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Visual saliency models imitate the attentive mechanism of the human visual system (HVS) to detect the objects that stand out
from their neighbors in the scene. Some biological phenomena in HVS, such as contextual cueing e�ects, suggest that the
contextual information of the whole scene does guide the attentive mechanism. �e saliency value of each image patch is
in�uenced by its visual (local) features as well as the contextual information of the whole scene. Modern saliency models are based
on deep convolutional neural networks. Because the convolutional operators operate locally and use weight sharing, such
networks inherently have di�culty capturing global and location-dependent features. In addition, these models calculate the
saliency value pixel-wise using local features. �erefore, it is necessary to provide global features along with local features. In this
regard, we propose two approaches for capturing the contextual information from the scene. In our �rst method, we introduce a
shift-variant fully connected component to capture global and location-dependent information. Instead of using the native CNN
of our base model, in our second method, we use a VGGNet to capture the global and context information of the scene. To show
the e�ectiveness of our methods, we use them to extend the SAM-ResNet saliency model. To evaluate our proposed approaches,
four challenging saliency benchmark datasets were used.�e experimental results showed that our methods could outperform the
existing state-of-the-art saliency prediction models.

1. Introduction

In looking at a scene, HVS tends to gaze at the salient regions
of the scene and ignores less salient parts [1]. �e perceptual
and cognitive resources of humans are limited.�is attentive
mechanism leads humans to rapidly process visual infor-
mation and assign these limited resources to the salient
subsets or objects of scenes [2]. �is ability of HVS has been
studied by neuroscientists and computer vision researchers
to develop models that emulate this attention mechanism.
Saliency prediction models are helpful to �gure out human
attention mechanisms, and also predict where people focus
when they look at images or watch videos [2, 3]. Visual
saliency models are useful across domains such as adver-
tising, robotics, auto-driving [4], defense, game, assistive
systems, and human–computer interaction.

In general terms, early saliency prediction models
employed biologically motivated low-level features [5–8]

driven from low-level stimuli, for example, color, intensity,
orientation, and texture. Subsequent models incorporated
semantic concepts such as face [9], text [10], and gaze di-
rection [11]. However, these techniques are not able to
generally incorporate high-level features (e.g., contextual
information, center prior, and complex objects) and in-
herent correlation of various visual subsets in a scene (e.g.,
correlation of eyes, nose, ears, and mouth).

Since 2014, new sort of visual saliency models based on
deep neural networks (DNNs) has emerged. �ey achieved
strong improvements over classic saliency models. �e hi-
erarchical deep structure of convolutional neural networks
(CNNs) enables the salience models to capture some
complex cues whereas pioneering saliency models were not
able to learn from data. However, studies revealed that they
continue to fall short in capturing some high-level features
of the scene such as center prior and global context [2]. Some
studies have tried to compensate for such de�ciencies in the
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CNN structure and capture the global properties by in-
corporating center prior [12–15] or by the means of con-
volutional long short-term memory (LSTM) [14, 16].

Here, we propose two methods that incorporate con-
textual cues, global properties, and location-dependent
features into pixel-wise saliency prediction to compensate
for some deficiencies in CNN-based saliency models. Our
first approach employs the VGGNet structure to capture the
global and contextual information of the scene and then
incorporates this information into the pixel-wise saliency
prediction. )is model predicts the saliency value of each
image patch, by taking into account not only the locally
extracted features of that patch but also the global scene
properties. In our second approach, we introduce a shift-
variant fully connected component to combine locally
extracted features and learn the location-dependent infor-
mation that simple convolution layers are incapable of
capturing.

)e remainder of the study is organized as follows: the
next section discusses related saliency prediction models.
Section 3 discusses the facts and arguments that motivated
us and supported our saliency modeling. Section 4 presents
our proposed saliency models. Section 5 describes some
popular evaluation metrics, evaluation baselines, and sa-
liency datasets, and provides our implementation details.
Section 6 reports the evaluation results of our proposed
models over several saliency benchmark datasets. Finally,
Section 7 presents evaluation results and in Section 8 we
conclude.

2. Related Work

)e saliency prediction spreads in several research areas:
free-viewing gaze prediction [4, 9–12] which tries to model
the human eye fixations under free-viewing conditions,
egocentric gaze prediction [13–15] which aims to predict the
human eye fixations during a specific task, salient object
detection [17–20] that detects and segments the salient
objects in scenes and co-saliency detection [21, 22] that
detects the common salient objects from a group of images.
)ese visual saliency models are useful in vision tasks such as
object recognition [17], image/video retargeting [18], seg-
mentation [19–22], visual tracking [23], and image com-
pression [24]. As an instance, Wang et al. [21] proposed a
method that uses object-level cues for unsupervised video
object segmentation.

2.1. Classic Saliency Prediction Models. Pioneer saliency
prediction methods were mostly inspired by psychological
and psychophysical models of attention as studied in HVS
and they mainly focused on extracting better-handcrafted
features and using better learning methods. Many of these
bottom-up saliency models were based on Treisman’s “the
feature integration theory” [25], which proposed strategies
for combining various kinds of visual features without any
bias to find the salient subsets of the scene. In 1985, Koch
and Ullman [26] were one of the first to use the feature
integration theory to propose a feed-forward model for

combing a set of maps of elementary cues like contrast,
color, and motion to produce a map of saliency.

