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With the great changes in the social, economic, and cultural background, the traditional education model can no longer meet the
current goal of cultivating dance talents.  e application of wearable devices based on deep learning helps to improve students’
understanding and application of dance movements.  rough extensive data analysis, experimental research, and kinesthetic
theory, it is found that trainers based on deep neural networks can e�ectively improve students’ overall learning performance. At
the same time, the application of emotion-intelligence teaching mode theory in dance experiments and the conclusions drawn
from the experimental research fully demonstrate the teaching advantages of applying deep learning wearable devices to dance
emotion-intelligence teaching mode. In order to explore the application of wearable devices based on deep learning in dance
teaching, this paper discusses the improvement of deep learning through the elaboration of parameter smoothing initialization,
convolutional pooling layer, optimal smoothing �lter, and dynamic pruning method, and then a wearable device is designed. A
device can recognize dance movements to verify the application of deep learning-based wearables in dance teaching in
emotional mode.

1. Introduction

With the development and maturity of new technologies,
there is an increasing demand for the use of intelligent
terminals. Deep neural networks are highly fault-tolerant
and can implement complex system models describing
various information to meet the functional requirements of
di�erent user groups.  ey process large amounts of data
and integrate it into a machine that provides multiple so-
lutions and multiple types of services to help humans solve
problems, and are well adapted to various types of reasoning
methods that do not rely on arti�cial models.

Deep learning is a new arti�cial intelligence tool based
on the Nans bus technology for digital image processing. It is
based on parallel computing and uses deep neural networks
and multilayer perceptrons to extract information from
complex features [1]. As there are many uncertainties af-
fecting human cognitive activities, e.g., environmental noise,
ambiguous stimuli, etc., can lead to interference or even
failure in the machine recognition process resulting in

erroneous judgment results; in order to solve these prob-
lems, we introduced deep learning techniques to analyze a
large number of raw images captured in real environments
and then obtain information on the attributes of the target
objects that need to be interpreted and predicted and then
use.  is useful information is then used to achieve de-
scription, recognition, or tracking tasks [2].

Research on wearable devices is mainly focused on in-
telligent robots and embedded systems. Currently, machine
vision and neural networks based on deep learning are
widely used in industrial production processes.  ere are
two main R&D techniques: one is based on neural networks
to establish ubiquitous layer bit algorithms, deep learning
models, and parallel underlying computing systems, and the
second is terminal signal strength. Due to the complexity of
deep learning, we need to address the problems that exist in
the current environment when implementing wearable
devices [3]. Current existing research focuses on visual,
auditory, and haptic aspects. In terms of vision, the �rst
priority is to improve the system’s perceptual capabilities,
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the second is to increase real time, and the last is to enhance
the sense of movement and improve features such as motion
performance to further enhance the interaction experience
and stability. Neural networks are used in a wide variety of
applications due to their high adaptive capacity and ro-
bustness [4] and are used in a wide range of applications,
including in dance teaching.

)e effect of full concatenation on the neural network
can be achieved by using global average pooling in place of
the full concatenation layer for the purpose of mapping a
two-dimensional feature map to a one-dimensional vector.
)e main idea of global average pooling is to do a full-size
average pooling of the feature maps generated by each
channel of the final convolutional layer in the convolutional
neural network to obtain a value [5–7], and the values of all
channels are weighted and averaged as the final score for that
sample.

2. Improved Deep Learning Methods

2.1. Smooth Initialization of Parameters. Since the training
process only amounts to smoothing most of the convolu-
tional kernels once, what would happen if we smoothed the
convolutional kernels ahead of time between the start of the
network training? Does this save the resources wasted on
“smoothing” during the training process and thus improve
the accuracy of the network? All parameters are still ini-
tialized according to the Xavier method, all convolutional
kernels are smoothed using a 3× 3 Gaussian filter to obtain a
set of smooth convolutional kernels, and the smoothed
network is trained for the same period using the momentum
method with a step size of 0.01 and a momentum factor of
0.5.

