on the prototypical network in this study is much essential.

3.2. Center Loss. The key to improving model classification
accuracy is to reduce the minimization of space between
classes and keep the space among classes, so a center loss is
added in this study. Center loss requires similar features to
be closer to their center points, thus directly constraining
sample features, as shown in equation (2).

Ze :% g"xi —py(y = k|X)|'§, (3)

where x; represents the feature extracted from the i sample,
c,; represents the average feature of the i sample, and m
stands for sample count.

The representation c,; and the gradient of Z, are in
formulas (3) and (4), where §(x) is the function that rep-
resents when x is true, returning 1 and 0 otherwise. The “1”
in the denominator is to prevent the exception of dividing by
0 because there are no j samples in the min-batch.
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when we update the characteristic centroid c ; of class y;, if
the category y; is not the same as the class corresponding to
the feature center. That is, the feature of a specific class is
only responsible for updating its corresponding class center
¢, Algorithm 1 shows the specific algorithm about the
center loss.
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3.3. Improving Prototypical Networks. Due to the instability
of the prototypical representation of a few classes in the class
imbalance problem, the classification region in the mapping
space is chaotic. Therefore, the center loss can be added
based on the SoftMax loss to shorten the distance within a
category and increase the distance between categories so that
the regional distribution of different classes becomes clear.

Given below is (4) for SoftMax loss plus center loss [33]:

T
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i=1 szl e

|

In the improved prototype network proposed in this
study, the main principle is reflected in the improvement of
the loss function of the prototype network. In the loss
function, it consists of SoftMax loss and center loss. In the
SoftMax loss, W;ixl- + by, represents the function composed
of the linear function and activation function of the de-
termined parameters trained by the neural network. Its
independent variable is the attribute vector of the sample,
and its dependent variable is a scalar to measure the degree
of membership of each category. It is normalized in SoftMax
to make its value range [0, 1]. In center loss, x; represents the
feature vector corresponding to the attribute vector of each
sample in the feature space, and p, (y = klx) represents the
feature vector represented by the prototype of the corre-
sponding category. A measures the weight between SoftMax
loss and center loss.

SoftMax activation function can get a number between
0 and 1, which is generally regarded as a probability be-
longing to this class. In SoftMax loss, the inverse of SoftMax
is taken. If the label has been given, the greater the
probability of belonging to this category obtained by
SoftMax, the smaller the loss function value. Combined
with the back propagation of neural network parameters
correction, a classification effect is played. The Euclidean
distance is used in the center loss function, which is ob-
tained by summing the distances between all samples and
the prototypes of the corresponding categories. If the
distance sum is smaller, the loss function value is smaller.
Combined with the correction of neural network param-
eters by back propagation, the intraclass distance is reduced
and the interclass distance is expanded.

Training plots are shaped by forming a random choice of
a category subsection in the training set, then selecting a
subsection of instances in every class as a support set and the
others as the query points. The prototypical network
computes the M-dimensional expression ¢, €R™ or proto-
type for every class via an embedded function f,:
RP — RM with respect to the learning-ready parameters ¢.
The cluster center of each class is as follows:

(5)
2
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FiGure 1: (a) Balanced data classification based on a prototypical network; (b) imbalanced data classification based on a prototypical

network.

Step 1: Given a distance function d: RM x RM — |0,
+00), the prototypical network characterizes the sample
x as belonging to a certain class based on SoftMax over
the distance from the prototype in the embedding
dimension, which can be shown in equation (2).

Step 2: After knowing the cluster center of each class of
samples, we can characterize which class a sample x
belongs to, represented by the distance and Softmax
functions. At the same time, find the objective function
J used by the parameter ¢ of the network f,(x), as
shown in equation (2).

Step 3: After the loss function J is obtained, the pa-
rameter ¢ of the embedding function is updated by
stochastic gradient descent. The pseudocode to calcu-
late the center loss is provided in Algorithm 1.

