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The use of deep learning to improve English speaking has seen tremendous development in recent years. This study evaluates the
noise that is present in the English speech environment, employs a two-way search method to select the optimum feature set, and
applies a quick correlation filter to remove redundant features in order to increase the accuracy of English voice feature
identification. In addition, this article designs a low-pass filter in the complex cepstrum domain to filter the room impulse
response in order to obtain the estimated value of the complex cepstrum of the original speech signal. After doing so, the authors
transform this estimated value into the time domain in order to obtain the estimated value of the original speech signal. In
addition, this paper proposes a corresponding noise elimination model for the purpose of eliminating noise from English speech
in a reverberant environment. It also designs a complex cepstrum domain filter in order to conduct simulation research on the
different characteristics of the reverberation signal and the pure speech signal in the complex cepstrum domain. In conclusion, this
study develops an English voice feature recognition model that is founded on a deep neural network. Furthermore, this paper uses
experimental research to validate the validity of the algorithm model that was developed in this study.

1. Introduction

English speech enhancement based on the regression DNN
network is proposed, and the experiment proves that the
algorithm can achieve better performance than traditional
English speech enhancement algorithms. However, although
the English speech enhancement algorithm based on deep
learning uses many noise types and training corpus in the
training data preparation stage, there are still many prob-
lems in its promotion ability on real data, such as the dis-
tortion of English speech under low signal-to-noise ratio, the
unstable effect of processing mismatched noise types, and
mismatched speaking styles [1].

In the system environment disturbed by noise, the
correct rate of English speech recognition is significantly
reduced, resulting in the failure to achieve the ideal effect in
practical applications, and the system is disturbed even more
under the condition of low signal-to-noise ratio. In order to

make the English speech signal detection system work
normally, it is necessary to extract as much pure English
speech as possible from the English speech signal contam-
inated by noise when the noise source is unknown. That is,
under the premise of suppressing noise, the purpose of
improving and protecting the quality of perceived English
speech is achieved. This kind of English speech processing
technology has great research significance and application
value for the related fields of English speech signal pro-
cessing. As far as the current English speech signal pro-
cessing technology is concerned, the effect of English speech
detection in a weak noise environment is relatively ideal.
However, the detection performance drops sharply in a
strong noisy environment. Therefore, the detection of En-
glish speech signals under the condition of low signal-to-
noise ratio is still a subject to be studied in depth [2].

Analog signals are used to represent the English voice
signal. However, because of the cut-off frequency, the
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English voice is only present in the storage device as a digital
signal as far as the English voice receiver is concerned. As a
result, it starts by analysing the analogue English speech that
has been digitally transformed, which typically entails am-
plification and gain control, prefiltering, sampling, quanti-
zation, and coding [3].

At present, English speech signal processing technology
is developing rapidly in the field of information research,
and its research scope involves cutting-edge scientific re-
search projects, which has important research and appli-
cation value. Moreover, informatization has become a basic
requirement of modern society. In the civilian field, mi-
crophone array English speech signal processing technology
is widely used in multimedia exhibition halls with large
spaces and the hearing aid market. The English speech
processing of the microphone array can adaptively control
the beam direction, suppress interference signals in un-
known directions in multiple directions, and have higher
resolution. Therefore, in recent years, the development of
adaptive processing technology has become more rapid, and
the technology has also been used in other fields. However,
the related algorithms of the English speech signal pro-
cessing of the microphone array require a lot of floating-
point operations. In current applications, most of them use
DSP processors to perform operations on the collected
signals. Although DSP has strong floating-point operations,
it has disadvantages such as poor real-time serial operations
and susceptibility to interference. Therefore, it is not
competent for the more demanding processing system. This
paper employs an FPGA-based English voice signal pro-
cessing design to achieve this. The fact that the processor
chip is inexpensive, compact, and capable of multichannel
synchronous high-speed operation is a benefit. The devel-
opment of FPGA-based English speech signal processing can
thereby address the inadequacies of the current processing
system and has significant implications for a wide range of
applications.

