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When planning the soccer robot path at present, a two-dimensional map is used mainly to optimize the path of the soccer robot’s
operating �eld. However, because the two-dimensional robot is selected, which can only utilize the data of plane about a speci�c
environment, the data information of the mobile soccer robot cannot be gathered, impacting greatly the completion of the plan of
the robot path.�e path planning of the soccer robot is conducted using the quantum genetic algorithm so that the problem can be
dealt with. On the premise that there is a lack of full consideration of the accurate motion path between the two points, the inertia
weight is dynamically adjusted to overcome the disadvantage of premature convergence of the traditional quantum group
algorithm, which can make the weight of the quantum genetic algorithm controllable with adaptability so that the problem of the
extremely slow convergence speed of a single quantum in the quantum group and the high group dispersion can be solved.
Furthermore, the selected quantum genetic algorithm can realize the real-time update of the soccer robot’s position, e�ectively
increase the trajectory change of the particle swarm movement, and to a certain extent e�ectively increase the search ability and
convergence e�ect of the particle swarm in the global scope, so as to ensure that this algorithm can be more e�ective than the
traditional path planning algorithm in terms of global search ability and convergence speed in the path planning of the soccer
robot and has a higher use value.

1. Introduction

Soccer robot is one of the hotspots in the current interna-
tional robotics research �eld [1–3]. Soccer robot is a mobile
machine that simulates athletes for training. �erefore, the
best, fastest, and collision-free path planning to e�ciently
avoid obstacles in the moving process becomes the bottle-
neck of manual control in the movement process [4–7]. At
present, domestic and foreign researchers have e�ectively
combined particle swarm algorithm, neural network algo-
rithm, quantum theory, genetic algorithm, and other al-
gorithms and used them in large-scale robot path planning.
�e theoretical research status of the soccer robot path is
slowly turning to the path of group optimization calculation.
Its quantum genetic algorithm is a new type of group op-
timization calculation method. �e features of the objective
function are not standardized with this method, the excellent
optimization function cannot be completed easily along with

it, and it has gradually become an important goal of robot
intelligent control optimization research in China and other
countries. �e use of the quantum genetic algorithm to
calculate soccer robots makes planning easier and the cal-
culation method simpler, but the search function has a large
dependence on parameters, which will cause some problems
of small results. Regarding how to improve the results of
quantum particle groups to be more accurate and com-
prehensive, many researchers have reformed and optimized
quantum group calculation methods. Since the computer
technology and Internet technology have developed con-
tinuously, people’s research on robots has become multi-
faceted and intelligent. In many occasions of daily life and
industrial processing and production, people maximize the
use of robots in order to obtain maximum economic ben-
e�ts. In this circumstance, traditional methods for soccer
robot path planning will not be able to meet the functional
requirements. �erefore, it is more important to apply the
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quantum genetic algorithm to fuzzy control path planning
for soccer robot to navigate its motion in indoor
environment.

(e quantum group computing method mostly relies on
the global value to transmit information, which is faster and
more accurate than other computing methods. (e disad-
vantage is that it will end earlier. Regarding this short-
coming, this paper finds the main algorithm of the study, the
quantum genetic algorithm, which uses the single quantum
optimization progress and the overall dispersed dynamic
motion proportion, so that the inertia proportion contains
control characteristics and adaptive characteristics. (is
algorithm can quickly improve the convergence progress of
the calculation, maintain the characteristics of different
groups, enhance the comprehensive search advantage of the
calculation, and so on. Finally, according to the calculation
methods proposed in this paper, it is applied to the trajectory
planning of soccer robots. (rough comparison with the
common calculation methods, the analysis of the experi-
mental results is performed, the result of which shows that
the quantum genetic algorithm proposed in this paper is
more effective than the traditional one in the path planning
of the soccer robot [8–15].

2. Quantum Genetic Algorithm

If the optimization of the genetic algorithm is realized in
accordance with the characteristics of the quantum par-
ticle swarm, the path planning is not required to convert
the speed in the search process. (erefore, the calculation
process of the quantum genetic algorithm is simpler,
and fewer reference objects exist for comparison, which
can be easily managed. (e comparison with traditional
algorithms shows that both the convergence speed and
search ability of the quantum genetic algorithm are more
significant.