1 & 2
J@=32 i = £y (v = ki)
. (7)
=d(f,(x)t,nc;) + 5 Y exp(~d(f, (x)cx))-
5

The training set damage calculations for prototypical
networks. K is the count of classes in the training set, N is the
count of examples in the trained set, N < Kis the count of
classes per episode, N is the count of supported examples
per class, N is the count of query examples per class.
RANDOMSAMPLE (S, N) denotes the set of N elements
selected evenly and stochastic without replacement from the
set S. Algorithm 2 is about the algorithm of prototypical
networks.

For the problem of small samples with imbalanced
samples, this study combined the central loss function to
improve the prototypical network, which realized the ex-
cellent characteristics of intraclass contraction and interclass
separation, improved the distinguishing degree of feature
categories, and effectively reduced the problems of classi-
fication deviation and misjudgment.

The diagram contains three modules, including the input
layer, an operation layer, and output layer, and the working
principle can be understood as follows:

(1) The input layer represents the input of the training
set and validation set data of different categories

(2) The operation layer encodes the data, convolution,
and other operations and processes the data at the
loss level

(3) The output layer performs a neural network on the
data, extracts features, and performs predictions to
obtain results

As illustrated in Figure 2, this figure contains three
modules, including the embedded module, the induction
module, and the output module. The embedded module
represents the input of the different categories of data from
the training and validation sets and projects the presented
samples. The induction module performs operations such as
coding convolution on the data and generates the category
prototype G, while processing the missing level data. The
output module performs neural network processing on the
data, extracts the features, and performs predictive classi-
fication to obtain the final result. The final classification
results are shown that the distance between blue and orange
classes decreases, and the distance between classes increases,
which makes the region division more obvious.

4. Experiment

4.1. Data Description. This experiment adopts the classic
industrial data set of the Tennessee-Eastman (TE) process
presented by Downs and Vogel [34]. The Tennessee-East-
man process simulated an actual chemical process for
anomaly detection and process tuning. Moreover, the entire
process comprises five operator units, namely, reactor,
condenser, gas-liquid separator, circulation compressor, and
product stripper. In the TE process, a single deterministic
reservoir model fits several inputs and multiple export
signals, mapping the signal space to the model space. TE
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Input: Training data {x;}. Initialization parameters ¢, in convolution layers. In loss layer the parameters W and {c;|j = 1,2, ...,n}.
Hyperparameter A, a and learning ratey’. T < 0.
Output: The parameters¢.

(1) while not converge do

(2) t—t+1.

(3) Compute loss by Z..

(4) Compute back spread fault 0% /0x! for each i.

(5) Update W by W'l = W' — 0.2 /oW!

(6) Update c; for every j by %! = ¢’ — aAc”.

(7) Update ¢cby ¢! = b — ut Y (észc/axg), (0x/96L)

(8) end while

ALGoriTHM 1: The center loss algorithm.

Input: Training set D = {(x, y,),--+, (x5, ¥5)}yi € {L,-+-, K}. Dy, represents the subset of D containing all elements (x;, y;).
Output: The loss J for a randomly generated the training set.

V « RANDOMSAMPLE ({1, -- -, K}, NC).

for k in {1,---,NC} do

S~ RANDOMSAMPLE (Dy, , N).

Z.—(1INC) ¥ f,(x).

end for (33, 1) €S

J<O0.

Qi —RANDOMSAMPLE (Dy;\S;., No)

for k in {1,...,NC} do

for (x,y) in Q do

& — J+ (1NN ld(f, (0t nZ + (112)Yp exp (=d(f, (x)t,nZ )]
end for

ALGORITHM 2: Prototypical networks [9].

[ Episode \

Embedding Space g Class Prototypes

: Support Set
1

1
1
1
1 1
| !
class 1
1 1
1
1
1
1
1

u

center loss

Neural
network

1 Classification Results
1 1
1 1
1 1 #
: : Extract
: / f features 5

7

| ] ) 7
. . &
tlass 3 |
1 1
1 1
1 1

,,,,,,,,,,,,

************

Embedded module Induction module Output module

FiGUre 2: The entire infrastructure of the new module.



Mobile Information Systems

process data, as experimental data, has certain rigor and
authority. TE process data has also been used for verification
in previous literature [35-37].

