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In recent years cloud computing has established itself as the computing paradigm that supports most distributed systems, which
are essential in mobile communications, such as publish-subscribe (pub/sub) systems or complex event processing (CEP). The
cornerstone of cloud computing is elasticity, and today’s autoscaling systems leverage that property by making scaling decisions
based on estimates of future workload to satisfy service level agreements (SLAs). However, these autoscaling systems are not
generic enough, as the workload definition is application-based. On the other hand, the workload prediction needs to be mapped
in terms of SLA parameters, which introduces a double prediction problem. This work presents an empirical study on the
relationship between different types of workloads in the literature and their relationship in terms of SLA parameters in the context
of mobile communications. In addition, more than 30 prediction models have been trained using different techniques (time series
analysis, regression, random forests) to test which ones offer better prediction results of the SLA parameters based on the type of
workload and the prediction horizon. Finally, a series of conclusions on the predictive models to be used as a first step towards an

autonomous decision system are presented.

1. Introduction

In recent years, cloud computing has become an essential
technology in our daily lives due to the constant connection
we maintain with the Internet through mobile systems and
the elastic capabilities of this computing technique. These
capabilities allow users to use and pay for the resources
needed by acquiring and releasing them on-demand (pay-
per-use or pay-as-you-go model), decreasing the cost of
using this infrastructure [1]. Despite these model benefits,
the service level agreements (SLAs), an agreement between
the cloud customer and the cloud service provider, com-
posed of service level objectives (SLOs) (we will use “SLA
parameters” in the rest of this document), that meeting
certain application performance levels [2, 3] must. The
service must find the point at which the applications/services
use the minimum amount of resources to fulfil the estab-
lished obligations, which, in turn, minimizes both cost and

energy consumption [4, 5]. This leads to a double-edged
problem since both under- and over-provisioning (either
does not have enough resources to process all tasks/requests
on time, which is essential for mobile communications, or it
has more resources than required to process the current
load, respectively) could lead to saturation of the system or
waste of resources, respectively [1, 6]. Both of these situa-
tions lead to the system operating outside the agreed SLA
parameters, which constitutes an SLA violation.

Predictive autoscaling systems can use one or more
variables to predict the system behavior and use this pre-
diction to decide if it needs more resources, is using too
many, or requires no changes in resource allocation. This
decision triggers the appropriate scaling action.

In the literature, the workload itself is used to predict the
system behavior by identifying different parameters (e.g., its
trend to check how much the load is changing) and using
them to predict the system load in the immediate future.
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Despite this, the system could use other variables to predict
its behavior, e.g., its level of saturation (e.g., CPU and RAM
consumption) or its current performance and efficiency
(e.g., the mean response time of the events received),
resulting in a prediction based on results that might reflect
the system status more accurately.

One of the major problems of using the workload as the
predictor is the need for a precise definition due to the
ambiguity of the term itself [7]. The definition of workload
varies between systems, and so do its contents and structure.
The workload of a publish/subscribe (pub/sub) system (e.g., a
sensors system [8], a messaging service, etc.) workload is
composed of publications, subscriptions, and unsub-
scriptions; a batch application workload is composed of
processing orders; and a complex event processing system
(CEP) workload that contains different events to be processed
(e.g., text messages, weather reports, monetary transactions).
This problem has a direct impact on any predictive
autoscaling system not tuned to the expected workload
pattern, for example, a system adjusted to receive a periodic
workload will underperform if it changes to an unpredictable
workload. Creating a sufficiently generic predictive
autoscaling system capable of using any workload on any
cloud service is a very complex task [9] due to the limited
capabilities of this type of system caused by this ambiguity.

Furthermore, workload prediction might not produce
direct information about the possibility of an SLA violation
of the predicted workload, which is essential for the deci-
sion-making process of triggering a scaling action and the
number of resources this action will manage. Also, this
prediction might not reflect the number of resources used by
the system, which does not provide a snapshot of its per-
formance based on its SLA parameters (high-level metrics).

The autoscaling system will benefit from having addi-
tional information related to the SLA parameters (ie.,
throughput and response time) to decide about said scaling
action.

To get this extra information the autoscaling system
must predict its SLA parameters to check if any will not be
met with the forecasted workload it will receive, which
creates a “double-prediction” problem (predicting the
workload and SLA violations) that could lead to problems,
mainly related to the dependence of the SLA prediction on
the workload prediction. For example, the decision made by
the SLA prediction might be incorrect due to an incorrect
workload prediction, triggering a scaling action that might
waste resources or produce an SLA violation since an im-
precise workload prediction might lead to an unreliable
prediction of the SLA parameters.