In 1998, Itti et al. [5] proposed an approach based on the
Koch and Ullman feed-forward model [26]. In their model,
they computed multi-scale center-surround contrast maps
of preattentive features and then integrated these contrast
maps to predict the saliency map. )eir work triggered a lot
of interest in the visual salience community. Many saliency
models such as adapted this center-surround structure in the
spatial domain [27, 28]. Itti and Baldi [29] proposed a model
based on Bayesian approaches. Some methods adopted an
information-theoretic justification for attentive selection
[30–32]. Harel et al. [8] proposed a saliency model based on
graph theory. Hou and Zhang [33] calculated saliency from
frequency analysis. Some traditional saliency models used
machine learning algorithms [34–36]. Some of these models
incorporate high-level features such as face or text to steer
the top-down process, thus they may not be purely bottom-
up [37]. While many models fall into the bottom-up saliency
model category, these models fail to capture the factors that
contribute to attentional selection.

2.2. Deep Saliency Prediction Models. Employing deep
convolutional neural networks (CNNs) in the saliency
prediction model has made some drastic improvements over
well-established saliency benchmark datasets [2]. Since 2014,
using DNNs for saliency prediction gained much attention.
To compensate for the lack of sufficiently large fixation data,
most of these DNN-based models use transfer learning by
employing a pretrained model that was trained for similar/
different visual tasks on large image datasets.

One of the first saliency models that used DNN was
proposed by Vig et al. [38]. )eir model, ensemble of deep
networks (eDN), generates a large number of richly-pa-
rameterized neuromorphic networks for the feature ex-
traction phase. )en, extracted features are applied to a
linear support vector machine (SVM) to predict the saliency
value. In [13, 39], Kümmerer et al. introduced a deeper
structure for the encoder. DeepGaze I [39] uses pretrained
AlexNet and DeepGaze II [13] uses pretrained VGG-19 for
extracting features from the input image. Huang et al. [40]
proposed a deep CNN structure that integrates information
at different image scales. )ey showed that adding multi-
scale information improves the saliency prediction results.
Kruthiventi et al. [12] introduced a fully CNN model with a
new “location biased convolutional (LBC) layer” to learn
“location specific patterns” such as the center bias. Jetley
et al. [41] formulated saliency map prediction as a proba-
bility distribution prediction task and trained a model to
learn this distribution. Liu and Han [16] introduced a sa-
liency model with a convolutional long short-term model
(LSTM) to learn the global context. Cornia et al. [14]
proposed a new saliency prediction architecture that in-
corporates a convolutional LSTM network and a spatial
attentive mechanism. In [42], a saliency model based on
image segmentation was introduced that exploits the object
information for the saliency prediction task. Wang et al. [3]
proposed a video saliency model, called ACLNet that uses
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the CNN-LSTM network to predict visual attention over
dynamic scenes. Wang et al. [43] proposed a model that
incorporates multi-level saliency predictions within a single
network to decrease redundancy. Some researches focus on
decreasing themodel complexity and inference time for real-
time application [44].

In summary, Table 1 compares the main properties of
some prominent saliency prediction models and our pro-
posed models. In Table 1, NSS, KL-D, CC, MSE, and SIM
stand for normalized scanpath saliency, Kullback–Leibler
divergence, linear correlation coefficient, mean square error,
and similarity respectively.

2.3. Salient Object Detection. )e goal of salient object de-
tection is to detect the most salient objects of a scene. Zhang
et al. [46] used the multistage refinement mechanism to
propose augmenting feedforward neural networks for
addressing feature resolution reduction in CNNs. Zhao et al.
[47] proposed a CNNs-based architecture that uses contrast
prior to enhance the depth of information for salient object
detection. Zhang et al. [48] proposed a probabilistic RGB-D
saliency detection model based on conditional variational
autoencoders. Li et al. [49] proposed a model that uses a
pixel-level fully convolutional stream and a segment-wise
spatial pooling stream to overcome the problem of blurry
saliency maps, especially near the boundary of salient ob-
jects. To better segment salient and preserve the salient
edges, Wang et al. [50] also proposed a model with a salient
edge detection module. In most of these methods, incor-
poration of global and local information is missing and the
need to use an appropriate model of jointly considering this
information is still a challenge.

3. Motivation

Psychological and neurobiological experiments have dis-
covered the role of contextual information in guiding the
attentive mechanism of HSV. To understand the influence of
contextual information on local saliency prediction, assume
a red apple among green apples. In this scene, this red apple
is certainly a salient object because of its distinct color, but
among some apples with similar shape and color, it may not
be a salient object. Hence, an ideal saliency model that aims
to mutate this attentive mechanism is supposed to incor-
porate the contextual information of the scene in saliency
prediction. Despite the state-of-the-art performance of deep
saliency models, some experimental results have approved
that CNN-based saliency models fail to capture global in-
formation and location-dependent features of the scene. In
this regard, we proposed two approaches to incorporate the
global scene properties and remedy some deficiencies in
CNN-based saliency models. In this section, we peruse the
importance of the global scene properties in saliency pre-
diction and deficiencies of CNN structures.

3.1. Contextual Cues and HVS. In order to understand the
importance of global properties in saliency prediction, we
explain how the HVS computes the visual saliency of a scene.

To capture the global features of the scene which describe the
context of the scene, the brain encodes the consistent
properties of the scene [51]. Experimental results reported
by [39] show that the neurons belonging to the visual part of
the brain demonstrate tuning characteristics that can be
optimized to respond to recurring features in the scenes with
comparable contents [52], thus the scenes with similar global
characteristics will get similar processes in the human brain.