TE process consists of 11 operational variables and 41
measurement variables. These 52 variables were used as
input and analysis using a high-dimensional vector of fault
data, with the specific meanings of the variables listed in
Table 1 and Table 2. For the combination of few-shot
learning and unbalanced data, the five faults shown in Ta-
ble 3 were used in this experiment to demonstrate the su-
perior capabilities of the model on the TE process dataset.

4.2. Experimental Details and Evaluation Indicators. A
prototypical network combined with center loss was used for
modeling the TE process data set. The batch size for the
initialization parameters was 5, and the initial learning rate
was set to 0.1.

In this experiment, accuracy rate and F1 were adopted in
evaluation Indicators. Accuracy is one of the most common
classification evaluation indexes to measure the classification
accuracy of a classifier, which indicates the percentage of
correctly classified samples with the overall sample. The
accuracy rate is a good indicator of the model’s ability to
discriminate between negative samples. The more the ac-
curacy rate, the better the model separates negative samples.

The recall is a good indicator of the model’s capacity to
discriminate between positive samples. The higher the recall
rate is, the more capable the model is of distinguishing
positive samples. In the reconciled average of accuracy and
recall, the two are a pair of contradictory quantities. As one
metric becomes better, it is often accompanied by another
metric becoming worse. Therefore, to better evaluate the
performance of the classifier, F1 and accuracy are used as
evaluation criteria to measure the comprehensive perfor-
mance of the classifier. Detailed information is shown in the
following equation:

TP+ TN
Accuracy (ACC) = ,
TP+FP+TN+FN
TP,
Recal, = ——,
TP; + FN;
~ TP, (®)
Precision; = ————,
TP; + FP,;

C . .

2e¢Precision;*Recall;

F1=) i i
i=1

(Precision; + Recall;)*C’

where TP, FN, FP, and TN, respectively, express the number
of successfully confirmed positive samples, positive samples
wrongly perceived as negative, negative samples wrongly
perceived as positive, and successfully confirmed negative
samples.

4.3. Experimental Results. To prove the superiority of the
new model algorithm in industrial fault detection under the
condition of small samples and unbalanced samples, the

TaBLE 1: TE procedure operation variables.

Variable no.

Description

== 0 00 N QN Ul R W

- O

D feed flow with stream

E feed flow with stream 3

A feed flow with stream 1
Total feed flow with stream 4

Compressor recycle valve

Purge valve with stream 9

Separator pot liquid flow with stream 10

Stripper liquid product flow
Stripper steam valve
Reactor cooling water flow
Condenser cooling water flow

TABLE 2: Measured (output) variables of the TE process.

Continuous variable
number

Description

O N O\ U W

— = \O
W = o

—_
'

— =
A

—
N

NN = =
= O \O ™

N
)

R ) ) 0 DWW R WD NN N
H O VO 0ONQU R WD E OOV NG AW

A feed with stream 1
D feed with stream 2
E feed with stream 3
The total feed with stream 4
The recycle flow with stream 8
The reactor feed rate with stream 6
The pressure in reactor
The level in reactor
The temp of separator
The purge rate with stream 9
The temp of separator
The pressure in separator
The pressure in separator
The separator underflow with stream
10
The level in stripper
The pressure in stripper
The stripper underflow with stream
11
Stripper temp
Stripper steam flow
The compressor work
Reactor cooling water export temp
Condenser cooling water export
temp
A composition with stream 6
B composition with stream 6
C composition with stream 6
D composition with stream 6
E composition with stream 6
F composition with stream 6
A composition with stream 9
B composition with stream 9
C composition with stream 9
D composition with stream 9
E composition with stream 9
F composition with stream 9
G composition with stream 9
H composition with stream 9
D composition with stream 11
E composition with stream 11
F composition with stream 11
G composition with stream 11
H composition with stream 11




TaBLE 3: Five fault types of the TE process.

