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Wireless sensor networks are now widely used in a variety of fields. It has the advantages of being low cost, practical, and
adaptable. Methods of data fusion can help to increase efficiency. However, in the process of information transmission, once
some nodes are invaded, the privacy of data will be threatened. Therefore, the research on its data privacy protection
technology is very important. Under the premise of ensuring data privacy, existing data fusion methods of this type complete
data fusion by preventing other nodes from knowing the private data collected by sensor nodes. Research on the current hot
issues of data fusion privacy protection improves the shortcomings of traditional data fusion privacy protection technology and
proposes an improvement, innovation, and three-dimensional space-oriented wireless sensor network low-energy data fusion
privacy algorithm LEC-CPDA. Through simulation experiments and theoretical analysis, it is concluded that the LEC-CPDA
algorithm can significantly improve the protection of privacy and improve the accuracy of data fusion.

1. Introduction

At present, the Internet of Things (IoT) is very popular in many
fields, and there has been in-depth research. Industrial monitor-
ing, intelligent transportation, environmental monitoring, and
other fields have tried IoT applications. Through the integration
of sensor, embedded computing, distributed information pro-
cessing, and communication technologies that based on a large
number of nodes scattered in the environment, the wireless sen-
sor network (WSN) performs real-timemonitoring and percep-
tion, to collect useful, detailed, and accurate information, and
the collected information can be used for analysis and process-
ing. Therefore, through WSN, a large amount of detailed and
reliable field information (such as national defense andmilitary,
environmental monitoring, traffic management, and medical
health) can be obtained anytime and anywhere. In the transmis-
sion of information on the IoT, the protection of information
privacy is of utmost importance. Especially when it comes to
some sensor terminals in the country and the collected sensitive

data information, these need to be protected more. Not only do
the terminal and the collected data need to be encrypted and
protected but also in the process of data processing. Typical
applications in this area are behavior analysis based on data
mining. Therefore, it is urgent to solve the problem of data
privacy protection in the Internet of Things. Only, in this way,
this technology is more maturely used in practice. Currently,
with the deepening of research, there are many and various
privacy protection data fusion methods that are proposed by
researchers related to WSN. In the process of data fusion, not
only the efficiency but also the privacy protection of fusion
needs to be considered. In terms of privacy protection, some
encryption techniques are used. Literature [1–3] gives an over-
view of security issues in WSN data fusion. Privacy protection
and data fusion algorithms are divided into two types including
nonencrypted and encrypted data fusion algorithms. Most of
the early research focuses on nonencrypted data fusion algo-
rithms, using data modification operations to hide the original
data, but privacy protection is not ideal. End-to-end encryption
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and hop-by-hop encryption are two main methods of
encryption-based privacy protection data fusion schemes.
Among them, end-to-end refers to the establishment of a secure
link between each node and the base station node. The private
data of each node is encrypted and then sent upwards.

After the base station node obtains the encrypted packet,
it extracts the real data through the key negotiated with each
node. In this way, the intermediate node remains transpar-
ent during the entire communication process. However,
this method generally cannot achieve data fusion. At the
same time, the disadvantage of this type of method is that
the nodes close to the base station have too frequent trans-
mission operations, which makes them have excessive
energy loss and low communication efficiency. The privacy
protection scheme proposed in the literature [4, 5] solves
these problems to a certain extent. They implement end-
to-end fusion encryption by introducing homomorphic
encryption technology so that data can be directly fused
without decryption. Another hop-by-hop encryption
method is that each node first decrypts the received merged
data packet, then merges it with the original data, then
encrypts it, and finally merges it upwards. The encryption
and decryption processes are based on the abovementioned
specific key distribution scheme. A data fusion algorithm
based on hop-by-hop encryption is proposed in the litera-
ture [6–9]. This method has an intermediate decryption
process in the fusion process. It can be seen that its privacy
protection is weaker than the first method. Literature [10]
addresses some shortcomings of the end-to-end method.
For intrusion detection and privacy protection, literature
[11] proposed a unified fusion algorithm. He et al. [7] pro-
posed the privacy-preserving data aggregation privacy pro-
tection data fusion scheme by studying the additive fusion
function sum. The scheme includes Cluster-Based Private
Data Aggregation (CPDA) and Slice Mix Aggregate
(SMART) algorithm. CPDA is based on the idea of alge-
braic operations and adopts the method of introducing
noise for privacy protection; SMART uses the method of
shuffling fragments for privacy protection. Although the
topological structure of the two methods is not the same
(CPDA is based on a cluster structure, while SMART is a
tree topology), both of them use the TAG (tiny aggrega-
tion) [12] tree model to complete the data transfer task to
the base station. By combining the data fusion method with
data and node-to-node encryption and decryption method,
the SMART prevents attacks from external intruders,
ensures the accuracy of the data fusion results, and obtains
private data for the internal trusted nodes and QS. It is
computationally expensive for CPDA. Also, it is heavy of
data communication for SMART data communication.
Not only that, it is sensitive to data loss, and it takes a lot
of time to get relatively good accuracy. A privacy protection
method based on complex number domain data fusion
under a tree topology was proposed [13].