)e global visual context guides the attentive mechanism
of the HVS, i.e., what to expect in the scene and where is the
most salient region in familiar scenes. Indeed, HVS uses an
unsupervised learning mechanism to determine the optimal
features from input scenes and localize the salient regions in
these scenes. When it confronts with unfamiliar scenes
having comparable global properties, it uses its past expe-
riences to efficiently process these scenes and optimally
allocate the perceptual and cognitive resources [51]. In
neurobiology, it is called a contextual cueing effect [53].

3.2.Deficiencies inCNNStructures. In a single convolutional
layer, every neuron observes the input through an aperture
called the convolution window. Prevalently, the size of this
window is much smaller than the spatial size of the input,
hence a convolutional layer is capable of extracting local
features from images but it fails to efficiently extract the
high-grade contextual features instead. A CNN typically
consists of a series of convolutional layers. Every hidden
layer in this structure uses the output of its previous layer as
input. In the applications where contextual features are
needed (e.g., image classification tasks), they employ some
fully connected layers as the later stage to combine these
mostly local features and to generate more effective global
features.

Statistically, it has been observed that the human eye
fixations are strongly biased toward the center of an image
[54] which is often explained through the photographer’s
bias [12] or through an uninterested observer’s viewing
strategy [55]. )is phenomenon can be observed in many
saliency benchmark datasets. For instance, Figure 1 shows
the average of all ground truth saliency maps in the SAL-
ICON 2017 train set. )is property can be considered as a
global feature of the fixations of any saliency benchmark
dataset. One of the most important drawbacks of using CNN
structures for saliency prediction is that fully convolutional
networks (FCNs) are unable to extract the center bias of the
eye fixations because of the global nature of this bias. In
addition, convolutional layers use weight sharing, and hence
they are location-invariant (or shift-invariant). Hence, they
are incapable of learning the location-dependent patterns
too [12].

To compensate for some of these aforementioned defi-
ciencies, several methods have been proposed since 2014. It
has been shown that cues like center bias may improve
model performance [41]. To account for the center bias,
some approaches linearly combined the saliency prediction
with a fixed Gaussian blob (an estimate of the prior dis-
tribution) [13, 39]. Kruthiventi et al. [12] introduced an LBC
filter for capturing location-dependent patterns. Instead of
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using predefined priors, Jia et al. [1] used a prior image to
capture center bias and then pixel-wise multiplied this prior
image by the predicted saliency map.

4. Proposed Methods

When predicting the saliency map of an input image, the
saliency value of each image patch is influenced not only by
the visual features of that patch (local features) but also by
the global properties of the whole scene, contextual infor-
mation, and the location of the patch in that image. In this
section, we propose two approaches that incorporate both
locally extracted features and global scene properties into
local saliency prediction. In pixel-wise saliency prediction,
these methods enable the saliencymodel to take into account
not only the locally extracted features of each pixel location
but also the global scene properties. Accordingly, we call
these methods the global-local gazing (GLG) based method.
To evaluate the effects of employing the global-local gazing
concept in saliency prediction, we use SAM-ResNet [18] as
the base model and extend this model using our proposed
methods.

4.1. Base Model. )e saliency attentive model (SAM) is
among the best saliency models and was proposed by Cornia
et al. [14]. Figure 2 presents the architecture of this deep
saliency model. It is consisting of a dilated convolutional
network and a ConvLSTM network. )e dilated convolu-
tional network is an extended version of a deep convolu-
tional neural network that has higher resolution feature
maps. Cornia et al. introduced two versions of the saliency
model. One of them uses VGG-16 [56] and the other version
uses ResNet-50 [57] as the backbone. )is dilated neural
network extracts some local feature maps from the input
image.)e role of attentive ConvLSTM is to focus iteratively
on related spatial locations to enhance extracted features.
)e number of timesteps for this Attentive ConvLSTM has
been set to 4. An explicit prior component has been in-
troduced in order to learn the center prior. At the final stage,

a convolutional layer predicts the saliency map of the input
image. To train and evaluate the model, a loss function has
been defined as [14]:

L 􏽥y, y
den

, y
fix

􏼐 􏼑 � αNSS 􏽥y, y
fix

􏼐 􏼑 + βCC 􏽥y, y
den

􏼐 􏼑 + cKL 􏽥y, y
den

􏼐 􏼑,

(1)

where 􏽥y, yden, and yfix are the predicted saliency map, the
ground truth density distribution, and the ground truth
binary fixation map respectively. NSS( ), CC( ), and KL( ) are
the normalized scanpath saliency, the linear correlation
coefficient, and the Kullback–Leibler divergence respectively
which are among the most popular saliency measures. Loss
parameters [14]: in this work, we use SAM-ResNet as the
base model to evaluate the effectiveness of our proposed
approaches. We extended the SAM-ResNet [14] using our
GLGmethods, to inject the global scene properties into local
saliency prediction.

4.2. 4e GLG-I Saliency Model. As aforementioned, the
convolutional layers use weight sharing to reduce the
number of model parameters. Namely, all the neurons in a

Figure 1: )e average of all ground truth saliency maps in the
SALICON 2017 train set.

Table 1: A comparison between the main properties of some prominent saliency models.