Fault ID

(IDV) Disturbance

Stream 4: the A/C feed ratio, composition
constant of B
Stream 4: the composition of B, the A/C ratio
constant
Stream 2: feed temperature of D
The reactor cooling water intake temp
The condenser cooling water intake temp

1

U W

experiment classifies the TE process data set and uses the
appropriate training set and verification set (no overlap) to
conduct comparative experiments on the model. Six hun-
dred samples of each fault were selected for testing for the
validation sets. This work chose metalearning and proto-
typical networks as the main contrast objects. Prototype-
based on network coding is studied to extract the features of
each sample; the sample taken on the sample average coding
method, based on the classification results by the minimum
distance, showed the use of Euclidean distance calculation to
determine which classified query sample belongs to which
category, obtaining the distance between the categories and
using the Softmax converts from probability form.

The algorithm performance of each model is compared
under different experimental conditions, namely, balance
data sample (Plan 1) and unbalanced data sample (Plan 2,
Plan 3, and Plan 4). The experiment set has different pro-
portions for five fault types of the TE process. The number of
training sets has been described in Table 4. Whether and
what loss functions should be added to the model-agnostic
metalearning (MAML [10]). Moreover, prototypical net-
work models are quantitatively analyzed and calculated.
Experimental results were further compared according to
different groups, as shown in Table 5. For example, in the
unbalanced case of Plan 4, the ACC of the MAML model
increases from 38.9% to 49.2% after adding center loss, and
F1 also increases from 41.4% to 56.3%. Compared with the
simple application of the prototype network, the proposed
new method of combining center loss with the prototype
network improved ACC by 37.2% and F1 by 30.7%.

This work, Plan 1, is a balanced fault sample case.
However, for Plan 2, the fault sample is unbalanced.
Compared to other methods, IDV 4 and IDV 5 data
plummeted from the original 10 to 2, leading to the un-
balanced nature of the experimental samples as shown in
Figure 3. The effect extracted by the prototypical network
alone is more biased towards the three types of fault samples
with a higher number in front, and less attention is paid to
IDV 4 and IDV 5. The common prototypical network and
similar methods do not consider the weight distribution of
data ratios, which leads to the classification of faults be-
longing to IDV 4 and IDV 5 into IDV 1-IDV 3 with more
fault samples, and the accuracy of fault classification results
is reduced.

This study fully accounts for the few-shot imbalance
problem by giving different attention to the different
numbers of datasets to obtain weighted class prototypes.
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Moreover, favorable classification results are obtained. Then,
the results of different allocation ratios are compared with
confusion matrix analysis, and it is obvious that the im-
proved strategy has improved the classification performance.
A confusion matrix compared the prototypical network with
or without the addition of center loss. As shown in Table 6,
for Plan 2, this experiment uses a total of 3000 test samples,
600 for each fault sample. For fault IDV1, our method
improves the model accuracy by 24.2% compared to the
simple prototype network, and for fault IDVS5, it improves
from the original 14.9% to 80.3%. In the left figure of the
prototypical networks confusion matrix in Figure 3, it can be
visualized that for IDV1, IDV2, and IDV3, the proportion of
samples successfully classified was good, with accuracies
reaching 0.65, 0.60, and 0.60, respectively.

However, for IDV4 and IDV5, the range of classification
discriminations was relatively small due to their unevenly
trained fault samples, and the prototypes were not very
representative, resulting in a classification accuracy of only
0.16 for IDV4, which was more often discriminated as IDV5
during testing. The accuracy of misclassification as IDV5
reached 0.39. In IDV5, the accuracy of misclassification as
IDV4 reached 0.38, while the accuracy of correctly classi-
tying as IDV5 was only 0.15.

It is suggested that unbalanced samples have an impact
on the accuracy of fault classification. With the inclusion of
intraclass shrinkage and interclass separation center loss, the
accuracy of successful classification for the fault classifica-
tion samples IDV1, IDV2, and IDV3 exceeded 0.80 with
0.89, 0.85, and 0.93, respectively. For the unbalanced sam-
ples IDV4 and IDV5, the accuracy of successful classification
reached 0.76 and 0.80. The accuracy of successful discrim-
ination increased significantly, reflecting the model fault
discrimination’s superior performance.