Characteristics of the data fusion tree frame are used to
compress the communication overhead that is used to reduce
energy [14]. Based on query server and multilayer query, [15]
proposed a privacy protection data fusion method. According
to different security requirements, this method divides the

query into different levels and establishes a hierarchical
network model. Many improved methods for SMART such
as energy-efficient and high-accuracy secure data aggregation
(EEHA) [16] and energy-saving privacy-preserving data
aggregation (ESPART) [8] have been proposed. By adding
5 types of optimization factors, a high-accuracy and
privacy-preserving oriented data aggregation (P-SMART-
CLPNT) [17] was proposed. It improved the accuracy of
data fusion, reduced the data collision rate, and decreased
the possibility of data loss due to collision. Compared with
the SMART method, it has the characteristics of high
fusion accuracy and low communication volume. Although
the methods in [15–17] are optimized for the problem of
large SMART communication volume, SMART communi-
cation volume is still large compared to the CPDA method.
In 2008, Yao and Wen proposed a layered network-based
privacy protection method (data aggregation different
privacy-level protection (DADPP)) based on CPDA [18].
After the clustering process is over, DADPP divides the
nodes in the cluster, logically in different groups to reduce
the computational dimension, thereby reducing computa-
tional complexity and communication volume. Although
this method reduces the number of fusion nodes in the
cluster, it requires the participation of specific network
nodes and does not propose a method for the general divi-
sion of any node cluster. Guo proposed a simple improve-
ment scheme based on CPDA, taking the clustering of
three nodes as an example to perform asymmetric privacy
data fusion, thereby reducing the computational dimension
and the amount of communication [19]; but when there are
a few nodes in the cluster, when the number is greater than
3, the article does not propose a general solution. In
response to the above, to improve the large amount of cal-
culation and communication problems that exist in the
existing privacy protection data fusion methods, this paper
proposes an intracluster privacy protection data fusion with
low energy consumption method (LEC-CPDA), with a view
to on the premise of ensuring data privacy, further reduce
the amount of calculation and communication of network
nodes.

The rest of the paper is organized as Section 2 provides
the proposed steps and algorithm of LEC-CPDA. Experi-
mental analyses and results are explained in Section 3. The
conclusion is given in Section 5.

2. Proposed LEC-CPDA: A Low-Energy Data
Fusion Privacy Protection Algorithm

For a cluster, given n nodes (i.e., one cluster head and n − 1
cluster members). If node Niði = 1, 2,⋯, nÞ collects data xi at
time t, the data fusion function is

f tð Þ = f x1 tð Þ, x2 tð Þ,⋯,xi tð Þ,⋯,xn tð Þð Þ: ð1Þ

Among them, there can be lots of functions for fashion-
ing (e.g., sum, average, median, minimum, maximum, and
count). In this article, we mainly focus on the sum function
which is defined as yðtÞ =∑n

i=1xiðtÞ.
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2.1. Steps

(1) LEC-CPDA Clustering Stage. By sending a Hello
message, the query server (QS) can trigger a query.
For a node, when the message is received, the node
will be converted to the cluster head node and
send a Hello message to neighboring nodes at the
same time. For the remaining nodes that have been
waiting, they will stop waiting and join the group
unless the neighbor node sends a Hello message.
Otherwise, as long as the cluster head sends them
a JOIN message, they will immediately join the
cluster

After the topological structure is formed, the key distri-
bution of the nodes will be carried out. According to the
principle of secure multiparty computing [20, 21], the secu-
rity model of LEC-CPDA uses a semihonest model, and the
key distribution mechanism is the same as that of CPDA,
and both use a random key predistribution method [23].
In this way, the probability of the node key being cracked
can be reduced as much as possible, and the data security
protection is higher when the base station and the node
are not trustworthy.