Model name Center bias Transfer
learning CNN Loss function

LSTM-based SAM [14] Multiple-learned priors ✓ VGG, ResNet NSS, KL-D, CC
DSCLRCN [16] — ✓ VGG, ResNet NSS
DeepGaze II [13] Gaussian prior ✓ VGG Log-likelihood
ML-Net [15] Single multiplicative map ✓ VGG Normalized MSE

PDP [41] — ✓ VGG Probability
distances

SalNet [45] — ✓ VGG Euclidean loss

SALICON [40] — ✓ AlexNet, VGG, GoogLeNet KL-D, NSS, CC,
SIM

DeepFix [12] Handcrafted priors ✓ VGG Euclidean loss
eDN [38] — - 1 to 3 layer networks Euclidean loss

GLG-I
(proposed model)

Multiple-learned priors,
fully connected
component

✓ ResNet NSS, KL-D, CC

GLG-II
(proposed model) Multiple-learned priors ✓ ResNet, VGG NSS, KL-D, CC
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convolutional layer use the same weights. )ese weights do
not depend on the location of neurons and are being used for
all the spatial locations of the input. )is property makes the
convolutional layers location-invariant. Hence, the con-
volutional layers are unable to use different weights for
different locations and to extract location-specific features.
For CNN-based saliency models that predict the output
saliency map pixel-wise, it is necessary to employ a com-
ponent that compensates for such shortcomings, because the
saliency value of a pixel or an image patch is very dependent
on the context information of the whole scene and other
global properties such as center prior.

In this subsection, we introduce a component called the
fully connected component. We use this component to
extend and modify the base model to create our GLG-I
saliency model. )is extension is able to extract location-
dependent and global properties of the scene to reinforce the
global information for pixel-wise saliency prediction. Fig-
ure 3 presents the architecture of our GLG-I saliency model.

To compute the location-dependent features and global
scene properties, the locally extracted feature maps that are
extracted by the dilated ResNet are applied to the fully
connected component. )e architecture of this proposed
component is presented in Figure 4. )is component is
composed of three convolutional layers and a fully con-
nected layer. Two convolutional layers with a core size of
3× 3 are employed at the primary stage to reduce the
number of input channels. )ese layers help the component
to reduce the number of parameters. Afterward, a 2D array
of 1200 fully connected neurons with a size of 30× 40, called
the fully connected layer, is employed to compute the lo-
cation-dependent features and global scene properties. )e
fully connected neurons of this layer are connected to all
neurons of the second convolutional layer. Unlike the
convolutional layers, the fully connected layer is location-
variant because every fully connected neuron in this layer
has its own weights and is able to capture location-depen-
dent patterns/features. Finally, a convolutional layer is used
to smooth the output of the fully connected layer.

)rough the use of fully connected neurons, compared
to the base model, these neurons increase the number of
parameters only by 1.6 percent. )e fully connected com-
ponent has a limited number of parameters too and com-
pared to the base model, it increases the number of the
parameters only by 15 percent. However, this number of
parameters can still be reduced by selecting the appropriate
number of cores for the first convolutional layer in the fully
connected component. For example, if we set the number of
cores for the first convolutional layer to 16, compared to the
base model, the number of the model parameters increases
only by 2 percent without any noticeable performance re-
duction. Table 2 presents the architectural details of our fully
connected component.

)e resulting feature map is concatenated with the
output of the learning prior module, and then these feature
maps are applied to a convolutional layer for predicting the
saliency map of the input image. In the training phase, this
predicted saliency map is evaluated using the ground truth.
Table 2 compares the number of parameters in our GLG-I
model with the base model.

4.3.4e GLG-II SaliencyModel. As aforementioned, GLG-I
uses a fully connected component to compute the location-
dependent features and global scene properties. Instead of
using a fully connected component, here we introduce
another approach called GLG-II that uses the output fully
connected layer at the final stages of a deep neural network
for extracting the contextual features of the scene. Most
deep models predict the saliency value pixel-wise, and
hence we use a new approach to make the contextual in-
formation available pixel-wise. To do so, we repeat this
global feature vector to make it available at any spatial
location of the image. Here, we use the VGG neural net-
work (VGGNet) [56] to extend and modify our base model
and to create our GLG-II saliency model, but in general, the
fully connected layers of the backend neural network can be
used instead to avoid using an additional deep model.
Figure 5 presents the architecture of our GLG-II saliency

Figure 2: )e saliency attentive model [14].
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Figure 3: )e GLG-I saliency model.
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model. )e weights of this VGGNet are initialized with that
of the VGG-16 trained on ImageNet [58]. )e output of the
second fully connected layer of this VGG structure was
considered as contextual features because this neural
network has been trained to classify input images based on
their context, and thus the features that are extracted at
later layers are expected to describe the contextual infor-
mation of the input image.

For every input image, the locally extracted features and
contextual information are computed using dilated ResNet
and VGGNet respectively. )e VGG neural network gen-
erates a vector of 4096 features at its second fully connected
layer. We use this feature vector as the contextual infor-
mation of the scene. CNN-based saliency models predict the
saliency value pixel-wise. To incorporate the contextual
information in the saliency prediction of every pixel, we
embed the contextual information in every spatial location
of each pixel. To do this, we repeat this feature vector along
two spatial dimensions (width and height) to generate a 3D
global feature array. )e globally and locally extracted

feature maps are concatenated to enable the model to predict
the saliency value of each pixel by using both of this in-
formation. A 3× 3 convolutional layer is employed to reduce
the number of channels in concatenated feature maps and as
a result, the number of model parameters reduces. However,
the increase in the number of model parameters compared
to the base model is due to this layer. )en, a convolutional
LSTM fine-tunes the resulting features. After the prior
module, at the final stage, a convolutional layer predicts the
saliency map of the input image. For the training phase, this
predicted saliency map is evaluated using the ground truths.

We initialize the weights of the VGGNet with that of the
VGG-16 trained on ImageNet [58]. As we want to use
VGGNet to extract contextual information, the trained
weights on ImageNet would be enough, and no training
phase is required for our VGGNet. )at is, the weights of
VGGNet would stay frozen and the number of the model
parameter would not increase by employing VGGNet. Ta-
ble 3 compares the number of parameters in our GLG-II
model with the base model.