For Plan 3, the failure sample is the same is unbalanced.
Compared with Plan 2, the two imbalance numbers become
IDV 1 and IDV 2, and the data plummet from the original 10
to 2 and 1, respectively, with an extreme imbalance of the
experimental samples. The effect of extraction with the
prototypical network alone is more biased toward the three
types of fault samples with a higher number of samples
behind, and less attention is paid to IDV 1 and IDV 2; the
fault classification originally belonging to IDV 1 and IDV 2
is incorrectly classified as IDV 3-IDV 5, which with a high
number of fault samples causes the accuracy of the classi-
fication results decreases. While using prototypical net-
works + center loss, the accuracy is greatly improved with a
successful classification accuracy of 89.8% for IDV 3, and the
accuracy improved from 11.8% to 60.7% for IDV 2. For IDV
4, the accuracy also improved from 68.1% to 86.4%.

Also, for Plan 3, the experiment uses a total of 3000 test
samples (Table 7). As can be visualized in the prototypical
network confusion matrix in Figure 4(a), for IDV3, IDV4,
and IDV5, correct classification accuracy reached 0.65, 0.68,
and 0.70, respectively. However, for the unbalanced samples
IDV1 and IDV2, the correct classification accuracy for IDV1
was only 0.22, and the accuracy of incorrect classification for
IDV2 reached 0.51. For IDV2, the accuracy of correct
classification was only 0.11, and the accuracy of incorrect
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TaBLE 4: Training set sample ratio setting.
pl The number of different fault samples
an
IDV1 IDV2 IDV3 IDV 4 IDV 5
1 10 10 10 10 10
2 10 10 10 2 2
3 2 1 10 10 10
4 2 3 1 10 10
TABLE 5: Quantitative comparison of models in different groups.
Plan 1 Plan 2 Plan 3 Plan 4
Methods
ACC (%) F1(%) ACC(%) F1(%) ACC(%) Fl(%) ACC (%) Fl (%)
MAML [10] 33.3 46.2 43.4 41.6 44.6 50.3 38.9 414
MAML + center loss 53.9 66.6 56.3 61.7 52.9 68.2 49.2 56.3
Prototypical networks [38] 46.1 51.7 43.2 41.5 47.3 47.7 42.7 52.6
Prototypical networks + focal loss 80.3 81.6 71.5 70.2 70.2 71.6 81.7 82.8
Prototypical networks + center loss 91.7 97.2 84.6 83.9 78.1 78.1 79.9 83.3
1 2 3 4

True label

True label
w
1

0.09 0.00

0.00

Predicted label

()

Predicted label
(b)

FIGURE 3: Results of the confusion matrices for prototypical networks (a) and prototypical networks + center loss (b) under unbalance

sample (Plan 2).

TaBLE 6: Comparison of model accuracy under the test set for Plan 2.

IDV 1

IDV 2 IDV 3 IDV 4 IDV 5
Methods 600 600 600 600 600
Prototypical networks (ACC %) 65.1 60.2 59.8 16.1 14.9
Prototypical networks + center loss (ACC %) 89.3 85.2 92.6 75.8 80.3

TaBLE 7: Comparison of model accuracy under the test set for Plan 3.

IDV 1 IDV 2 IDV 3 IDV 4 IDV 5
Methods 600 600 600 600 600
Prototypical networks (ACC %) 21.7 11.8 64.9 68.1 70.2
Prototypical networks + center loss (ACC %) 69.4 60.7 89.8 86.4 84.3

classification for IDV1 was 0.49. It is indicated that few
unbalanced shot samples have a considerable influence on
fault classification accuracy. However, as shown on the

immediate right side of Figure 4, after the inclusion of
intraclass shrinkage and loss of center of separation between
classes. The accuracy of successful classification to IDV1
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FIGURE 4: Results of the confusion matrices for prototypical networks (a) and prototypical networks + center loss (b) under unbalance

sample (Plan 3).

TaBLE 8: Comparison of model accuracy under the test set for Plan 4.