After the optimization of the quantum genetic algo-
rithm, the calculation formula is as follows:

Xi,j(t + 1) � pi,j(t) ± α · Mj(t)Xi,j(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · In
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(3)

According to the above expression, the ith quantum
particle can be represented by Xi � Xi,1(t),􏽮

Xi,2(t), . . . Xi,D(t)} expression at t; the optimal position of
each particle is expressed by pbesti � pbesti,1(t),􏽮

pbesti,2(t), . . . pbesti,D(t)}; the optimal position of the whole
process is represented by Gbest � Gbest1(t), Gbest2(t),􏼈

. . . , GbestD(t)}; the mean value corresponding to the op-
timal position is represented by mest � M1(t), M2(t), . . .􏼈

MD(t)}; the position and number of the quantum particle
group and the number of iterations are represented by D, N,
and M; ϕ � c1r1/(c1r1 + c2r2); α represents the expansion
and contraction amount; c1, c2 represent the convergence
factor; and r1, r2 represent the average number of particles
dispersed.

In the process of genetic algorithm optimization cal-
culation, it is very important to realize the effective control of
its parameters. According to the evolutionary formulas (1)
and (3), the convergence characteristics of the quantum
genetic algorithm calculation method can be improved.
According to formula (2) of the quantum pi(t + 1), it can be
converted into the following formula:

pi,j(t + 1) � Gbesti,j(t) + ϕ pbesti,j(t) − Gbesti,j(t)􏼐 􏼑. (4)

Based on (1) and (4), the conversion quantum pi(t + 1)

and overall optimal relation Gbest(t) are specially related to
the itch gap between the quantum optimal relation pbest(t)

at that time, and the relationship that exists between
Xi(t + 1) and the corresponding quantummean is related to
the error value at position X(t).

When selecting parameters, the calculation method in
this paper uses the individual quantum optimization speed
and the inertia proportion of the overall separation, so that
the inertia proportion contains the self-adaptive aggregation
degree, which can effectively avoid the problem of premature
convergence of genetic particles in the process of global
search, and at the same time, a random selection algorithm
can be used to ensure the quantum motion to the optimal
position. In order to effectively ensure the diversification and
stability of the particle swarm motion, the convergence
capacity of the genetic algorithm can be effectively promoted
based on the enhancement of the global search capacity of
the particle swarm.

Definition 1. (e optimization speed of the quantum par-
ticle swarm can use the function Fitness Gbest(t) to rep-
resent the overall motion characteristics of the particle
swarm, and use the function Fitness Pi(t) to represent the
optimal characteristics of the current particle swarm, and
then the expression for particle swarm optimization can be
obtained as follows:

ipi(t) �
Fitness(Gbest(t))

Fitness Gbesti(t)( 􏼁
. (5)

When the minimum value of the particle swarm
satisfies 0< ip≤ 1, if the ip value is reduced, the speed of
this movement will gradually increase. If ip � 1, the
quantum genetic algorithm can be used to obtain the
optimal value.

Definition 2. (e dispersion degree of the particle swarm can
ensure that the quantum particle swarm used can find the
optimal gap zp(t) represented by zp(t) � zp1(Pbesti,1(t)),􏽮

zp2 (Pbesti,2(t)), · · · zP D(Pbesti,D(t))}, and using this ex-
pression, the quantum swarm dispersion can be obtained as
follows:
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gst(t) � gsi,1(t), gsi,2(t), . . . gsi,D(t)􏽮 􏽯

�
⎧⎨

⎩

zp1 Pbesti,1(t)􏼐 􏼑

zX1 Xi,1(t)􏼐 􏼑
,
zp2 Pbesti,2(t)􏼐 􏼑

zX2 Xi,2(t)􏼐 􏼑
, . . . ,

zp D Pbesti,D(t)􏼐 􏼑

zX D Xi,D(t)􏼐 􏼑

⎫⎬

⎭.

(6)

According to the above expression, gs can represent the
progress of particle discrete optimization. If the value of gs
changes, the quantum discrete optimization progress will be
accelerated, and due to the difference in the size of the
quantum population, the speed will be reduced. If gs� 1 is
satisfied, then the obtained optimal value Pbest is incon-
sistent with the current value, which will cause the value of gs
to change continuously.