First consider a basic shallow network. )e structure of
this network is shown in Figure 1. )e first convolutional
layer of the network considered here contains 8 neurons, the
second convolutional layer contains 16 neurons, and the first
fully connected layer contains 64 channels. All convolutional
kernels are of size 5× 5. )e network contains a total of
20522 parameters.

Similarly, we trained and classified the MNIST dataset.
All parameters within this network are initialized using the
Xavier method (equations (1) and (2)). )e gradient descent
method is momentum (equation (3)) where the step size is
0.01 and the momentum coefficient is 0.5. )e activation
function of the hidden layer is ReLU (equation (4)), and the
activation function of the output layer is a softmax function.
We choose cross-entropy (equation (5)) as the error
function.
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After 9370 iterations (10 cycles) on the MNIST training
set, our small network achieves a test accuracy of 98.77%. It
should be noted that since the MNIST training set contains
60,000 samples, we use a small batch approach in the
training process, i.e., 64 samples per iteration, so that after
937 iterations, all training samples are traversed once. In
order to extend the training time and further improve the
accuracy of the network, we iterate through all the samples
once (called one cycle, epoch); i.e., all the training samples
are randomly ordered and iterated through again. If we
visualize the initial trial state of the convolutional kernels
versus the state at the end of training, we see that there are
many convolutional kernels that do not change significantly
from their initial state, and most of the trained kernels are
actually only smoothed out a bit from their initial values. To
test whether smoothing the convolutional kernels in advance
between the start of network training could improve the
accuracy of the network, I designed the following experi-
ments: firstly, the structure of the shallow network did not
change and all parameters were still initialized according to
the Xavier method. Secondly, all the convolutional kernels
were smoothed using a 3× 3 Gaussian filter to obtain a set of
smooth convolutional kernels. Finally, the smoothed net-
work was trained for the same period using the same step
size of 0.01 and momentum factor of 0.5 momentum. We
refer to the smoothing operation added after the initiali-
zation of the network parameters and before the training
starts as the smooth initialization. Accordingly, a smoothed
convolutional neural network is called a smooth convolu-
tional neural network. We can see that the smoothed set of
convolutional kernels splits into two subsets at the end of
training, with a small portion of the convolutional kernels
having more significant pixel variation and a larger standard
deviation, and a large portion of the convolutional kernels
becoming smoother and having a smaller standard devia-
tion. At this point, it is reasonable to assume that the
convolutional kernel with the larger standard deviation plays
a more dominant role in the classification process, as the
kernels with their own distinctive features will also be able to
extract more salient features and thus obtain more useful
texture information in the original data. Convolutional
kernels with small standard deviations play a minimal role in
the classification process, as they tend to have uniform pixel
values and their output values are only influenced by the
input values, regardless of the input data, and do not provide
effective feature information to the neurons in the later
layers. After 10 cycles of training, the test accuracy of the
smooth network was almost identical to that of the non-
smooth network (98.72%). Combined with the training
results for the fully trained smooth network with fully
connected layer parameters, we found that there is actually a
degree of diversity required in the fully connected layer. )is
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suggests that performing a direct smooth initialization of the
fully connected layer is not ideal and that we need to �nd
other ways to initialize the parameters of the fully connected
layer so that it has both a smooth and a highly variable part.