A solution to these problems might be a system that
manages this “double-prediction” which might make it less
efficient than a system that does not use the workload as the
predictor and hence, does not have these problems. Fur-
thermore, the complexity of implementing a system that
treats these problems might be an obstacle to its develop-
ment in comparison with a generic autoscaling system that
does not have them.
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To summarise, the main disadvantages of workload
prediction-based predictive autoscaling systems are the
following:

Problem 1: the definition of workload is strongly
coupled to the type of system (a workload is not defined
in the same way for a pub/sub system as for a batch
processing system), therefore, autoscaling systems that
rely on workload prediction suffer from this same
limitation, and therefore cannot be generic as they are
system-dependent.

Problem 2: autoscaling systems based on workload
prediction need to map these workload predictions to
the SLA parameters, which is not trivial and generates a
double prediction problem in many cases.

To solve these limitations, we propose an autoscaling
strategy to predict SLA parameters (e.g., throughput and
response time), avoiding the “double-prediction” problem
and making the system sufficiently generic to handle any
workload on any cloud platform. This approach will use the
most accurate prediction model for the three main workload
patterns to forecast the system SLA parameters and produce
a well-informed answer that will trigger any required scaling
action. We have used 30 trained prediction models to
measure their accuracy with each workload type and choose
the most accurate one for further research.

This approach results in the following hypothesis:

Hypothesis: the accuracy of predictive autoscaling sys-
tems can be improved by choosing the appropriate pre-
diction model to forecast the most relevant SLA parameters.

Due to the great relevance of event-driven architectures
in current technologies, solving these problems is this re-
search next natural step, to reduce the aforementioned cost
while increasing the quality of service for end-users. In order
to achieve this, this paper aims to empirically prove these
limitations and find a prediction model that fits the re-
quirements of the proposed autoscaling strategy which al-
lows the further development of this autoscaling system.

We have conducted several experiments to gather in-
formation and empirically prove this information and its
effects on the system related to its performance metrics and
behavior to prove this hypothesis. (i) a study on the effects of
different workload patterns (i.e., growing, periodic, unpre-
dictable) have on different systems in terms of SLA pa-
rameters and SLA violations; (ii) an experiment to
empirically prove the behavior and effects (i.e., changes in its
performance metrics, saturation point) of different workload
patterns on different systems, to solve the first problem
previously mentioned; (iii) an empirical evaluation of the
results of predicting the system SLA parameters using dif-
ferent predictive models and workload patterns on a cloud
platform to find the best predictive model for each case.

Based on the results obtained from these experiments
and evaluations, we elaborate a conclusion on which model
is the best predictive model depending on some system
parameters, such as environment, configuration, and
workload pattern.
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F1GURrE 1: Workload patterns, left to right: growing, on-and-off, periodic, static, unpredictable.

The main contributions of this work are as follows. (iii) A set of conclusions on the predictive models to be

. o . . used as the first step toward an autonomous
(i) An empirical study on the relationship between autoscaline decision s Is) tem is presented
different types of workloads in the literature and & 4 P '
their relationship in terms of SLA parameters in the The remainder of this paper is organised as follows:
context of mobile communications.

Section 2 background and related work, introduces essential
information about workloads and predictive autoscaling
systems; Section 3 SLA parameters prediction approach,
explains the relevant concepts of SLA parameters, our ap-
proach to predicting them and the experiments we have used
to prove out hypothesis; Section 4 introduces the experiment
environment and its results with a brief analysis of them;

(ii) An empirical study composed of more than 30
prediction models has been trained using different
techniques (time series analysis, regression, random
forests, etc.) to test which ones offer better pre-
diction results of the SLA parameters based on the
type of workload and the prediction horizon.



Section 5 conclusions, presents the knowledge obtained
from these experiments and the overview of this work; and
Section 6 future work, explains what is ahead of this project
and what are our next steps on this subject.

2. Background and Related Work

This section briefly introduces the essential concepts and
related work used in this paper. Section 2.1 workload
presents an overview of the concepts of workload and its
different patterns present in the literature. Section 2.2
autoscaling systems introduces and explains the main
principles of these systems and the types there are. Section
2.3 predictive autoscaling approaches presents the different
autoscaling techniques and brief analysis of the available
predictive models.

2.1. Workload. A generic yet inaccurate definition of the
term workload is a series of events sent to a system of some
sort that processes them or does something with them. Each
type of system has a specific and well-defined workload
which can be defined with great precision. According to
[6, 7, 10], there are five major workload patterns in cloud
computing environments.