3. Fuzzy Control Path Planning of Soccer Robot

Aiming at solving the problems of traditional genetic al-
gorithm in robot path planning, neuro-fuzzy controller is
used to adjust the solution to the local minimum point
problem in quantum genetic algorithm, so as to improve the
real-time performance and effectiveness of robot dynamic
planning in the process of fuzzy control. (e fuzzy control
variable can be represented by a ternary array
(r1, r2, r3)r1 < r2 < r3, and its membership function is as
follows:

μ(x) �

x − r1

r2 − r1
,

x − r3
r2 − r3

,

0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Assuming the fuzzy control path planning
α � (a1, a2, a3) and β � (b1, b2, b3) according to the ex-
pansion principle of fuzzy control retrieval number addition
and scalar multiplication, we can obtain the following:

μα+β(z) � sup min μα(x), μβ(y)􏼚 􏼛|z � x + y􏼚 􏼛

�

z − a1 + b1( 􏼁

a2 + b2( 􏼁 − a1 + b1( 􏼁

z − a3 + b3( 􏼁

a2 + b2( 􏼁 − a3 + b3( 􏼁

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(8)

(at is, the sum of the fuzzy control path planning is still
the fuzzy control path planning, and

α + β � a1 + b1, a2 + b2, a3 + b3( 􏼁. (9)

Based on μλα(z) � sup μα(x)|z � λx􏼈 􏼉, we can obtain the
following:

λα �
λa1, λa2, λa3( 􏼁, λ≥ 0

λa4, λa3, λa2( 􏼁, λ< 0
􏼨 . (10)

Assuming αi � (ai1, ai2, ai3), i � 1, 2, . . . , m, be the fuzzy
control path planning, we obtain the nonnegative linear
combination of αi and the fuzzy control path planning:

􏽘

m

i�1
λiαi, λi ≥ 0. (11)

It is still fuzzy control path planning, and

􏽘

m

i�1
λiαi � 􏽘

m

i�1
λiai1, 􏽘

m

i�1
λiai3

⎛⎝ ⎞⎠. (12)

As for the fuzzy control path planning environment, the
opportunity is understood as the possibility that the es-
tablishment of the constraints is conducted. (e fuzzy
control path planning is made use of to effectively solve the
optimization problem of the path planning parameters of the
robot.

(e double circular arc curve equation is used to cal-
culate the dynamic change of the motion curve based on the
fuzzy control parameter α during the motion of the soccer
robot.(e parameters α and β are used as the variables of the
fuzzy control (Figure 1).

In the quantum swarm algorithm, quantum represents
the motion path of the soccer robot. In this paper, Nmotion
trajectories are set, and the quantum dimensionD represents
the number of paths from the starting point to the end point.
(e process of the path planning of the soccer robot can be
represented as the planning process of obtaining the optimal
angle value under each path planning.

Due to the movement scene of the soccer robot, this
paper selects the grid algorithm to optimize the con-
structed robot path planning model. (e selected grid
method selects the motion path of the soccer robot for
grids with the same size. Both the polar coordinates and
rectangular coordinates can be used to display the motion
scene of soccer robot for path planning. (e length of
polar coordinate represents the straight-line distance
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Figure 1: Soccer robot system structure.
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from the initial motion position to the stop position of the
soccer robot, and the angle represents the motion tra-
jectory of the soccer robot within the range of motion. (e
grid specifications need to be set reasonably according to
the motion range of the soccer robot and the specifications
of the obstacles. Both the polar coordinates and rectan-
gular coordinates are combined to represent the detection
of the relationship as shown in Figure 2.

Suppose that the parameter values of the quantum
particle swarm are set: D represents the quantum motion
dimension;M represents themaximum number of iterations
of the particle; N represents the quantum swarm; learning
factors are C1 and C2; and the expansion-contraction co-
efficient is α. (e dimension of the quantum group motion
can be calculated as follows:

D ≈
distance(path)

lengthrobot
. (13)

In the expression, distance path is used to calculate the
straight-line distance from the initial point to the end
point, and lengthrobot represents the height of the soccer
robot.

(e establishment straight-line distance from the initial
point to the end point of the soccer robot is the determining
factor for the length of the polar coordinates. (e range of
detection angle used is [0, π/2]; then, the expression can be
used as follows:

αmax � αtop, αmin � αdown, ρL≤ Ltarget,

αmax � αtop, αmin � αdown, ρL> Ltarget.