In view of this, based on the deep neural network, this
paper studies English speech feature recognition technology
and proposes a reliable English speech feature recognition
algorithm to provide a reference for subsequent English
speech feature recognition.

2. Related Work

Research on endpoint detection and speech enhancement of
noisy speech signals has been conducted for more than
50 years, and significant progress has been made during this
period. Voice endpoint detection technology is proposed by
[4], which is mainly applied to the time allocation of
communication channels in the communication transmis-
sion system developed by it. The literature [5] proposed a
system for reducing noise in the communication environ-
ment.The system introduces the concept that the input voice
signal with noise is superimposed by the pure voice signal
and the noise signal and divides the sample voice signal into
multiple subbands for processing and analysis. The system is
actually a spectral subtraction technique for now, but it is
only implemented in the analog domain.Thanks to the rapid

development of digital signal processing algorithms andDSP
(digital signal processing) hardware, speech signal detection
methods based on spectral improvements have been greatly
developed, so speech signal noise reduction technology has
made great progress.The literature [6] proposed a “spectrum
shaping” method, which uses amplitude clipping in the filter
bank of the speech signal preprocessing stage to remove low-
level excitations. This low-level excitation is considered a
noise signal.The literature [7] proposed spectral subtraction,
which is implemented in the digital domain. Spectrum
subtraction was applied to statistical spectrum estimate in
[8]. Nearly and simultaneously, a technique that combines
noise reduction and speech enhancement was suggested in
[9]. The literature [10] proposed a voice endpoint recog-
nition technique that establishes distinct thresholds to
identify the starting point and ending point of the signal by
combining the short-term energy of the speech signal with
the short-term zero-crossing rate. The literature [11] ex-
plored endpoint detection performance in greater detail and
developed algorithms for performance comparisons using
several energy characteristics of the signal, including square
energy, logarithmic energy, and absolute value energy. The
optimum spectrum amplitude estimation and the best
spectrum phase estimation are suggested by [12] using
statistical prediction theory. The study’s findings are fre-
quently referenced in noise reduction studies, but, at the
same time, the primary approach to noise reduction has
changed to focus on the challenge of foreseeing the spectrum
amplitude of pure speech signals. More statistical spectrum
estimation approaches have been created by researchers,
such as the minimum mean square error (MMSE) loga-
rithmic spectrum amplitude estimation method, the maxi-
mum likelihood (ML) spectrum amplitude estimation
method, and the maximum a posteriori (MAP) method. The
Linear Predictive Coding (LPC) model and Kalman filter
were utilised in [13] to reduce noise and raise the signal-to-
noise ratio of speech signals. The literature [14] provided
more endpoint detection algorithms through the frequency
domain spectrum analysis of the voice signal after using the
Fourier transform to get the frequency domain information
of the voice signal. The literature [15] advocated for the
speech signal’s short-term stationarity and held that its
parameter properties would be true over a brief period of
time.

Segmentation methods based on LPC coefficients,
methods based on speech parameters, and segmentation
algorithms based on parameter filtering have been succes-
sively proposed. The literature [16] proposed an algorithm
based on artificial neural network, through fast convergence
to determine the different weights of the signal; its detection
performance is significantly improved compared with the
early statistical decision-making algorithm. Literature [17]
proposes applying wavelet transform technology to speech
signal detection, which greatly reduces the computational
complexity of the algorithm.

The literature [18] researched the least square method.
This blind system identification method uses the method of
decomposing eigenvalues in the frequency band for pro-
cessing. The literature [19] developed an adaptive filtering
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method. This method can combine Least Mean Square
(LMS) and adaptive filtering methods. However, the dis-
advantage is that there are many restrictive conditions, the
common zero point between channels will hinder this
method, and the rank of the correlation matrix of the sound
source signal is required to be maximized.The literature [20]
studied the use of multichannel methods for linear pre-
diction. This method is to diagonalize the covariance matrix
of the speech signal to obtain the correlation characteristics
of the signal. The literature [21] proposed using a virtual
model to simulate the impulse response of the room. This
method is based on the stability of the channel. However,
under normal circumstances, the environment will change
randomly, and it is difficult to meet this requirement, so this
method is more difficult to implement.