2.2. Convolutional Pooling Layer. A convolutional pooling
layer is essentially still a convolutional layer, except that the
size of its convolutional kernel is the same as the size of the
input data, and the number of output channels (like a fully
concatenated layer) is an arbitrary positive integer. Since the
convolutional kernel is the same size as the input data, the
result of each convolutional operation is a single value. us,
the convolutional pooling layer’s output can be directly
constituted as a vector. In fact, the C5 layer in LeNet-5 [8] is
a convolutional pooling layer with a 5× 5 convolutional
kernel and input data. Compared to a fully connected layer,
the number of parameters and the amount of computation
in a convolutional pooling layer are the same for the same
number of output channels. As shown in Figure 2, a fully
connected layer with input channel k and output channel c
has an input feature map of size w − h (w and h denote the
width and height of the feature map, respectively).  e
parameters W of the fully connected layer contain
k − c − w − h.  is is split and reorganized into k-c matrices
of size w − h, each of which can be used as the convolutional
kernel of the convolutional pooling layer.  e number of
parameters of the convolutional pooling layer is also
k − c − w − h. In order to investigate the compatibility of the
convolutional pooling layer with the smooth initialization
method proposed in the previous section, I designed the
following experiment.  e �rst fully connected layer in the
shallow neural network is replaced by a convolutional
pooling layer with the same number of channels, and the

other parameter settings are kept unchanged. We named the
network as convolutional pooling network for ease of dif-
ferentiation. Similarly, we compared the performance of the
convolutional pooling network between nonsmooth and
smooth initialization and designed the following experi-
ments for di�erent kinds of layers in the network: training
only the convolutional layers of the nonsmooth network
versus the smooth network; training only fully connected
layers (corresponding to “fully connected”); and training
both convolutional and fully connected layers (corre-
sponding to “all layers”). It is important to note that all-
connected includes the traditional all-connected layer, the
convolutional pooling layer, and of course the output layer
(which is actually an all-connected layer in its own right).

From Figure 3, it can be seen that the network with both
the convolutional pooling layer and the smooth initialization
achieves some improvement in accuracy (98.90%) over the
original network (98.77%). Further comparison shows that
the convolutional pooling network (with smooth initiali-
zation) is more accurate than the original network when
only the convolutional layers are trained.  is indicates that
the convolutional pooling layer outperforms the fully
connected layer even when there is no training. In addition,
the standard deviation of all accuracies for the convolutional
pooling network (0.71) is lower than that of the original
network (0.74). is indicates that the convolutional pooling
layer makes the overall performance of the neural network
more stable.

2.3. Optimal Smoothing Filter. In addition, we compared the
performance of other smoothing �lters with the 3× 3
Gaussian �lter to analyze the di�erent �lters on the pa-
rameter distribution to determine the optimal smoothing

input layer input layer
hidden layer hidden layer 1 hidden layer 2

output layer
output layer

Figure 2: Typical fully connected layer.
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�lter for smooth initialization. Speci�cally, we compared the
performance of a 3× 3 Gaussian �lter, a 5× 5 Gaussian �lter,
a 3× 3 median �lter, and a 3× 3 median �lter with a non-
smooth initialization. To make the comparison more con-
vincing, we trained and tested on the SVHN dataset, a real-
world digital sample set extracted from Google Street View
images, which contains 73257 training samples, 26032 test
samples, and 531131 slightly simpler additional training
samples. We combined the training samples with the ad-
ditional training samples into one training set and used a
three-layer convolutional neural network for the experi-
ments. e three hidden layers of the network contain 64, 96,
and 128 channels, respectively, and the ¨attening layer uses a
convolutional pooling layer with 2048 channels.  e net-
work contains over 4 million parameters in total. We use
momentum (equation (4)) as the training method, where the
momentum factor is set to 0.5.  e initial training step is set
to 0.1 and is scaled down by a factor of 0.1 every 2 cycles
starting from the 5th training cycle until the end of the 10-
cycle training.  e parameters of the network were initial-
ized with the Xavier method, followed by a smooth ini-
tialization. ReLU (equation (3)) is used as the activation
function in the hidden layer, while softmax is used as the
activation function in the output layer and cross-entropy
(equation (5)) is used as the error function. Di�erent
smoothing �lters result in di�erent distributions of pa-
rameters, which in turn are re¨ected in di�erent accuracy
performances of the neural network. In this paper, we
choose a 3× 3 Gaussian �lter as the default �lter for the
smoothing initialization.