⎧⎪⎨

⎪⎩
(14)

In the above formula, β� arccos(Ltarget/ρi), and αtop and
αdown, respectively, represent the maximum and minimum
values that the soccer robot can reach in the range of
motion; the constraints that need to be satisfied are as
follows:

ρL �

�������������������

xj − x0􏼐 􏼑
2

− yj − y0􏼐 􏼑
2

􏽱

D
. (15)

(e distribution of the quantum group settings is rel-
atively uniform, and the search position and movement
speed are represented as follows:

αi,j � rand∗ αtop − αdown􏼐 􏼑 + αdown. (16)

(e calculation process of the fuzzy control path plan-
ning algorithm proposed in this paper is shown in Figure 3,
according to which G� (S, E) represents the grid map of the
robot in the plane, S represents the grid corresponding to the
motion position of the soccer robot, and E represents the
reachable boundary of the motion position. (e function
adj(s) represents the raster grid within the motion area. If
the first grid sstart ∈ S and the target grid of soccer robot
motion satisfies (sgoal ∈ S}, the fuzzy control path planning
algorithm used in this paper can be applied to the function
g(s) for calculating the consumption of s from the initial
position to each motion position, and the optimal motion
path can be obtained.

g(s) �
0, if s � sstart,

mins′∈Pred(s) g s′( 􏼁 + c s′, s( 􏼁( 􏼁, otherwise.
⎧⎨

⎩ (17)

(e real-time position of the soccer robot on the field is
represented by h(s), and the initial speed is set to 0. If the grid
where the robot is located can pass smoothly, the obtained
data information cannot be determined for the soccer robot.
If g(sstart) � 0 is satisfied, then S can be represented by
CLOSED when it is not necessary to complete this barrier
setting. (e full grid of robot motion is represented by
s ∈ adj(sstart) and can be represented in this way by the
function g(s) and the value h(s, sgoal). In the detection, if the
no grid s is apparent in the CLOSED sequence, then in the
motion sequence, the OPEN sequence can use the k(s)
function to search according to the grid where the soccer
robot is set.

k(s) � g(s) + h s, sgoal􏼐 􏼑. (18)

Before formulating the plan of the path of the soccer robot
on the field, a model of the field environment needs to be
built, mainly to ensure that the soccer robot is familiar with
the field environment. By dividing the field position where the
soccer robot is located into several grids, the abstract de-
scription is carried out according to the grid of the field.

(e total length of the field is represented by m, and the
width is represented by n. Taking the upper left corner of the
field as the origin, and setting the grid coordinates of the
upper left corner as (0, 0), the Cartesian coordinate system of
the soccer robot movement is constructed. If the boundary
of the field is represented by a, the size of a can be regarded
as a soccer robot motion cell grid, and the number of grids of
the field can be represented by the grid number ceil(m/a) of
different columns, where ceil represents the upward
movement direction of the soccer robot.

In the fuzzy control path planning, the motion path can
be converted according to the algorithm, and the mapping
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Figure 2: Soccer robot movement distance in polar coordinates
and rectangular coordinates.
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relationship between the soccer robot and the field can be
represented as follows:

bianhao � (x − 1) × ceil
m

a
􏼒 􏼓 + y. (19)

Figure 4 is a schematic diagram of simulating the local
movement of the soccer robot on the field.

By setting the controller parameters according to Table 1,
the layer-by-layer control steps of the system are calculated
as follows:

(1) Fuzzification layer: (e input variables of the fuzzy
control system (the displacement between the robot
and the obstacle and the relative movement between
the two to form the angle θ, the relative velocity ΔV)
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C D E F
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Figure 3: Example diagram of fuzzy control path planning.
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Figure 4: Partial schematic diagram of simulated field sports.
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can be fuzzified, and the node i has an output
function:

O
1
i � μAi

D2( 􏼁, i � 1, 2, 3, 4,

O
1
i � μBi−4

(θ), i � 5, . . . , 12,

O
1
i � μci−12

(ΔV), i � 13, . . . , 19.

(20)

In the formula, the fuzzy sets Ai, Bi, and Ci are
planned as shown in Table 1, and the D2 with the
universe of discourse of (0, 2), θ with the universe of
discourse of (−π, π), and the ΔV with the universe of
discourse of (−1, 1) are divided into (ZD, SD, MD,
FD), (NH, NB, NM, NS, Z, PS, PM, PB), and (NB,
NM, NS, Z, PS, PM, PB), respectively. O1

i is the
membership function value of Ai and Bi. Selecting
(μAi), (μBi − 4), and (μCi − 12) are used as the
membership function to calculate the corresponding
maximum value of 1 and minimum value of 0. (en,

μAi
D2( 􏼁 �

1

1 + D2 − qi/mi( 􏼁
2

􏽨 􏽩
pi

,

μBi�4
(θ) �

1

1 + θ − qi− 4/mi−4( 􏼁
2

􏽨 􏽩
pi−4

,

μCi−12
(ΔV) �

1

1 + ΔV − qi− 12/mi−12( 􏼁
2

􏽨 􏽩
pi−12

.