(2) Fusion Stage within LEC-CPDACluster. After the clus-
tering is over, the nodes in the cluster begin to sense
data and perform fusion operations. For the conve-
nience of explanation of a cluster, we assume that it
contains 4 nodes A, B, C, and D, respectively, broad-
casting its seed value x, y, z, andw, whereA is the clus-
ter head that is generating an undisclosed random
value rA, rB, rC , rD. For each fusion process, first node
A randomly selects a node, and the remaining nodes
calculate the seed value and random value and send
them to the cluster head and the nodes according to
the selection of the cluster head. The communication
process can be shown in Figure 1. Among them,
Figure 1(a) shows the propagation seed value of the
nodes in the cluster, Figure 1(b) shows the seed value
of the selected node propagation by the cluster head
node, and Figure 1(c) is the information exchange
process. Figure 1(d) is the collaborative node sending
the calculation result to the cluster head

Assume that node A selects node B as the cooperative
node. The calculation result of node A is

VA
A = a + rAx,

VA
B = a + rAy:

(
ð2Þ

Among them, a is the data obtained by node A.
The calculation result of node B:

VB
A = b + rBx,

VA
B = a + rBy:

ð3Þ

Among them, b is the data obtained by node B.
The calculation result of node C:

VC
A = c + rCx,

VC
B = c + rCy:

ð4Þ

Among them, c is the data obtained by node C.
The calculation result of node D :

VC
A = c + rCx,

VC
B = c + rCy:

ð5Þ

Among them, c is the data obtained by node C.
Node A receives messages from other nodes and gener-

ates intermediate value FA after fusion processing

FA =VA
A +VB

A +VC
A +VD

A = a + b + c + dð Þ + x rA + rB + rC + rDð Þ:
ð6Þ

The intermediate value FB after node B fusion processing is

FB = VA
B + VB

B + VC
B +VD

B = a + b + c + dð Þ + y rA + rB + rC + rDð Þ:
ð7Þ

Node B sends FB to cluster head A, and cluster head A cal-
culates the fusion result a + b + c + d according to the formula
U = G−1F.
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Figure 1: Communication process diagram.
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G =
1 x
1 y

" #
, F= FA, FB½ �T : ð8Þ

(3) Fusion Stage between LEC-CPDA Clusters. Similarly,
compared with CPDA, the intercluster fusion pro-
cess of LEC-CPDA used the TAG tree, i.e., the clus-
ter head uploads the fusion value to the base station
by the TAG tree

2.2. LEC-CPDA Algorithm Flow

3. Experimental Analyses and Results

We mainly analyze the performance of LEC-CPDA from
three aspects: privacy protection, data communication vol-
ume, and accuracy. TAG [12], SMART [7], ESPART [8],
and CPDA [7] are typical data fusion technology used in
wireless sensor networks. We use it as the data privacy anal-
ysis, calculation, and communication of LEC-CPDA con-
trast items of quantity and fusion accuracy.

3.1. Data Privacy Analysis. Data privacy reflects the possibil-
ity of node private data that was being cracked. The scale of
the cluster cannot grow indefinitely, and its distribution law
can be expressed by equations (9)–(11). It can be seen from
equations (9) to (11) that the distribution of cluster size is
related to the parameters pc and di.

pi = 1 − pcð Þ 1
dipc

, ð9Þ

p Cij j = kð Þ =
di

k − 1

" #
pk−1i ∙ 1 − pið Þdi−k+1, ð10Þ

p Cij j <mcð Þ = 〠
mc−1

k=1
p Cij j = kð Þ = 〠

mc−2

k=0

di

k

" #
pki ∙ 1 − pið Þdi−k:

ð11Þ

(i) Ci represents the cluster with node i as the head no

(ii) pi is the probability that indicates the neighbor of i
joins the cluster

(iii) k is the node number with Ci

(iv) mc is the minimum number of nodes possible for a
cluster Ci

(v) pðjCij = kÞ represents the probability that the clus-
ter Ci contains k nodes

(vi) pðjCij <mcÞ indicates the probability that the cluster
size of Ci is less than the minimum cluster size mc