(i) Growing workload is characterised by a rapid and
constant load increase (Figure 1(a)).

(ii) Periodic workload is characterised by changes in the
load spaced at regular time intervals (Figure 1(b)).

(iii) Unpredictable workload represents the load that
cloud service will face once deployed, with constant
fluctuations without a recognizable pattern or
seasonal changes (Figure 1(d)).

(iv) Static workload is characterised by a load with no
(or very small) changes or fluctuations (i.e., constant
number of events).

(v) On-and-off workload represents a load with regular
or occasional intervals without load (i.e., no user is
interacting with the cloud service) (Figure 1(c)).

In this paper, we focus on growing, periodic, and un-
predictable workloads, since they represent environments in
which an autoscaling action might be required. Both static
and on-and-off (batch application) workloads fall outside
the scope of our work since applications with this type of
workload do not require any autoscaling actions.

2.2. Autoscaling Systems. Autoscaling systems take ad-
vantage of cloud computing’s key feature, elasticity, to
automatically balance the resource allocation, complying
with the SLA obligations by adapting the system resources
to the demand at all times. The SLA parameters are the
cornerstone of autoscaling systems since they are the
reason these systems are necessary in the first place. In
previous works [11], the authors used the system’s high-
level metrics (SLA parameters) together with its low-level
metrics to build a model that maps these two metrics,
which makes predictions and eventually generates a
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scaling decision. In [12], the authors use response time and
throughput to make a more robust decision about the
scaling actions.

According to [13], there are three main autoscaling
systems based on the technique used to perform the scaling
actions: reactive, proactive, and predictive. Reactive
autoscaling systems are the most popular ones used on cloud
computing and scale in/out according to the current system
performance. Despite this, when they detect an SLA viola-
tion is occurring (or is about to occur), it might be too late
for a scale action to avoid this SLA violation since his action
takes some time, and during that time, the violation is well-
underway [6, 10]. Proactive autoscaling systems allow the
user to pre-define a scaling system schedule, which could
solve some SLA violations but requires a predictable envi-
ronment. That is not the case with predictive autoscaling
systems that solve this problem by predicting its behavior
and adjusting its resources to comply with SLA obligations
[14].

2.3.  Predictive Autoscaling Approaches. A predictive
autoscaling system predicts future system behavior to adjust
the application resources allocated in advance of changes in
the environment (i.e., an increase in the workload) to meet
its SLA obligations and minimise the hosting cost of the
cloud application.

As shown in Figure 2, a predictive autoscaling system is
composed of monitor, predictor, and decision maker
components, which measure the chosen variable, such as the
workload, predicts future values of it, and makes decisions
based on the predicted values, respectively [14].

Autoscaling systems use different resource allocation
techniques to manage the computing resources assigned to
the system based on the decisions made by the decision
maker component.

Resource allocation techniques can be classified into
horizontal scaling (that is, adding new operator instances)
and vertical scaling (that is, increasing the resources assigned
to an already running system instance, such as memory or
CPU). According to [10], since most of the cloud service
providers do not support changing the resources allocated to
an already running instance without rebooting it and the
operating systems (OS) do not support this action, the most
used resource allocation technique (and the one we will
focus on) is horizontal scaling.

Lorido-Botran et al. [10] state that classifying this
technique is also a difficult task due to the wide diversity of
approaches found in the literature and because some
techniques are a combination of two or more methods. The
main techniques are (i) static threshold-based policies, (ii)
reinforcement learning, (iii) queuing theory, (iv) control
theory, (v) time-series analysis.

The static threshold-based policies are based on a set of
rules, usually two, one for scaling out and one for scaling in,
that use one or more performance metrics, involving several
user-defined parameters: an upper and lower threshold,
thUp and thDown, respectively, and two time-values, vUp
and vDown, which denote the time interval in which the
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FIGURE 2: Architectural overview of a predictive autoscaling system. Extracted from [14].

condition must be met to trigger a scaling action. The user
must define a fixed amount of resources (i.e., VMs or op-
erators) to be allocated or deallocated once the corre-
sponding scaling action is triggered. If a scaling action is
performed, another will not be triggered for tUp/tDown
seconds, respectively.

To perform a scale in action and allocate s resources, the
performance metric must be greater than thUp for vUp
seconds. Another scale-in action will not be triggered for
tUp seconds, as shown in equation.

it s >thUpforv Upthen
allocates (1)

waittUp

On the other hand, to perform a scale-out action to
relocate s resources, the performance metric must be less
than thDown for vDown seconds. If triggered, another next
scale-out action will not occur for tDown seconds, as shown
in equation.

if s <thDown for v Down then

deallocate s (2)

wait tDown

For example, the autoscaling system will allocate 2 new
instances if the CPU and RAM consumption of it is above
75% for more than 2 minutes.