(21)

In the formula, m, p, and q are the antecedent pa-
rameters, and the shape of the membership function
changes with the change of these three parameters.

(2) Operation layer (fuzzy inference layer): Perform
operation on the input signal. (e output of each
node represents the credibility of the rule, and its
output is as shown in the following formulas:

O
2
i � ωi � μA D2( 􏼁 × μB(θ), i � 1, . . . , 32, (22)

O
2
i � ωi � μA(θ) × μC(ΔV), i � 33, . . . , 88. (23)

(e control rules represented by (22) and (23) are listed
in Tables 2 and 3.

(3) Normalization layer: (e ith node calculates the
normalized credibility of the ith rule:

O
3
i � ωi �

ωi

􏽐
32
1 ωi

, i � 1, . . . , 32,

O
3
i � ωi �

ωi

􏽐
88
33ωi

, i � 33, . . . , 88.

(24)

(4) Conclusion layer: (e output contained in the ith
node is as follows:

O
3
i � ωifi � ωi xD2 + yθ + z( 􏼁, i � 1, . . . , 32,

O
4
i � ωifi � ωi(xΔV + yθ + z), i � 33, . . . , 88.

(25)

In the formula, ωi is the output of the third layer, and
x, y, and z are the consequent parameters.

(5) Deblurring layer: (is layer calculates the total
output:

Table 1: Parameter settings of adaptive neuro-fuzzy controller.

ANFIS1 variable
Input Output

D2 θ K2

Domain (0, 2) (−π, π) (1, 100)
Fuzzy subset number 4 8 32
Membership function Bell-shaped membership function
Parameter training Hybrid method

ANFIS2 variable Input Output
θ ΔV β

Domain (−π, π) (−1, 1) (1, 100)
Fuzzy subset number 8 7 56
Membership function Bell-shaped membership function
Parameter training Hybrid method

Table 2: ANFIS1 fuzzy rule set.

D2
θ

NH NB NM NS Z PS PM PB
ZD NA SA SA MA BA MA SA SA
SD NA NA NA SA MA MA SA NA
MD NA NA NA SA MA SA NA NA
FD NA NA SA SA SA SA NA NA

Table 3: ANFIS2 fuzzy rule set.

Δv
θ

NH NB NM NS Z PS PM PB
NBV BA MA SA NA NA NA SA MA
NMV MA SA NA NA NA NA SA SA
NSV SA NA NA NA NA NA NA NA
ZV NA NA NA NA NA NA NA NA
PSV NA NA NA SA SA SA NA NA
PMV NA NA NA SA MA SA NA NA
PBV NA NA NA MA BA MA NA NA
Note. Z: zero; S: small; M: middle; B: large; D: distance; N: negative; H: huge;
P: positive.
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O
5
i � K2 � 􏽘

32

i�1
ωifi, i � 1, . . . , 32,

O
5
i � β � 􏽘

88

i�32
ωifi, i � 33, . . . , 88.

(26)

Among them, the universes of discourse of K2 and β are
both (1, 100).

4. Result and Analysis of Simulation

In practical application, the two-wheeled soccer robot is
taken as the research target in order to test the effect of the
algorithm in this paper. Among control parameters, the
set parameter values of the wheeled soccer robot are
shown in Table 4. (e number of experiments is set to 100,
and the path planning results obtained from the test are
shown in Figure 5.

According to the experimental results in Figure 5, the
result of the soccer robot path planning according to the
quantum genetic algorithm is better than that of the tra-
ditional genetic algorithm. (e length of the planned path is
4.0253m upon the measurement, while the motion path
length of the soccer robot under the traditional genetic
algorithm is 4.3813m.(emain reason is that the traditional
one is prone to plunge into the local optimum in the process
of searching for the path, but the optimal path can be ob-
tained by applying the quantum genetic algorithm to the
global search of the soccer robot.