Table 2: )e architecture of our fully connected component.

Core size Number of cores Output size Number of parameters
Conv2d 3× 3 512 30× 40× 512 9,437,696
Conv2d 3× 3 1 30× 40×1 4,608
2D fully connected layer — — 30× 40×1 1,124,400
Conv2d 3× 3 1 30× 40×1 10

Total number of parameters: 10,566,715

Figure 5: )e GLG-II saliency model.
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5. Experimental Setup

In this section, some popular evaluation metrics, evaluation
baselines, and saliency datasets are described, and then
implementation details are provided.

5.1. Evaluation Metrics. For measuring the saliency model
performance, several measures are being used. Some of these
evaluation measures are distribution based and they com-
pare predicted saliency maps and fixation maps. Other
metrics are location based and compute some statistics at
fixated locations. In this section, these metrics are concisely
described.

5.1.1. Pearson’s Correlation Coefficient. )e correlation co-
efficient measure (CC), calculates the correlation between
the ground truth map G and the predicted map P. It can be
measured as [59]:

CC(P, G) �
cov(P, G)

std(P) × std(G)
, (2)

where std( ) and cov( ) compute the standard deviation and
covariance, respectively. )e CC ranges between −1 and 1. A
value of 1 shows a complete positive correlation between P

and G. A value of 0 shows no relationship between these two
maps.

5.1.2. Kullback–Leibler Divergence. Kullback–Leibler di-
vergence (KL-D) can be used to calculate the difference
between two probability distributions. If we interpret the
predicted map P and ground truth map G, it can be com-
puted as [59]:

KL(P, G) � 􏽘
i

Gilog ε +
Gi

ε + Pi

􏼠 􏼡, (3)

where ε is a constant is used for regularization and i indexes
the ith pixel. As can be seen, the KL score is asymmetric. A
larger KL value shows a larger difference between the
predicted saliency map and fixation map while a KL score of
zero indicates that the model is predicting the saliency values
perfectly.

5.1.3. Earth Mover’s Distance. )e Earth mover’s distance
(EMD) measures the spatial distance between the predicted
map and the ground truth map over a region. EMD com-
putes how much transformation the predicted saliency map
would need to match the fixation map [59].

A larger difference between the predicted map and
fixation maps results in a larger EMD value while a zero
value shows that the predicted and fixation maps are the
same.

5.1.4. Similarity or Histogram Intersection. )e similarity
metric (SIM) measures the similarity between the pre-
dicted saliency map P and ground truth fixation map G.
SIM is computed as the sum of the minimum values of the
normalized P and G at each pixel. It can be computed as
[59]:

SIM(P, G) � 􏽘
i

min Pi, Gi( 􏼁,

where􏽘
i

Pi � 􏽘
i

Gi � 1.
(4)

)e SIM ranges between zero and one. A value of 1
shows P and G are the same. A value of 0 shows no overlap
between P and G.

5.1.5. Normalized Scanpath Saliency. )e normalized
scanpath saliency (NSS) calculates the correspondence of
predicted saliency maps P and the binary fixation map ofGB.
It measures the average of the predicted saliency values in
fixated points after normalization and can be computed as
[59]:

NSS P, G
B

􏼐 􏼑 �
1
N

􏽘
i

Pi × G
B
i ,

whereN � 􏽘
i

G
B
i andP �

P − mean(P)

std(P)
,

(5)

where std( ) and mean( ) compute the standard deviation
and average, respectively, i indicates the ith pixel, and N is
the number of fixation points.

A larger NSS indicates higher saliency values in fixated
points and better performance of the model. An NSS of zero
shows that the saliency model does not work better than a
random number generator and a negative NSS shows that
the saliency model performs worse than a random number
generator.

5.1.6. Area under ROC Curve. By interpreting a saliency
model as a binary classifier that classifies each pixel into
fixated and nonfixated. )e ROC curve can be created by
plotting the true positive rate (TPR) versus the false positive
rate (FPR) at various discrimination thresholds. )e area
under the ROC curve (AUC) is used to evaluate the model’s
performance. Various kinds of AUC have been proposed
which differ in how TPR and FPR are calculated. )e AUC
values range between 0.0 and 1.0. A larger AUC indicates
that the model performs better.

)e AUC-Judd [36] (or AUC in this study) uses the
samples from saliency map values as the thresholds. For a
given threshold, the percentage of saliency values smaller

Table 3: )e number of parameters in GLG models compared to
the base model.

Model name Number of parameters
SAM-ResNet 70,093,441
GLG-I 80,660,157
GLG-II 88,967,809
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than the threshold at fixation locations is TPR and the
percentage of saliency values higher than the threshold at
unfixated pixels is FPR.

To bypass the effects of the center bias on FPR calcu-
lation, )e AUC-Borji [60] calculates the FPR at random
pixels that are sampled uniformly from all image pixels and
the shuffled AUC (sAUC) [61, 62] calculates the FPR at
random pixels that are sampled uniformly from fixations on
other images. Despite the difference in the definition of TPR,
the AUC-Judd, the AUC-Borji, and the shuffled AUC cal-
culate the TPR similarly.