2.4. Dynamic Pruning Methods.  e �rst is pruning of
¨attened layers, by virtue of convolutional pooling layers,
which allows us to treat most fully connected layers as
convolutional layers.  e advantage of this is that we can
train and prune the ¨attened layer in the same way as the
convolutional layer, unlike either treating the convolutional
layer di�erently from the fully connected layer in the
pruning process or just sparse the convolutional parameters

without treating the fully connected layer. It is important to
note that we do not prune the fully connected layer after the
¨attening layer—more speci�cally, the fully connected layer
that is itself the output layer of the network.  e reasons for
this are twofold: our aim is not to compress the storage space
occupied by network parameters to the smallest possible
proportion, and moreover, the number of parameters at this
layer is generally not very large in itself. We believe that this
layer is responsible for linearly transforming the results
obtained by abstracting the data from all previous hidden
layers to serve as the basis for �nal decisions such as clas-
si�cation, and it has been experimentally demonstrated that
the parameters in this layer generally obey a nonsparse
distribution and that the di�erences between adjacent values
are relatively large.  erefore, the redundant parameters at
such a high-level position in the network are relatively few,
and there is no need to prune the parameters of this layer.

In addition, the fully connected layer after the con-
volutional pooling layer can be replaced by a convolutional
layer with a kernel size of 1× 1, so that the whole con-
volutional network can be considered as designed in a “full
convolutional” way. Since we do not prune the fully con-
nected layers after the convolutional pooling layer, we do not
distinguish between these two forms of computation, but
refer to them all as “fully connected layers.”

 e second is neuronal degeneration. After removing
unimportant parameters from a neural network, it is

Figure 4: Before network pruning.
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sometimes necessary to continue removing unnecessary
neurons (nodes). As a result of parameter pruning, some
hidden layer neurons have no input connections at all or no
output connections. )is makes these neurons detached
from the decision-making process of the network, so de-
letion is needed to further simplify the structure of the
network. We refer to this process of removing unnecessary
neurons as neuronal degeneration. Neuronal degeneration is
also a simulation of the process of neuronal apoptosis in the
mammalian brain. As shown in Figure 4, the combination of
parameter pruning and neuronal degeneration results in a
more concise and clearer structure of the neural network. It
is important to note that there is a relatively rare scenario in
neuronal degeneration: when a cryptic neuron has only one
input (or output) neuron, the neuron degeneration may
result in a stranded neuron. In Figure 5, neuron A has one
input connection and one output connection, while its
output neuron B has only one input connection and no
output connection. According to the neuron degeneration
rules, neuron B is deleted and neuron A is retained.
However, when neuron B is deleted, neuron A has only one
input connection and no output connection (as in Figure 6).
At this point, neuron A is still not involved in the decision
computation of the neural network. We call neuron A a
stranded neuron. To solve the problem of stranded neurons,
we only need to perform another neuron degradation
process on the network. Specifically, for a neural network

with k hidden layers, we perform k neuron degenerations to
ensure that no stranded neurons are created. Also, to save
computational resources, we perform only one neuron
degradation during the training process if necessary and
only perform k neuron degradations after the training is
completed.

A is still not involved in the decision computation of the
neural network. We call neuron A a stranded neuron. In
order to solve the problem of stranded neurons, we only
need to perform one more neuron degeneration on the
network. Specifically, for a neural network with k hidden
layers, we perform k neuron degenerations to ensure that no
stranded neurons are created. In addition, to save compu-
tational resources, we perform only one neuron degradation
during the training process if necessary and only perform k
neuron degradations after the training is completed.

To illustrate the network pruning process in detail, we
take the example of a three-recessive layer convolutional
neural network trained for the SVHN dataset. We know that
the median filter produces a blocky appearance on the
image, and that choosing the median within a neighborhood
inevitably discards the extreme values, which results in the
median filter producing parameters with smaller magnitudes
and smaller standard deviations. According to this analysis,
more parameters should be pruned in a network with a
median filter. However, although the parameters generated
by the median filter have a small standard deviation at
initialization, during the training of the network they be-
come even larger than those of the Gaussian filter [9–18].