(vii) di is the degree of an adjacent node of node; pc is
the probability of becoming a cluster head for
a node

Not only the clustering results of the whole network
parameters are affected by di and pc affect but also the pri-
vacy of node data is affected by them. In CPDA, each mem-
ber node in the cluster performs polynomial operations on
its data and unsecured seeds and then encrypts it and trans-
mits it to others. Each node transmits m − 1 piece of
encrypted information to other in-cluster nodes when clus-
ter size is m, and only when other in-cluster obtain these
m − 1 encryption keys, the corresponding data of it is
cracked. Thus, the average probability that the data of all
nodes in the cluster will be cracked is

p1 qð Þ = 〠
dmax

k=dmin

p m = kð Þ∙ 1 − 1 − qk−1
� �k� �

: ð12Þ

The LEC-CPDA topology is initialized to complete the process of node clustering
Set the message sending time interval Δt for data fusion
If the current node belongs to a cluster
Broadcast their respective seed values to nodes in the cluster
End if
The nodes are waiting
If a node receives the query request
By randomly selecting a cooperative node, the cluster head node broadcasts its seed value
The nodes in the cluster perform noise processing on the acquired data and send them to the cluster head and the cooperative node,
respectively. At the same time, the cluster head node and the cooperative node also send the results of the noise processing to each
other
The cooperative node sends the calculated intermediate result to the cluster head, and the final cluster head calculates the fusion
result
End if
The cluster head node establishes a TAG tree and transfers the fusion result to the base station by borrowing the TAG tree
The node resumes its waiting state

Algorithm 1: LEC-CPDA algorithm.
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Here, dmax and dmin, respectively, refer to maximum and
minimum node number of the corresponding cluster.

If all J − 1 out-degree and all in-degree links of the node
in SMART are cracked, the real data of the node will be
exposed

p2 qð Þ = qJ−1 〠
dmax

k=0
p in degree = kð Þ∙qk: ð13Þ

The minimum node degree for the ESPART is dmin. If
the in-degree and out-degree links of the node are both
cracked, the real data of the node will be exposed, so

p3 qð Þ = 〠
dmax

k=dmin

p m = kð Þ∙qk: ð14Þ

In the LEC-CPDA method, two encrypted messages are
sent by each node to the cluster head and the node randomly
designated by it. Therefore, before cracking the data of the
source node, it is necessary to know the secret key for com-
municating with these two nodes. The average probability
that the data of all nodes in the cluster in LEC-CPDA will
be cracked is

p4 qð Þ = 〠
dmax

k=dmin

p m = kð Þ∙ 1 − 1 − q2

k

� �k
 !

: ð15Þ

Here, q is the probability of eavesdropping. Figure 2
shows the privacy comparison of the four methods under
different q. We conclude that LEC-CPDA has the strongest
degree of privacy, followed by the ESPART method. Privacy
comparison (pc = 1/5) is shown in Figure 2.

Figure 3 shows the privacy distribution of LEC-CPDA
when pc values are different. When the value of pc increases,
the scale of the formed cluster is smaller (the number of
nodes m ≥ 3), and the privacy of LEC-CPDA is greater.

Therefore, the node data will be not easily cracked. There-
fore, an appropriate value of pc must be selected.

Figure 4 is a cluster scale distribution diagram obtained
from cluster scale distribution (9)–(11).

When pc = 1/5, the cluster size of the entire network is
mostly concentrated in 3~ 7 nodes, and the proportion of
clusters of a single node is small. Therefore, when the scale
of the formed cluster is concentrated in 3~ 7 nodes, the
mechanism proposed in this paper can ensure that the data
exposure rate is in a low range, thereby ensuring the privacy
of the data.

3.2. Calculation and Communication Volume Analysis. In
this section, we will discuss calculation amount, intracluster
fusion traffic, network-wide traffic, residual energy ratio, and
fusion accuracy analysis in detail.