5.1.7. Information Gain. Information gain (IG) [63] is an
information-theoretic metric that computes the average
information gain of the saliency map P for the center-prior
baseline B at fixated locations GB [59]. Information gain is
computed as:

IG P, G
B

􏼐 􏼑 �
1
N

􏽘
i

G
B
i log2 ε + Pi( 􏼁 − log2 ε + Bi( 􏼁􏼂 􏼃, (6)

where ε is a constant for regularization, i indicates the ith
pixel, and N is the number of fixation points. An IG score
above zero indicates the model outperforms the center prior
to baseline in the prediction of ground truth fixations.

5.2. Evaluation Baselines

(i) Infinite: this baseline uses the fixation points of an
infinite number of observers to predict the fixation
points of another infinite number of observers.

(ii) One human: this baseline uses the fixation points of
an observer to predict the fixation points of the
other observers.

(iii) Center: this baseline uses a symmetric 2D Gaussian
map as the predicted fixation map of the input
image.

(iv) Permutation: this baseline uses fixation points of a
randomly selected image as the predicted fixation
points of the input image.

(v) Chance: this baseline uses a randomly generated
saliency map as the predicted fixation map of the
input image.

5.3. Saliency Datasets. In this work, we train and evaluate
our models over four datasets: the dataset of SALICON
Challenge 2015, the dataset of SALICON Saliency Prediction
Challenge (LSUN 2017), MIT300, and MIT1003 that are
among the most popular image-based saliency datasets.

5.3.1. SALICON 2015 and SALICON 2017. )e dataset of
SALICON Challenge 2015 [64] and the dataset of the
SALICON Saliency Prediction Challenge (LSUN 2017) are
among the richest saliency datasets based on the MS COCO
image dataset [65]. )ey consist of 10,000 images for
training, 5,000 images for validation data, and 5,000 images
for the test. We call these datasets SALICON 2015 and

SALICON 2017 respectively. Presently, the model evaluation
over SALICON 2015 test set is not available because it has
been closed by the provider.

Deep neural networks need abundant data for the
training phase. Currently, many studies train their deep
saliency models on the SALICON dataset and then fine-tune
on other saliency datasets for predicting fixations of small
datasets. Considering the evaluation result of state-of-the-art
saliency models over the SALICON 2015 test set that is
available in [2], our base model, SAM-ResNet [14], is among
the best models over SALICON 2015 test set.

5.3.2. MIT300. )e MIT300 [66] consists of 300 color
images of natural indoor and outdoor scenes in JPG format
that is used as a benchmark test set. )e ground truth
(fixation points and saliency map) of this dataset is not
provided and the MIT/Tuebingen Saliency Benchmark
[67, 68] uses it for evaluation of the saliency models
according to multiple metrics.

5.3.3. MIT1003. )e MIT1003 [36] consists of 1003 color
images of natural indoor and outdoor scenes in JPG format.
)e ground truth (fixation points and saliency map) of this
dataset is provided and it is available as the training data for
MIT/Tuebingen Saliency Benchmark [67, 68].

5.4. Implementation Details. As mentioned before, our
models are evaluated on SALICON 2015, SALICON 2017,
and MIT300. For SALICON 2015 and SALICON 2017, we
train our model on the training data and are validated on the
validation set of these datasets using the loss function in (1).
For SALICON datasets, a batch size of 10 samples is chosen
for the training and validation phase. As instructed by the
MIT Saliency Benchmark [67], for MIT300, we pretrain our
models on the SALICON and then fine-tune them on
MIT1003. To find the appropriate version of the SALICON
dataset that leads to better performance onMIT300, we tested
both SALICON 2015 and SALICON 2017 for the pretraining
phase separately. To fine-tune the models on MIT1003, this
dataset is split randomly into 904 images of the training set
and 99 images of the validation set. In the pretraining phase
on SALICON and fine-tuning phase on MIT1003, batch sizes
of 10 and 9 samples are chosen respectively.

For the pretraining and finetuning stages, the learning
rate is initialized to 10−4 and after every two epochs it is
decreased by a factor of 10. Finally, the models with the best
validation loss are chosen for evaluation on the test set.

We use a computer with 16GB RAM and NVIDIA Tesla
K80 GPU. )e number of rows and columns of the input
images is 240 and 320 pixels, respectively.)e inference time
of the base model using the aforementioned GPU is about
200ms. )e inference times of our models are about 250ms
which shows only a 25 percent increase. )is indicates that
our methods do not increase the overall inference time of the
model. )e reason for this is that the base model uses a
recursive component that requires a lot of time to calculate
its output.
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6. Experimental Results

)e evaluation results of our GLG models over the SALI-
CON 2015 validation set, the SALICON 2017 test set, and
MIT300 are reported and compared with the state-of-the-art
saliency models. Currently, evaluations on the CAT2000 test
set and the SALICON 2015 test set are closed and are not
available anymore.

Considering Table 4, over the SALICON 2015 validation
set, the GLG-I model outperforms the base model according
to AUC, CC, and sAUC and outperforms all other existing
state-of-the-art saliency models according to AUC. )e
GLG-II model outperforms the base model (SAM-ResNet)
according to AUC, sAUC, and NSS and outperforms almost
other existing state-of-the-art saliency models according to
sAUC and NSS.

Considering Table 5, our models outperform the base
model according to AUC, CC, KL, IG, and SIM. Our models
also outperform other state-of-the-art models according to
CC, AUC, and SIM, and over the SALICON 2017 test set.

Considering Table 6, over the MIT300, the GLG-I model
outperforms the base model according to EMD, AUC-B,
sAUC, CC, and KL, and the GLG-II model outperforms the
basemodel according to EMD, AUC-B, sAUC, CC, NSS, and
KL. In Table 6, the evaluation results were sorted based on
SIM, CC, and AUC-B. Overall, our proposed models also
outperform as well as the best state-of-the-art models.