3. Experimental Simulation and Analysis

3.1. System Development Environment. In this paper, unlike
the client and server architecture used in the previous ex-
periments, the system transplants the above algorithm and
uses a wearable smartwatch to realize the recognition of
subtle human hand movements to, mainly working on real-
time data collection and processing, extraction of movement
fragments, real-time classification of hand movement types,
and output of meticulous movement recognition results on
the smartwatch screen. Wearable device hardware: Con-
sidering that the current mature commercial Android
smartwatch devices have various kinds of built-in smart
sensors and provide secondary development interfaces, after
screening and research, this paper adopts the Huawei Watch
2 smartwatch for hardware device development, which has
built-in acceleration and gyroscope sensors and has good
computing capability to meet the system hardware. It has
built-in acceleration and gyroscope sensors and has good
computing power to meet the system hardware development
requirements. In the implementation of the system, this
paper uses Android Studio to develop and port the motion
recognition system in Windows system.

(i) Hard Disk: 1000GB
(ii) CPU: Intel Core i5-4590CPU @3.30GHz
(iii) RAM: 8GB
(iv) OS: Windows 8.1 Professional Edition

Figure 5: Network before pruning.
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(v) IDE: AndroidStudio2.2
(vi) Java SDK: jdk1.8.0_65
(vii) Android SDK: Android 4.4.4

3.2. System Implementation and Functional Modules. In the
system implementation part, the smartwatch hardware
mainly implements real-time data acquisition, saves it in the
local �le of the smartwatch to provide data support for the
next data preprocessing operation, and segments the con-
tinuous movements to extract the complete fragments of the
movements, and the smartwatch distinguishes di�erent
hand movement types according to the motion energy of the
calculated movement fragments and, furthermore, extracts
the corresponding feature values to input into the classi�-
cation model. Further, the corresponding feature values are
extracted and fed into the classi�cation model to classify the
categories of meticulous human hand movements in real
time, and �nally, the output is displayed on the smartwatch.
In the implementation part of the system, there are two
models to choose from: the experimental analysis model and
the systematic recognition model.  e experimental analysis
model is responsible for the analysis and processing of the
o±ine data on MATLAB, the veri�cation of the feasibility of
the relevant algorithms, the construction of the feature
vector sample data, and the construction of the classi�er
model using the Weka environment; the system recognition
model, based on the previous work, transposes the recog-
nition algorithm into the smartwatch, recognizes the subtle
human hand movements in real time, and displays the re-
sults on the screen.  e above part of this paper has detailed
the relevant experimental and research part of the o±ine
recognition solution; this chapter will make a detailed de-
scription of the real-time part of the system. Based on the
functional analysis, this solution combines the process of
human arm minutiae movement recognition and the overall
¨ow of the system divides the system into four broad
modules according to their respective functions, including
the data processing module, the classi�cation of hand
movement types, the recognition of minutiae movements,
and the output module.

3.3. System Module Description and Implementation. In
order to enable the system to e�ectively recognize the subtle
movements of each hand, the smartwatch �rst needs to carry
out the necessary preprocessing of the data.  e data pro-
cessing mainly consists of data acquisition and data

preprocessing, where the data acquisition module is re-
sponsible for collecting the user’s behavioral data and saving
it in the smartwatch �le, the data.

 e data collection module is responsible for collecting
the user’s behavioral data and saving it in the smartwatch
�le; the data preprocessingmodule mainly contains the work
of raw data �ltering and noise reduction.