3. English Speech Feature Recognition
Algorithm Based on Deep Learning

This paper introduces the data set, data preprocessing, and
extracted features, and two effective feature selection
methods are used in feature selection. In addition, this paper
uses three different classifiers and compares the classification
effects.

We normalized all the data, as shown in the following
formula:

􏽥a(n) �
a(n) − μ(n)

σ(n)
, (1)

where a(n) is the original sample, μ(n) and σ(n) are the
sample and standard deviation of the nth segment of data,
each segment is 1minute long, and 􏽥a(n) is the normalized
sample.

After preprocessing, each piece of data is equally seg-
mented, and each segment is 1minute long, and then fea-
tures are extracted from each segment of the data. In this
paper, 16 features are extracted from the single-channel ECG
signal.

3.1. TimeDomain Characteristics. The mean value of the RR
interval without detrending, the mean value of the
detrending RR interval, the standard deviation of the RR
interval, the maximum value of the RR interval, the mini-
mum value of the RR interval, and other features are
extracted in this study based on the time domain. The
fraction of RR intervals where the distance between two
adjacent RR intervals is greater than 50ms, the range of RR
intervals, the root mean square of the distance between
adjacent RR intervals, and the standard deviation of the
distance between adjacent RR intervals are all factors to
consider.

3.2. Frequency Domain Characteristics. In addition to the
time domain, this paper also extracts a set of important
frequency domain features. In order to extract the spectral
characteristics of the RR signal, this paper performs fast
Fourier transform (FFT) processing on the RR sequence and
obtains four frequency domain characteristics: the power

value of the extremely low frequency band, the power value
of the low frequency band, and the power of the high fre-
quency band.

3.3. Nonlinear Characteristics. In addition to time domain
features and frequency domain features, this paper also
extracts two nonlinear features: sample entropy and spectral
entropy.

Multiscale entropy (MSE) is used to describe the
structural complexity of time series. Many kinds of entropy
can be used to calculate multiscale entropy, such as ap-
proximate entropy and fuzzy entropy under various time
granularities. Multiscale entropy is increasingly used in sleep
analysis. In this paper, sample entropy (SampEn) is used as
the core of multiscale entropy calculation.

After the signal xi, i � 1: N􏼈 􏼉 of N data points is given, a
coarse-grained time series y(t)􏼈 􏼉 is first generated, where t is the
scale factor. The ECG signal is divided into a nonoverlapping
window of length t 1 :1, and the average value is calculated.

y
(t)

�
1
t

􏽘

jt

i�(j−1)t+1
xi, 1≤ j≤

N

t
, (2)

Therefore, y(1) is the original signal, and y(t) is the
coarse-grained sequence obtained by dividing the original
sequence into windows of length t.

The calculation steps of sample entropy (SampEn) are as
follows:

First, the coarse-grained time series form a set of
m-dimensional vectors in order (m is the number of
mode bits, and m is set to 2 in this paper):
x(i) � x(i), x(i + 1), , , x(i + m − 1){ }, (i � 1, 2, . . . , N −

m + 1).

We define the distance between x(i) and x(j) as
d[x(i), x(j)], which is the largest difference between the two
elements; namely,

d[x(i), x(j)] � max
k�0⟶m−1

x(i + k) − x(j + k)􏼈 􏼉. (3)

For each value of i, we count the number nm
i of

d[x(i), x(j)]< r, i � 1, 2, . . . , N − m + 1,

j � 1, 2, . . . , N − m + 1 and j≠ i.Then, we

calculate the ratio of it to the total number of distance
N − m, denoted by

C
m
i (r) �

n
m
i

N − m
. (4)

Then, the average value of Cm
i (r) is

C
m

(r) �
1

N − m + 1
􏽘

N−m+1

i�1
C

m
i (r). (5)

The algorithm adds 1 to the dimension to become m + 1
and repeats the previous steps to count Cm+1(r).