It also shows that pretraining on SALICON 2017 and
SALICON 2015 does not affect noticeably on model per-
formance over MIT300.

It can be concluded from the evaluation results over
SALICON 2015, SALICON 2017, and MIT300 that our
methods improved the performance of the base model.
)ese extensions on the base model enable the saliency
model to capture global information better and improve the
accuracy of the saliency prediction task. In Figure 6, we
compare the output of our model with EML-NETand SAM-
ResNet. Figure 6 demonstrates that by using our proposed
methods for including the contextual information and lo-
cation-dependent patterns, the focus of attention gets cor-
rected in most cases and the model performance improves
according to several evaluation metrics.

7. Discussion

As aforementioned, convolutional layers use weight sharing
and as a result, they are location-invariant. Hence, the fully
convolutional neural networks [44] make them incapable of
learning the location-dependent patterns [12], and global
scene properties. In our GLG-I model, we propose a novel
fully connected component to incorporate these properties
into the local saliency prediction. Unlike the convolutional
layers, the fully connected layer is location-variant because
every fully connected neuron in this layer has its own
weights and is able to capture location-dependent patterns/
features. Considering the performance of the GLG-I model
on different datasets, it can be concluded that by employing
some location-variant structures in the model, the perfor-
mance of saliency prediction improves considerably.

Experimental results demonstrate that the neurons of the
visual part of the brain show tuning properties that can be
optimized to better react to recurring features in the scenes
with comparable contents [52]. HVS provides a good
platform to learn the best features and locations of the salient
region of a scene and extend this for similar scenes [51]. Our
GLG-II model imitates this mechanism in the human brain
and employs an additional VGGNet to extract and incor-
porate the contextual information of the scene. Considering
the performance of the GLG-II model on different datasets,
it can be concluded that as expected from the contextual
cueing effect [53], by incorporating the contextual features
of the scene into the local saliency prediction, the perfor-
mance of saliency prediction improves.

Despite the fact that the deep state-of-the-art saliency
models have shown tremendous improvements over the
classic saliency models, these models mainly suffer from a
high number of parameters. Although deep saliency models
are suitable for applications that require high accuracy, they
are not recommended for real-time applications due to their
high number of parameters. )e models with high com-
plexity require more calculation and powerful and expensive
hardware for training and test phases. )e new studies need
to focus not only on higher performance but on the lower
model complexity. Some domains with the real-time ap-
plication demand light models with mediocre performance.

Table 4: Performance of GLG models, compared to state-of-the-art saliency models over the SALICON 2015 validation set, compiled from
SALICON challenge 2015 website.

Model name AUC CC SAUC NSS
EOF-MODEL [42] 0.886 0.851 0.791 3.026
GLG-I 0.89 0.846 0.788 3.243
GLG-II 0.887 0.843 0.791 3.262
DSCLSTM [16] 0.887 0.835 0.788 3.221
DSCLRCN [16] 0.887 0.835 0.785 3.221
SAM-ResNet [14] 0.886 0.844 0.787 3.26
DeepGaze II [13] 0.886 0.505 0.767 1.34
FSM [44] 0.884 0.803 0.775 2.756
SAM-VGG [14] 0.883 0.83 0.782 3.219
ML-Net [15] 0.869 0.744 0.776 2.829
SalNet: deep convnet [45] 0.858 0.609 0.727 1.822
SalNet: shallow convnet [45] 0.817 0.548 0.658 1.625
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For instance, in [44] a compact and light saliency prediction
model with acceptable performance has been proposed for
real-time applications on CPU.

As can be seen in the second row of Figure 6, based on the
given ground truth image, an observer finds the man’s face
and the plastic bag as the salient objects of the input scene, but
saliency models including our GLG models were not able to
detect the bag as a salient object. It is mainly due to the partial
occlusion of the plastic bag. None of the saliency models in
Figure 6 perceived the connection between the man and the

bag in his hand. As a result, we can conclude that complex
backgrounds and partially occluded objects are two big
challenges for saliency models. Another example of the
partially occluded salient object is the third cow in the first
input image in Figure 6. )e head of the cow is occluded and
as a result, none of the saliency models in Figure 6 (including
our GLGmodels) could find it as a salient object. On the other
hand, the human brain can easily identify the brown spot
behind the second cow as the third cow by semantically
completing missing parts in partially occluded objects.

Table 5: Performance of GLG models compared to SAM-ResNet over the SALICON 2017 test set.

Model name CC AUC SIM KL IG NSS
GLG-I 0.903 0.867 0.798 0.37 0.764 1.99
GLG-II 0.903 0.867 0.799 0.43 0.708 1.987
EOF-MODEL [42] 0.900 0.866 0.794 0.392 0.723 1.954
SAM-ResNet [14] 0.899 0.865 0.793 0.61 0.538 1.99
MSI-Net [69] 0.889 0.865 0.784 0.307 0.793 1.931
EML-NET [1] 0.886 0.866 0.78 0.52 0.736 2.05
GazeGAN [70] 0.879 0.864 0.773 0.376 0.72 1.899
FSM [44] 0.875 0.862 0.772 0.365 0.716 1.863
MD-SEM [71] 0.868 — — 0.568 — 2.058
SalNet [45] 0.622 — — — — 1.859

Table 6: Performance of GLG models compared to state-of-the-art saliency models over the MIT300 dataset, compiled from [2].