Data acquisition. To facilitate the collection of human
hand movement data in real life without a�ecting the
user’s daily behavior, the system uses a commercial
Huawei Watch 2 smartwatch with a wealth of built-in
sensors. When the user makes a relevant hand movement
while wearing the device (the user wears it in the right
hand), the system will collect and cache the raw data of the
hand movement.  e implementation of the system data
acquisition module consists of the following two main
steps:

(1) Motion sensor acquisition: We �rst de�ne the ac-
celerometer and gyroscope sensors and use the
SensorManager manager to obtain, their instance
objects are obtained using the SensorManager, and
operations such as fetching and releasing are per-
formed on them.  e code is shown below.
//De�ne the sensors
private SensorManager mgr;
private Sensor accel; //accelerometer
private Sensor gyro; //gyroscope sensor
//Get the sensor
mgr � (SensorManager) this.getSystemService
(SENSOR_SERVICE);
accel�mgr.getDefault
Sensor(Sensor.TYPE_ACCELEROMETER);
gyro�mgr.getDefaultSensor
(Sensor.TYPE_GYROSCOPE)
//release the sensor
mgr.unregisterListener(this, accel);
mgr.unregisterListener(this, gyro);

(2) Acquisition of sensor data: Each sensor acquisition
principle is the same; here, only the gyrosensor
acquisition data link is described. Before collecting
the data, the gyroscope registerListener listener is
registered with the sensor manager, which listens for
changes in the sensor data and is output by even-
t.values[i].  e code for this is as follows.

A

B

(a)

A

(b)

Figure 6: Stranded neurons. (a) Neuron B is degraded and A is retained; (b) neuron B is degraded and A becomes a stranded neuron.
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mgr.registerListener(this, gyro, SensorMana-
ger.SENSOR_DELAY_GAME); //set the sampling
frequency
switch (event.sensor.getType()){
case Sensor.TYPE_GYROSCOPE://Gyroscope sen-
sor determination
numberofGyro ++;
for(int i� 0; i< 3; i++) {
gyroData[i]� event.values[i]; }//output angle in ra-
dians per second

When the dance is learned and the human hand is in
motion, the sensor data will be cached in the Buffered-
Writer, and when the human hand is finished, the data will
be written to the smartwatch file when the END button is
clicked.)e raw data file captured by the smartwatch is full
of burrs and noise and cannot be used directly to extract
and classify hand movements, so it needs to be cleaned and
transformed into a valid hand movement sensing data.
When performing the acceleration data acquisition,
considering that the sensor’s native output is affected by
the acceleration of gravity and the linear acceleration
generated by human behavior, this paper has filtered it
through a low-pass filtering algorithm to obtain the ac-
celeration data generated by gravity and movement,
respectively.

//Gravitational acceleration and motion-generated
acceleration data are obtained separately from the
accelerometer
for(int i� 0; i< 3; i++) {
gravityData[i] � (float) (0.2∗ event.values[i] + 0.8 ∗
gravityData [i]);//gravity acceleration data. motionData
[i]� event.values[i]-gravityData[i]; //acceleration data
from motion
...}

At the same time, we use a moving-mean filtering al-
gorithm to remove burrs and noise from the raw data,
smoothing the signal.

)is smoothes out the noise and burr jitter and removes
irrelevant details from the raw data.

////moving-mean-filter denoising
int n� 8;
double[] acc_squar_avg� new double[size_acc
-n+ 1+ size_acc]; for (int i� 0; i< size_acc -n+ 1; i++) {
acc_squar_avg[i]� getArraySum(acc_squar, n, i)/n;}
for (int i� size_acc -n+ 1; i< size_acc; i++) {
acc_squar_avg[i]� acc_squar[i]; }

In order to obtain the human hand action fragments, this
paper obtains the complete hand action fragments through
the initial detection of the hand action data model and the
improvement of the adaptive action fragment extraction
algorithm. )e process is specifically divided into the fol-
lowing three steps:

(1) Initial detection of the hand action fragment model:
We use a sliding window to divide the continuous
data sequence into several equal parts, and set the
size of the sliding window to 10.
Save the position of the candidate points of the
action fragment model to obtain the preliminary
hand action fragment model.
/∗ hand action fragment model preliminary de-
tection algorithm ∗ /
int spliding_window_size� 10; //set the length of the
sliding window
double[] peaks_pos� falses(size_acc); //save the
obtained peak candidate positions
for (int i� 0; i< size_acc; i� i+ spliding_window_
size) {
if (Math.floor((double) i/spliding_window_size) !�

Math.floor((double) size_acc /
spliding_window_size)) {
for (int j� 1; j≤ spliding_window_size; j++) {
temp_pos[j−1]� acc_squar_avg[i+ j− 1]; }
double temp_avg�mean(temp_pos); //calculate the
mean value
//empirical threshold
if (temp_avg>Mean_ threshold) {
for (int j� 1; j≤ spliding_window_size; j++) {
peaks_pos[i+ j− 1]� 1; //candidate peaks position
int[] temp_start� new int[segment_count];
int[] temp_end� new int[segment_count];
int temp_count� 0; for (int i� 1; i< peaks_pos.
length; i++) {
if ((peaks_pos[i] !� peaks_pos[i− 1]) && (peaks_
pos[i]� � 1)) {
temp_start[temp_count]� i+ 1;
segment_count++; }
if ((peaks_pos[i] !� peaks_pos[i− 1]) && (peak-
s_pos[i]� � 0)) {
temp_end[temp_count]� i;
temp_count� temp_count + 1; }
}}
...

(2) Detecting the start point estimate and end point
estimate of the action fragment: Extend the
TEMP_N data sampling points to both sides of the
above detected start and end points.
To obtain the segment_start_estimate and the seg-
ment_end_estimate of the hand movement segment.
segment_end_estimate
/∗ Adaptive motion segment extraction improve-
ment algorithm to detect start and end estimates ∗ /
int[] temp_start; //record the start point of the above
action segment preliminary model

Mobile Information Systems 7



int[] temp_end;//record the end point of the initial
model of the above action fragment
double[][] temp_look� zeros(Math.ceil(size_acc/
spliding_window_size), 3);//r keep the results of each
window
 e results of the calculations within each window,
Var, Avg, and Di�
int[] segment_start_estimate� new int[segment_-
count]; //; //record the estimate of the start point of
the action segment
int[] segment_end_ estimate� new int[segment_-
count]; ////record the action segment end point
estimate
int temp_N� 25; ////initial probe point extends N
data points in size to both sides
////Action fragment peak detection algorithm start
point estimate
for (int i� 0; i< segment_count; i++) {
int j� temp_start[i]; ///the value of the change in the
termination point of the action segment size, with an
initial value of 1
while (j> 0 && acc_squar_avg[j− 1]
> accel_terminal_threshold) {
j� j− 1; }
int k� j-temp_N> 0 ? j-temp_N: 0;////
action_segment_start_valuation
segment_start_ estimate [segmegt_start_temp]� k;
segmegt_start_temp� segmegt_start_temp+ 1; }
////action snippet peak termination point estimate of
the detection algorithm
for (int i� 0; i< segment_count; i++) {
....;
}

(3) Accurate extraction of complete action segments: A
sliding window of length 5 is set up, sliding backward
from the estimated starting point of the extension
and sliding forward from the estimated ending point
of the extension, and calculating the variance Var,
Mean, and Di� of the data sampling points in the
sliding window. If the three eigenvalues are greater
than the threshold, then the data points in the sliding
window are judged to be on an upward trend and the
sliding is stopped. In any case, the sliding of a data
point continues, and the �nal detection of the action
fragment’s state point precision value.
/∗ Adaptive action fragment extraction improve-
ment algorithm, detecting the exact value of the start
point and the exact value of the end point∗ /
int temp_windos� 5; ////sliding window length
int[] segment_start� new int[segment_count];
////array of record exact start points
int[] segment_end� new int[segment_count];
////record the exact end point array