3.2.1. Calculation Amount. In the preparation phase of the
ESPART algorithm, the same as TAG, the Hello signal is
first sent out from QS. When each node receives the Hello
signal for the first time, its parent node is selected as the
Hello signal source node. Thus, to build a data fusion tree,
it sends the signal; each node needs to transfer data upwards
within the time slice in the upward data fusion stage. Sim-
plify, we give each layer the same time slices. To avoid con-
flicts in the time slice, we randomly send them. The ESPART
requires each node to record the number of its child nodes in
the first step of the fusion stage. The preparation phase,
compared with TAG, is the same for the data traffic of the
first step generated by ESPART. Each node, respectively,
sends 1 Hello signal and 1 fusion data. After fixing the tree
structure and recording subnode numbers, the amount of
data transmission between the subsequent nodes of the col-
lusion communication phase can be reused. Therefore, in
the experiments, the data communication volume generated
in the preparation phase can be ignored.

Concerning ESPART and SMART algorithms, what is
measured in the simulation process is the number of all data
packets which are sent by all nodes of the network in the
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process of collusion. In terms of TAG, we measure the num-
ber of all data packets sent by all nodes in a single establish-
ment and integration process.

For the CPDA algorithm and the LEC-CPDA algorithm,
this paper divides the calculation amount present in the
node into two cases:

(1) The calculation amount of the nodes in the cluster

(2) The calculation amount of the cluster head

The amount of calculation includes arithmetic opera-
tions, that is, noise interference processing, encryption,
decryption operations, and data fusion operations. α, β, γ

are used to represent arithmetic, encryption, and decryption
operations, while fusion operation is represented by δ. Sup-
pose 4 nodes A, B, C, and D are in a cluster. Among them, A
is the cluster head node, and B, C, and D are nodes of the
cluster.

In the CPDA mechanism, all nodes in the cluster will
perform the following steps in the cluster fusion process:
After each node collects data, use the public seed value of
each node in the cluster and 3 private random values for
noise processing. The operation, that is, converted into 4
third-degree polynomials. In the entire calculation process,
the number of arithmetic operations is 39; each node
encrypts the 3 noise interference values and sends them to
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the other 3 nodes in the cluster, and the node will also
receive 3 sent from the other 3 nodes. The third-degree poly-
nomial, after decrypting the noise interference value with a
shared key, performs a third-order arithmetic operation to
combine 4 polynomials (the node itself retains a polyno-
mial). Therefore, the calculation amount for a cluster size
of 4 can be expressed as

QCPDA−node = 39α + 3β + 3γ: ð16Þ

For the cluster head node, besides performing the oper-
ations of the nodes in the cluster, it also needs to consider
the fusion operation. The calculation amount of the cluster
head can be expressed as

QCPDA−cnode = 39α + 3β + 3γ + δ: ð17Þ

For the LEC-CPDA algorithm, all the nodes will perform
the following steps in the process of fusion within the clus-
ter: After each node collects data, use the node’s public seed
value and 3 private random values to perform noise interfer-
ence operations, namely, converted into 4 second-degree
polynomials. In the whole calculation process, the number
of arithmetic operations is 4; each node sends 2 encrypted
noise interference values to the cluster head and the coop-
erating node. At the same time, they receive the noise pro-
cessing results sent by other nodes; after decrypting the
noise value with the shared key, it performs 2 arithmetic
operations to combine 2 polynomials. Therefore, the calcula-
tion amount for a cluster size of 4 can be expressed as

QLEC−CPDA−node = 4α + 2β: ð18Þ

The calculation amount of the cooperative node can be
expressed by

QLEC−CPDA−midnode = 4α + β + 3γ: ð19Þ

For the cluster head node, besides performing the oper-
ations of the nodes in the cluster, it also needs to consider
the fusion operation. The calculation amount of the cluster
head can be expressed as

QLEC−CPDA−node = 4α + β + 3γ + δ: ð20Þ

It can be seen that LEC-CPDA has a greater advantage
over CPDA in terms of calculation.

3.2.2. Intracluster Fusion Traffic. Figure 5 shows the compar-
ison of the average intracluster communication volume
between LEC-CPDA and TAG, SMART, ESPART,
and CPDA.

It can be seen from Figure 5 that the graphs of the other
methods have roughly increased exponentially, and the TAG
and CPDA methods have the fastest growth. Due to the
uneven distribution of cluster size, the curve growth trend
when the cluster size is 7 − 8 is different from the previous
growth trend of 3 − 7. This is because the number of clusters
with 7 − 8 node size is different from the cluster number
containing 3 − 7 nodes. Similarly, the curve with the node
number containing 10 − 11 nodes has a breakpoint phenom-
enon. The traffic curve in LEC-CPDA is roughly linear. It
can be seen that in the process of intracluster fusion, LEC-
CPDA has a greater advantage in communication complex-
ity, thereby reducing the amount of data communication.