Model name SIM CC AUC-B KL EMD sAUC NSS AUC-J
Baseline: infinite 1 1 0.88 0 0 0.81 3.29 0.92
EOF-MODEL [42] 0.68 0.79 0.80 1.05 2.10 0.72 2.31 0.87
GLG-I_salicon 2017 0.68 0.79 0.80 1.13 2.00 0.71 2.34 0.87
GLG-II_salicon 2017 0.68 0.79 0.80 1.10 1.99 0.71 2.34 0.87
GLG-I_salicon 2015 0.68 0.79 0.80 0.99 2.03 0.71 2.33 0.87
GLG-II_salicon 2015 0.68 0.79 0.79 1.24 2.05 0.71 2.35 0.87
EML-NET [1] 0.68 0.79 0.77 0.84 1.84 0.70 2.47 0.88
SAM-ResNet [12] 0.68 0.78 0.78 1.27 2.15 0.70 2.34 0.87
SAM-VGG [12] 0.67 0.77 0.78 1.13 2.14 0.71 2.30 0.87
FSM [44] 0.65 0.74 0.80 0.80 2.32 0.71 2.10 0.86
SalGAN [60] 0.63 0.73 0.81 1.07 2.29 0.72 2.04 0.86
PDP [37] 0.6 0.70 0.80 0.92 2.58 0.73 2.05 0.85
ML-Net [13] 0.59 0.67 0.75 1.10 2.63 0.70 2.05 0.85
DVI [43] 0.58 0.68 0.78 - 3.05 0.71 1.98 0.85
SalNet [38] 0.52 0.58 0.82 0.81 3.31 0.69 1.51 0.83
GBVS [6] 0.48 0.48 0.80 0.87 3.51 0.63 1.24 0.81
Deep gaze 2 [11] 0.46 0.52 0.86 0.96 3.98 0.72 1.29 0.88
Baseline: center 0.45 0.38 0.77 1.24 3.72 0.51 0.92 0.78
IttiKoch2 [3] 0.44 0.37 0.74 1.03 4.26 0.63 0.97 0.75
eDN [34] 0.41 0.45 0.81 1.14 4.56 0.62 1.14 0.82
Deep Gaze 1 [35] 0.39 0.48 0.83 1.23 4.97 0.66 1.22 0.84
Baseline: 1 human 0.38 0.52 0.66 6.19 3.48 0.63 1.65 0.80
SUN saliency [45] 0.38 0.25 0.66 1.27 5.10 0.61 0.68 0.67
Baseline: Perm. 0.34 0.20 0.59 6.12 4.59 0.50 0.49 0.68
Baseline: Chance 0.33 0 0.50 2.09 6.35 0.50 0 0.50
IttiKoch [61] 0.2 0.14 0.54 2.30 5.17 0.53 0.43 0.60
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8. Conclusion

In this study, we proposed two novel saliency models to
predict human attention during scene free-viewing of nat-
ural scenes. To investigate the effectiveness of our methods,
we used the SAM-ResNet [14] as the base model. We ex-
tended the base model using our proposed methods to inject

contextual cues and capture location-dependent patterns/
features in order to overcome the deficiencies of CNN
structures in the base model. In our first approach, a novel
fully connected component is used to incorporate the lo-
cation-dependent and global scene properties. In the second
approach, a VGGNet is employed to extract the contextual
information of the scene.

Input Image Ground-truth ELM-Net SAM-ResNet GLG-I GLG-II

Figure 6: Qualitative results and comparison to the state of the art.
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Experimental results showed that our GLG models
outperform not only the base model but also most previous
saliency models over SALICON 2015, SALICON 2017, and
MIT300 datasets. Our effort to incorporate the contextual
information and global scene properties may supply new
inspirations for future works on saliency models to apply
such an amendment to the computational saliency models.

Data Availability

Experiments have been done based on a database available at
the MIT saliency benchmark (http://saliency.mit.edu/) and
MIT/Tuebingen Saliency Benchmark (https://saliency.
tuebingen.ai/ and http://salicon.net/).

Conflicts of Interest

)e authors have no conflicts of interest to disclose.

References

[1] S. Jia and N. D. Bruce, “Eml-net: an expandable multi-layer
network for saliency prediction,” Image and Vision Com-
puting, vol. 95, Article ID 103887, 2020.

[2] A. Borji, “Saliency prediction in the deep learning era: suc-
cesses and limitations,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 1, no. 1, pp. 1–5, 2019.

[3] W. Wang, J. Shen, J. Xie et al., “Revisiting Video Saliency
Prediction in the Deep Learning Era,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, 2019.

[4] T. Deng, H. Yan, L. Qin, T. Ngo, and M. BJIToITS, “How do
drivers allocate their potential attention?” Driving fixation
prediction via convolutional neural networks, vol. 21, no. 5,
pp. 2146–2154, 2019.

[5] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based
visual attention for rapid scene analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 11,
pp. 1254–1259, 1998.

[6] L. Itti and C. Koch, “Computational modelling of visual at-
tention,” Nature Reviews Neuroscience, vol. 2, no. 3,
pp. 194–203, 2001.

[7] Y.-F. Ma, “Zhang H-J Contrast-based image attention analysis
by using fuzzy growing,” in Proceedings of the Eleventh ACM
International Conference on Multimedia, pp. 374–381, ACM,
Berkeley, CA, USA, November 2003.

[8] J. Harel, C. Koch, and P. Perona, “Graph-based visual sa-
liency,” Advances in Neural Information Processing Systems,
vol. 19, pp. 545–552, 2007.

[9] M. Cerf, J. Harel, W. Einhäuser, and C. Koch, “Predicting
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