Finally, the calculation formula of sample entropy
SampEn is

SampEn � −In
C

m+1
(r)

C
m

(r)
. (6)
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Spectral SpecEn describes the flatness of the power
spectral density (PsD) and indirectly reflects the irregularity
of the time series. Therefore, the larger the value of SpecEn,
the flatter the shape of the PSD, and, accordingly, the more
irregular it is distributed in the time domain. Conversely, the
smaller the value of SpecEn, the denser the frequency
spectrum and the lower the degree of irregularity of the PSD
in the time domain distribution. It is also necessary to extract
the spectral entropy as a feature.

In the sample training process, as the number of features
increases, the length of time it takes to evaluate the features
and train the model, as well as the model’s complexity and
promotion ability, all decreases. By removing unnecessary
and duplicate features, feature selection can lower operating
complexity.

This study divides the feature selection process into two
phases. The optimum feature set for classification is first
selected using the bidirectional search (BDS) algorithm, and
the redundant features are then removed using the quick
correlation filter.

Sequence forward selection (SFS) and sequence back-
ward selection (SBS) are combined in the first step of the
bidirectional search (BDS) method.

3.3.1. Bidirectional Search (BDS) Algorithm. Sequence for-
ward selection (SFS) : add each feature to an empty set A one
by one in turn. Each time a feature is added, the accuracy of
the feature classification in A is calculated. If the accuracy is
higher than before adding, the feature is valid and is kept in
A; otherwise, the feature is invalid, and the feature is re-
moved from A.

Sequence backward selection (SBS) : remove each feature
one by one from the full set S and calculate the accuracy of
the feature classification in s after removing a feature. If the
accuracy is higher than before adding, continue; otherwise,
keep the feature in S.

Bidirectional search (BDS) : use forward and backward
sequence selection methods to search at the same time.
When the results of the two process searches are the same
feature subset, the search stops.

3.3.2. mRMR Algorithm. In the second stage, in order to
evaluate the synergy between features and construct a set of
optimal features, this paper adopts a filtering method based
on mutual information and minimum redundancy and
maximum correlation (mRMR) criteria.

The mRMR algorithm is based on mutual information.
When two random variables x and Y are given and their
probability density functions are p(x), p(y), and p(x, y)

respectively, the mutual information is

I(x; y) � 􏽚 􏽚 p(x, y)log
p(x, y)

p(x)p(y)
dxdy. (7)

The goal of the algorithm is to find a feature subset
containing m(xi) features.

The biggest correlation is

maxD(S, c), D �
1
|s|

􏽘
xi∈s

I xi, c( 􏼁, (8)

where xif is the i-th feature, C is the categorical variable,
and S is the feature subset.

The minimum redundancy is

minR(S), R �
1

|s|
2 􏽘

xi,xj∈s
I xi, xj􏼐 􏼑. (9)

Objective function addition integration:

maxΦ(D, R),Φ � D − R. (10)

That is,

max
xj∈X−Sm−1

I xj, c􏼐 􏼑 −
1

m − 1
􏽘

xi∈Sm−1

I xj, xi􏼐 􏼑].⎡⎢⎢⎢⎣ (11)

Among them, X represents the complete set of feature xj

, s represents the set of selected feature xi (size m), C
represents the class, and I represents the mutual informa-
tion. The definition of I is as follows:

I(x; y) � 􏽚 􏽚 p(x, y)log
p(x, y)

p(x)p(y)
dxdy. (12)

Among them, p(x), p(y), and p(x, y) are probability
density functions. These three functions are estimated by a
kernel density estimator based on adaptive diffusion.