Based on the test results of experiments in Figures 6 and
7, the soccer robot can obtain the local optimal value after
149 iterations under both the traditional genetic algorithm
and the quantum one. However, the quantum genetic al-
gorithm used in this paper can be far beyond the local
optimal value after 200 iterations and search for the global
optimal path after about 250 iterative adjustments, but the
soccer robot is still involved in the local optimal path under
the traditional genetic algorithm. According to the above-
mentioned explanation, the quantum genetic algorithm

Table 4: Mechanism characteristic values related to the wheeled
soccer robot.

Item Parameter
Mass of the robot 2.3 kg
Mass of one driving wheel of the robot 0.28 kg
Geometric center distance from the robot center of
mass to the driving wheel 0.065m

Rotary inertia of robot 0.1 kg·m2

Rotary inertia of driving wheel 0.0022 kg·m2

Spacing of driving wheel 0.3m
Radius of driving wheel 0.068m
Pulse number of motor turnover 16
Frequency multiplication of control chip 2
Pulse counting cycle of encoder 0.005 s
Reduction ratio of the reducer 131
Time interval during which the robot sends the
pulse code to the upper computer through the serial
port

0.3 s

3.0

2.5

2.0

Y 
(m

)

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5

X (m)Starting
point

2.0 2.5 3.0

Target point

PSC

OPSO

Figure 5: Comparison of optimal path results between the tra-
ditional genetic algorithm and the quantum one.
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Figure 6: Convergence result of the traditional genetic algorithm.
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Figure 7: Convergence result of the quantum genetic algorithm.

Mobile Information Systems 7



proposed in this paper is better than the traditional genetic
algorithm in the global convergence speed.

(e Bi application is on the basis of selecting an auto-
mated stereo field and building a rasterized environment of
field as shown in Figure 8.

(e warehousing environment after being rasterized is as
shown in Figure 8, which is composed of a total of 23 parts in
the size classification station on the left side of the field.
Following the path formed by the next-door protective
casing, only one soccer robot can pass through all paths, that
is, a single passenger ticket. A lot of selection work by sifting
is completed in the field by soccer robot at the speed of 1m/s.

(e performance of quantum genetic algorithm signif-
icantly affects the result of fuzzy control path planning of
soccer robot, which is testified in this section. Figure 9 shows

the changing process of the individual fitness of each gen-
eration according to the number of evolutionary generation
when using the quantum genetic algorithm. Figure 9 shows
the concentrated points representing the mean fitness values
of each generation, and the points which are comparatively
dispersed nearby represent the optimal fitness values of each
generation, wherein the optimal fitness values of each
generation match the mean fitness value of the generation.

(e experimental results in Figure 9 show that the
quantum genetic algorithm used in this paper can effectively
be used to improve the convergence speed of the soccer
robot and most quantum groups can quickly find the global
optimal solution. In the initial process of the quantum
genetic algorithm, if the individual expected value difference
is too large, the particle swarm can be quickly optimized
during the processing. In the later particle iteration process,
if the particle swarm is similar to the optimal solution, the
obtained optimal path is closer to the real situation and
avoids the emergence of local optimal solutions.

5. Conclusion

During the process of soccer robot path planning, choosing a
reasonable and scientific path has gradually become the key
goal of current research. In this paper, quantum genetic
algorithm and adaptive neuro-fuzzy artificial potential field
are used to plan and study the fuzzy control route of soccer
robot and plan the soccer robot’s mobile path. (e selected
plane grid map can realize the calculation of the movement
range of the soccer robot and can test the collision phe-
nomenon in the robot movement process, so as to avoid the
deadlock phenomenon of the robot. (e trap prediction
mechanism is added, so that the robot can overcome the
limitation of the sensor measurement range to a certain

Figure 8: Rasterized warehousing environment.
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Figure 9: Comparison between optimal path length and average
path length under different iterations.
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extent and can conduct relevant analysis of spatial feasibility
more quickly. (e purpose is to provide support for the
generation of fuzzy rules when dealing with the establish-
ment of a fuzzy system and to facilitate the planning of the
optimal path of the soccer robot. (e robot simulation re-
sults show that the soccer robot can effectively assist people
in heavy and repetitive mechanical work on the field, and
using it in the field can effectively improve the management
level of the field and save labor costs. (e experimental
results verify that the algorithm in this paper can perform
optimal path planning.
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