Methods IDV 1 IDV 2 IDV 3 IDV 4 IDV 5
600 600 600 600 600
Prototypical networks (ACC %) 31.9 25.3 18.1 64.6 73.8
Prototypical networks + center loss (ACC %) 70.3 79.5 68.7 91.4 89.5
1 4 5 1 2 3 4 5
14 0.32 0.06 0.07 1
24 025 0.00 0.08 24
o 31 036 0.30 0.18 0.16 0.00 o 3
=3 =}
= =
4 4 0.00 0.05 0.19 0.11 4 4
54 0.07 0.00 0.06 0.13 5 4 0.00 0.10 0.00
Predicted label Predicted label

()

()

FIGURE 5: Results of the confusion matrices for Prototypical Networks (a) and prototypical networks + center loss (b) under unbalance

sample (Plan 4).

reached 0.70, and the accuracy of successful classification to
IDV2 reached 0.61. The accuracy of successful discrimina-
tion was significantly improved. The ACC for accurate
classification of IDV3, IDV4, and IDV5 was also maintained
at high levels of 0.90, 0.86, and 0.84, respectively.

The same is true for Plan 4, where the number of training
samples for IDV1, IDV2, and IDV3 plummeted from 10 to 2,
3, and 1 (Table 8), respectively. Compared to the fault

classification using the prototype network alone, the accu-
racy of our method improved from 31.9% to 70.3% for IDV1,
from 25.3% to 79.5% for IDV2, and 50.6%, 26.8%, and 15.7%
for IDV3, IDV4, and IDVS5, respectively. For IDV4 and
IDVS5, the results were only 0.65 and 0.74 for the prototypical
network alone, but with the addition of central loss, the
accuracy was increased to 0.91 and 0.90, a major break-
through. For IDV3 with only 1 training sample, the accuracy
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FIGURE 6: Data visualization for Plan 1 (sample balance).
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FIGURE 7: Data visualization for Plan 2 (sample unbalance).

increased from 0.18 to 0.69. The four unbalanced confusion = between metalearning and the classification effect of pro-
matrices results show that our method achieves optimal  totypical networks. Compared with adding focal loss and
classification results (Figure 5). center loss to prototypical networks, it is evident that the
addition of central function is conducive to the contraction
within classes and separation between classes, which further
4.4. Analysis. The experimental outcomes show that the  improves the accuracy of our classification. This study

model presented in this study demonstrates superior per-  proposed a new model that performs well in the case of
formance under different equilibrium states. The addition of =~ sample equilibrium (Plan 1), significantly outperforming
the loss function also brings about a significant improve-  other methods. In the case of unbalanced samples (Plan 2,

ment in model performance. There is a particular gap  Plan 3, and Plan 4), the effect is also better than the general
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FIGURE 9: Data visualization for Plan 4 (sample unbalance).

results. The novel model algorithm introduced in this study
has great potential for application in the industry where
samples are difficult to obtain and where samples are
unbalanced.

The experiment performed t-distributed stochastic
neighbor embedding [39] (t-SNE) and principal com-
ponent analysis [40] (PCA) dimensionality reduction
operations on the results. Here, t-SNE transforms the
distances between data points at high latitudes into
Gaussian distribution probabilities, which is a nonlinear
dimensionality reduction approach. PCA reduces the

number of feature dimensions used to train the model by
constructing the so-called principal components from
multiple features. The proposed model algorithm in-
creases the precision of the fault categories and enables
intraclass shrinkage and interclass classification, and the
visualized results are shown in Figures 6-9. It can be seen
that whether the samples are balanced or unbalanced, or
even with very few training samples, our method can
achieve the performance of intraclass tightening and
interclass separation with clear classification and less
confusion misclassification.
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5. Conclusion

In this study, industrial failure diagnostics under complex
operating situations with restricted data is considered an
unbalanced classification problem for few-shot learning, and
a prototypical network improvement model incorporating
central loss is proposed. The characteristics of these training
models are investigated using a learning method in model
space to achieve intraclass contraction and intraclass sep-
aration, which can effectively recognize and segregate faults.
This study investigates the TE process based on odds
learning and imbalanced data problems for the first time.
Through numerous experiments and simulations with other
methods, the results show that the model obtains the best
performance under different c-way k-shots. We will con-
tinue to investigate intelligent fault diagnosis based on
prototype networks in the future. One aspect is to investigate
the optimization of the hyperparameters of the prototype
network, such as selecting the learning rate and meta-batch
size in a learnable manner. The other area is the extension of
supervised learning to semisupervised learning. [41, 42].
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