This paper uses support vector machine (SVM), Ada-
Boost, and random forest three classifiers to classify English
speech features.

AdaBoost Method. In addition to SVM, this paper also uses
the AdaBoost (AB) method. Boosting algorithm has a good
classification effect. Boosting is an iterative algorithm whose
purpose is to combine several classification models and
integrate them into one classificationmodel.This integration
method is based on the weighted voting of the same
classifier.

AdaBoost (AB) is a widely used boosting algorithm,
which was first proposed by Freund and Schapire. AB can be
used with other classifiers, but if AB is applied to a complex
classifier, the prediction performance of new data will be
greatly affected; that is, the ability of promoting it will be lost.
Therefore, when the weak classifier is applied to the AB
algorithm, the effect will be better.

After every m iterations, the AB algorithm reassigns a
new weight wm

k for each feature vector xk in the training set.
Therefore, the m-th weak classifier will use the corre-
sponding weights for training. Then, its classification per-
formance is estimated with the error εm. This error is used to
determine the weighted voting result of the m-th weak
classifier.

Therefore, the smaller the error εm in these classifiers, the
greater the contribution to the final classification. At the end
of the iteration, the weight of the misclassified sample will be
updated to wm+1

k . Then, the weights of all samples will be
standardized to maintain the original distribution.
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In this algorithm, the error εm of the m-th iteration is
defined as the sum of the weights of the misclassified samples
divided by the sum of the weights of all the samples in the
current iteration.

εm �
􏽐

Ntrainning
k�1 w

m
k (miss)

􏽐
Ntrainning
k�1 w

m
k

. (13)

Random Forest. Random forest (RF) is a combination of
multiple decision tree classifiers, each of which depends on
an independently sampled random vector. Every decision
tree in a random forest has the same distribution. As the
number of decision trees in the random forest increases, the
error of the random forest generated results gradually
converges. The error of the random forest generated results
depends on the strength of each independent decision tree in
the forest and the relationship between the trees.

4. English Speech Feature Recognition System
Based on Deep Neural Network

When performing English speech recognition in a classroom
or in a relatively closed place, some of the sound waves
emitted by the sound source are directly received by the
microphone, and the other part will be reflected and
absorbed after reaching the indoor walls, ceiling, ground,
and other obstacles [22]. The attenuation of the sound signal
after reflection is relatively small. Due to the different
materials of various obstacles, the reflection coefficient is
also different. In addition, the strength of the sound energy
received by the obstacle is different, the signals received by
the microphone will have a large amplitude compared with
the original signal, and the phase will be different. From the
reverberation process shown in Figure 1, it can be seen that

reverberation is different from irrelevant external interfer-
ence signals such as noise. The reverberation signal origi-
nates from the sound source signal and is a regular
interference signal [23].

According to research on the complex cepstrum of the
speech signal, the positions of the complex cepstrum of the
sound source signal and the room’s impulse response are
different when the reverberant speech signal is translated
into the complex cepstrum domain. While the latter is
concentrated at both ends, the former is mostly concentrated
closer to the midway point [24]. The estimated value of the
complex cepstrum of the original speech signal must
therefore be obtained by designing a low-pass filter in the

English
voice

source

Arrived after
reflection

Arrive directly

Arrived after multiple
reflections

English voice
receiving device

Figure 1: Schematic diagram of the English speech reverberation
process in the classroom.

Framing, windowing

Separate signal

Complex cepstral domain filtering

Signal transformation to time
domain

Reconstruct the speech

Reverberation
signal

Output

Figure 2: Flow chart of dereverberation.

1

0

W (n)

LM h L-M-h+1 L-M+1

Figure 3: Schematic diagram of complex cepstral domain filter.
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complex cepstrum domain to filter the room impulse re-
sponse, and this estimated value must then be transformed
into the time domain to obtain the estimated value of the
original speech signal. Figure 2 depicts the extensive ceps-
trum dereverberation procedure in this work.