///Pick up the exact position of the start point based
on the variance Var, mean, and di�erence Di�
thresholds
for (int i� 0; i< segment_count; i++) {
int start_estimate_point� segment_start_estimate[i];
for (int j� start_estimate_point-1; j< size_acc; j++) {
temp_var� var(acc_squar_avg(j:j+ temp_windos-
1)); ////////calculate variance
temp_mean�mean(acc_squar_avg(j:
j+ temp_windos-1)); ////////calculate the mean
double temp_di�� sum_di�(acc_squar_avg, j,
j+ temp_windos-1); ///////calculate sum of
di�erences
//compare the magnitude of the variance Var, mean
Mean, and sum of di�erences Di� with the threshold
within the sliding window
if (temp_di�> di�_thred_start&&
temp_var> var_thd&& temp_mean>mean_thd) {
segment_start[temp_start_accurate-1]� j+ 1;
temp_start_accurate� temp_start_accurate + 1;
break; }
} }
///Pick up the exact position of the termination point
based on the variance Var, mean Mean, and dif-
ference Di� thresholds
for (int i� 0; i< segment_count; i++) {
int end_estimate_point� segment_end_estimate[i];
while (end_estimate_point> temp_end[i]) {
... }
}

begin

The eigenvectors
were calculated

energy_gro<=52.8213

energy_gro>225.6027

Finger action type Wrist action type

Classification results

end

Arm action type

yes

import

no

Figure 7: Flow of hand action-type classi�cation.
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In order to classify the hand movement types of dancers,
we need to differentiate between arm, wrist, and finger
movement types by means of a classifier. We used a decision
tree model to classify the hand movement types. We con-
structed a training sample set from all the hand movements
and obtained the results for the three hand movement types
(arm, wrist, and finger). In the implementation process, the
decision tree classification model is used to calculate the
energy values in the motion segments to differentiate the
different hand movement types. In the implementation
process, the decision tree classification model is used to
calculate the energy values in the motion segments to dif-
ferentiate the different hand movement types (see Figure 7).

In this paper, the ClassifyHandType function is used to
calculate the energy of the gyroscope data in the motion
fragment energy_gro and finally obtains the classification
result of the hand action type.

In a real-world environment, the test sample set TD was
used as input to the system to obtain real test results, which
consisted of two parts. )e first part is the accuracy of the
recognition of human hand movement types (arm, wrist,
finger) in the real environment, which includes the number
of accurately extracted human hand movement segments
and the accuracy of the classification of human hand
movement types.)e second part is the recognition accuracy
of human hand movements in the real environment, which
is based on the accurate recognition of human hand
movement types, and then the classification models (tem-
plate library matching, wrist and finger minutiae decision
tree model) for the hand movement types are selected to
obtain the arm, wrist, and finger movement types. )e
system was therefore able to extract arm and wrist move-
ment segments effectively.

4. Conclusions

)e deep learning framework is a new teaching model,
which is based on human cognitive structure and processes
knowledge by certain means, and what needs attention in
this process is how to systematize complex and abstract
concepts into simple and clear. )is paper constructs a
wearable device built-in dance action recognition system
through an improved deep learning algorithm, it can be
found that the human hand action classification using de-
cision tree in real environment has a high accuracy recog-
nition rate, and the effect of human hand action-type
classification is relatively ideal. It was caused by two main
aspects: the amplitude of the movements was too small due
to individual experimenters collecting finger data, as it was
below the threshold of the algorithm causing finger
movement segments to be filtered out. )ere was a relatively
obvious jitter between two finger movements being recog-
nized as one movement resulting in a lower number of
action fragments than the true number of finger movements,
and there were significant feature differences between the
meticulous movements, resulting in the meticulous move-
ments under the arm and wrist being effectively recognized
by the classification model. However, the recognition ac-
curacy rate of finger minutiae is not ideal. Analysis of it

reveals that the magnitude caused by finger movement is not
drastic and there is a certain difficulty in action fragment
extraction, while there is a certain degree of similarity be-
tween finger minutiae movements, resulting in difficult
recognition and low recognition rate. )is shows that there
is a role for wearable devices in the dance teaching affective
mode of knowledge.
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