3.2.3. Network-Wide Traffic. The aspects that need to be con-
sidered when calculating the communication volume in the
entire network are the communication volume during the for-
mation of the network topology, the communication volume
merged within the cluster, and the communication volume
merged between the clusters.

Given n nodes of the cluster, in the CPDA mechanism,
firstly, cluster heads send a Hello message to neighboring
nodes to form clusters. This process needs to transmit 1
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message; secondly, respective seed values of these nodes are
broadcasted; then, perform intracluster fusion; finally, the
upper cluster head receives the fusion result forwarded by
cluster head. In the whole process, the cluster head sends
and nodes in the cluster, respectively, send n + 3 and n + 2
messages; in the LEC-CPDA mechanism, the clustering
stage is the same as CPDA, and one message needs to be
transmitted. Secondly, respective seed values of the nodes
in the cluster are broadcasted; again, perform the LEC-
CPDA intracluster fusion; finally, the upper cluster head
node receives the fusion result from the cluster head.
Throughout the process, the cluster head, nodes of the
cluster, and the collaboration node, respectively, sent 5 and
3 messages.

It can be seen from Figure 6 that LEC-CPDA has less
overall network traffic than the other four methods. When

pc = 1/3, LEC-CPDA’s overall network communication vol-
ume is 29% lower than CPDA; when pc = 1/5, LEC-
CPDA’s overall network communication volume is about
54% lower than CPDA. In the entire network, given fixed
node size, for the cluster size distribution and the param-
eter pc, the larger the parameter pc, the smaller the cluster
size, and the smaller the pc, the larger the cluster size. Due
to the large cluster size, when pc decreases, the data com-
munication volume of LEC-CPDA does not change much,
but the communication volume of CPDA increases
significantly.

3.2.4. Residual Energy Ratio. This paper compares the
remaining energy of the entire network after each round of
fusion. Set the initial energy of each node as E0 = 150 J, the
energy consumption of one calculation is Ec = 220nJ,
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the transmission energy consumption is Wtr = 0:66W, the
receiving energy consumption is W = 0:395W, 400 fusion
simulations are performed, and the remaining energy com-
parison can be seen in Figure 7. Figure 7 displays that the
energy consumption of TAG is the fastest. This is due to a
large amount of calculation and communication of TAG,
which requires multiple calculations, sending and receiving
data. In the network, communication and transmission are
the node’s main energy consumption, and the amount of
communication and transmission of LEC-CPDA is less than
that of CPDA. Therefore, after the same number of rounds
of data fusion, the energy consumption of LEC-CPDA is sig-
nificantly less than that of CPDA, which is more conducive
to extending the life cycle of the network.

3.3. Fusion Accuracy Analysis. Given pc = 1/5, in this experi-
ment, to ensure that most nodes in the network are covered,
we use 600 nodes which are distributed in the range of 400
m × 400m. At the same time, we, respectively, set the trans-
mission range and transmission rate of the nodes as 50m
and 1Mb/s. In the same scenario, LEC-CPDA can guarantee
the same fusion accuracy as other methods.

According to Figure 8, we can conclude that LEC-CPDA
outperforms ESPART in terms of fusion accuracy. In the
intracluster fusion of LEC-CPDA, for the cluster head node
and the cooperating nodes, the nodes of the cluster only
need to send two messages to them. Compared with other
methods, the collision in the communication transmission
process is reduced, and the fusion accuracy is improved.
In addition, when the fusion time interval increases, the
fusion accuracy increases. When the fusion time interval
extends, the data packet which is sent by the node allows
a longer time to reach the destination node, so it has a bet-
ter fusion effect.

4. Conclusion

For the wireless sensor network to fuse data with low energy
consumption while also ensuring data privacy, this paper
improves the existing CPDA method and proposes a low-
energy privacy protection mechanism LEC-CPDA. The
results of experiments display the LEC-CPDA outperforms
other methods in terms of calculation volume, communica-
tion volume consumption, and fusion accuracy. This article
only analyzes the sum function, and analyzing the multitype
fusion function is the next step. In addition, this article does
not consider the verification of data integrity, and further
research will be done in this area in the future.
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