Designing a complex cepstrum domain filter is an im-
portant part of the process of speech signal dereverberation.
The complex cepstrum domain filter is a low-pass filter in a
broad sense. Moreover, its parameters determine the per-
formance of dereverberation, including three parts, namely,
the pass band, the transition band, and the stop band.
Figure 3 shows the filter schematic diagram.

Among them, L is the length of the filter,M is the cut-off
point of the passband, h is the length of the transition band,
and h(n) is the transition band function.WhenM is 1/16 of h

and h is 1/8 of L, the best dereverberation evaluation index is
obtained, and the dereverberation effect is the best.

This paper downloads an English voice from the officially
recognized voice library. The sampling frequency is
44100Hz, and the length, width, and height of the room used
in the experiment are 5m, 4m, and 3m, respectively.
Moreover, this paper uses the mirror image method to
simulate the room impulse response, and the room impulse
response function is shown in Figure 4.The collected voice is
convolved with the simulated impulse response function to
obtain the reverberant voice, and the reverberant voice is
framed and then a Hamming window is added. Among
them, the frame length is 1024, and the frame shift is 1/4 of
the frame length.

As seen in Figure 5, this filter is a low-pass filter ap-
propriate for the cepstrum domain.When the highest cut-off
point for the filter is 1/256 of the frame length and the
bandwidth of the transition band is 1/16 of the frame length,
it is discovered that good evaluation results for the speech
signal obtained after dereverberation may be obtained.

According to the distance from the sound source to the
microphone array, it is divided into a near-field model and a
far-field model of the microphone array. When the signal
source is far from the array, the wave path difference of the
signal reaching each element is relatively small, and the
signal can be treated as a plane wave model. The difference is
that when the signal source is close to the microphone array,
the signal reaches the array element in the microphone array
with a larger amplitude difference. At this time, the wave-
form arriving at the array should be a spherical wave model.
Figure 6 shows the near-field and far-field models of the
microphone array.
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The overall implementation scheme of the FPGA-based
microphone array signal processing system is shown in
Figure 7. First, a microphone array is designed as the voice
signal collection terminal. This paper uses 4 low-cost om-
nidirectional electret microphones as the elements of the
microphone array to convert the voice signal into an analog
signal output. Then, a signal acquisition system with signal
acquisition and AD conversion functions is designed.

The model in this paper is based on the foundation of
deep neural network. The results of the deep neural network
in this paper are shown in Figure 8.

5. Performance Verification of English Speech
Feature Recognition Model Based on Deep
Neural Network

This study uses deep neural networks to construct a model
for English speech feature recognition. This model can
perform English voice denoising using a neural network
approach in order to accomplish the recognition of English
speech features even in situations when there is classroom
reverberation. As a result, this work initially assesses the

impact of English speech denoising before counting the
impact of English speech feature recognition in the system
performance test. In order to determine the denoising effect
of English speech, this study collects numerous sets of
English speech data via the network and runs tests with the
system that it has built, as shown in Table 1 and Figure 9.

From the analysis results of the above chart, it can be
seen that the English speech feature recognitionmodel based
on the deep neural network constructed in this paper has a
better effect. After that, this paper conducts the evaluation of
the English speech feature recognition effect of the system
constructed in this paper. The results obtained are shown in
Table 2 and Figure 10.

Microphone array

Signal acquisition
system

Signal processing
system

Array theory model Microphone array
design

Front-end
acquisition module

hardware design

Software design of
front-end acquisition

module

Design and
Simulation of Speech

Enhancement
Algorithm

Implementation and
Simulation of Speech

Enhancement
Algorithm

Host computer

Sound source

Figure 7: Block diagram of the overall implementation scheme of
the English speech recognition system.

Figure 8: Deep neural network model.
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From the above experimental research results, it can be
seen that the English speech feature recognition system
constructed in this paper has a certain effect.

6. Conclusion

This paper studies the English speech detection algorithm
based on the nonstationary strong noise environment. The

windowing of the English speech signal can make the speech
signal processing easier, and different window functions
have different effects. Linear predictive analysis includes
autocorrelation method and covariance method. The co-
variance approach is less reliable than the autocorrelation
method, which is better suited for interpreting English voice

Table 1: Statistical table of the accuracy of English speech
denoising.

Num Speech
denoising (%) Num Speech

denoising (%) Num Speech
denoising (%)

1 92.36 27 90.05 53 90.55
2 92.08 28 92.73 54 91.93
3 92.30 29 92.10 55 93.56
4 91.32 30 91.70 56 91.55
5 93.20 31 91.08 57 92.61
6 93.01 32 93.01 58 93.78
7 91.71 33 90.74 59 93.75
8 91.04 34 90.07 60 90.52
9 90.81 35 93.46 61 92.77
10 93.95 36 92.80 62 93.81
11 90.32 37 90.36 63 93.08
12 92.38 38 92.63 64 91.37
13 92.67 39 90.39 65 92.01
14 94.00 40 92.76 66 90.85
15 91.18 41 91.22 67 93.56
16 92.38 42 91.31 68 90.84
17 91.82 43 93.86 69 92.42
18 93.06 44 91.47 70 93.07
19 92.95 45 91.02 71 92.44
20 91.45 46 90.59 72 91.88
21 92.35 47 93.37 73 92.97
22 90.92 48 93.37 74 91.33
23 92.43 49 94.00 75 93.59
24 92.19 50 91.47 76 91.70
25 91.50 51 90.64 77 91.22
26 93.42 52 93.88 78 90.24

88 90 92 94 96
1
6

11
16
21
26
31
36
41
46
51
56
61
66
71
76

Speech denoising (%)

Figure 9: Statistical diagram of the accuracy of English speech
denoising.

Table 2: Statistical table of the speech feature recognition effect of
the English speech feature recognition system.

Num
Speech

recognition
(%)

Num
Speech

recognition
(%)

Num
Speech

recognition
(%)

1 90.81 27 90.86 53 90.19
2 90.22 28 89.98 54 88.06
3 85.37 29 90.39 55 87.00
4 89.84 30 87.43 56 85.79
5 87.59 31 88.71 57 85.76
6 88.45 32 88.23 58 84.77
7 84.96 33 87.94 59 88.61
8 89.07 34 84.20 60 90.07
9 90.20 35 88.74 61 89.25
10 87.86 36 87.21 62 89.12
11 87.34 37 86.26 63 89.99
12 89.82 38 87.61 64 87.54
13 84.29 39 90.37 65 90.44
14 85.20 40 84.74 66 88.88
15 88.38 41 84.42 67 89.52
16 84.80 42 88.40 68 84.61
17 87.95 43 87.67 69 88.45
18 91.00 44 87.02 70 87.84
19 88.26 45 88.66 71 89.05
20 87.04 46 88.33 72 89.48
21 90.30 47 90.07 73 88.31
22 86.67 48 87.18 74 85.96
23 89.35 49 89.69 75 89.78
24 89.73 50 84.79 76 86.36
25 86.64 51 90.79 77 86.84
26 88.28 52 90.83 78 85.82
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Figure 10: Statistical diagram of the speech feature recognition
effect of the English speech feature recognition system.
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signals. In this study, the filter bank addition and overlap
addition are introduced for the short-term synthesis of
English voice signals. Additionally, the concatenation and
addition approach is chosen to handle the voice signal due to
its simplicity after evaluating the two methods’ degree of
complexity. This work also conducts simulation research on
the various properties of the reverberation signal and pure
speech signal in the complex cepstrum domain, examines
the basic idea of complex cepstrum domain filtering, and
builds a complex cepstrum domain filter. Finally, this paper
constructs an English speech feature recognition model
based on deep neural network and verifies the reliability of
the algorithmmodel through experimental research [25, 26].

Data Availability

The data used to support the findings of this study are in-
cluded within the article.
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