Reinforcement learning techniques are based on learning
through interaction between an agent, in this case, the
autoscaler, and its environment, to automate the goal-di-
rected learning and decision-making process. Queuing
theory uses the mathematical study of queues to estimate the
main system performance metrics, i.e., the response time or
the average waiting time for requests. Control theory tech-
niques aim to automate the management of systems such as
data centres or storage systems to reduce the need for human
input. These control systems are mainly reactive, but there
are also some proactive approaches. Time-series analysis is
mainly used to find a (repeating) pattern in the input or to
forecast future values. This input (the time-series) is a se-
quence of values measured at sequential and evenly spaced
time instants.

In [7], Masdari and Khoshnevis performed an in-depth
analysis of the cloud computing workload prediction
methods used in the literature, showcasing mathematical,

data mining, and machine learning methods. Despite using
different algorithms and techniques, these methods face the
problems showcased in this work, such as detailed knowl-
edge of the system to predict system variables (e.g., CPU,
memory, and disk) using workload prediction. Furthermore,
historical data are required to train models, and some
methods take long periods to train and tune to the specific
environment the system will face (e.g., twin support vector
machine for regression (TSVR) [15]).

In [16], Nikravesh et al. proposed a new self-adaptive
prediction technique focused on improving the accuracy of
predictive autoscaling systems by choosing the appropriate
prediction algorithm according to the incoming workload
pattern. To this end, the workload pattern is identified by
decomposing it into its seasonal, trend, and remainder
components, using the LOESS [17] R package. Each
workload pattern marks the usage of a different algorithm to
predict its respective time series. To perform this prediction,
the authors have used three different artificial neural net-
work (ANN) algorithms; multilayer perceptron (MLP),
multilayer perceptron with weight decay (MLPWD), and
support vector machine (SVM). The system will identify the
pattern of the received workload and automatically chooses
the most accurate model to perform the workload predic-
tion. The test metrics show that using the appropriate
prediction algorithm for the incoming workload improved
the prediction accuracy of the autoscaling system. Despite
dealing with some problems mentioned previously, this
solution still uses the workload as the predictor.

Predicting SLA violations is another method found in
the literature that avoids the problems inherited by using the
workload as the predictor. In [18], Leitner et al. proposed a
predictive system that monitors and predicts SLA violations
through machine learning and prevents them by triggering
scaling actions when needed, called prevent. Through the
regression used on the monitored data, the system can
generate values that can be used to trigger the appropriate
scaling action. These values are adjusted with mean pre-
diction error (arithmetic average of the differences between
predicted and monitored values for a given number of in-
stances) and prediction error standard deviation (variability
of the prediction error). Low predictive precision is expected
until the system has enough data to make the necessary
corrections. Despite this, the results of the experiments show
that between 12% and 40% SLA violations could not be
prevented, depending on the method and strategy used.
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TaBLE 1: Comparison of related works key characteristics.

References Predl'ctlon Technique Performance Metric Advantages Disadvantages
algorithm
Uses best prediction
Workload MLP, ' Uses the workload as
[16] prediction MLPWD, SVM MAE, RMSE, PRED, R2PA algorltbm predictor
automatically
[18] SLA violation Regression and Number of violations Reduced impact of SLA Low violation prevention
prediction MPE violations rate (78% maximum)
. Resources need .
[12] Predict resource ¢\ NN IR MAPE, RMSE, PRED prediction without Complex system with 11
demand . input parameters
workload as predictor
[19] Resource usage  Bayesian MAE, RMSE, MAPE Prediction based on 1 lied 1o CPU load
prediction information resource usage history
Workload K-means, R Considers SLA cost on The prediction only takes
. . Delay, cost, SLA-violation rate, . . .
[21] clustering, resource Bayesian . the decision-making  one performance metric
. . energy consumption .
usage prediction learning process (response time)
Fuzzy C- Energy consumption, execution Does not use the Two-stage prediction

Resource usage

[22] prediction

means, gray

[20] Resour.ce.need MVA
prediction

time and cost, SLA violation and
wolf failure rates
Unknown ([20] does not give
enough information about
performance metrics and
evaluation)

workload as the
predictor

algorithm (clustering and
GWO)

The prediction only takes
one performance metric
(response time)

Does not use workload
as predictor

A more direct approach to dealing with an unpredictable
environment is by predicting the SLA parameters, also found
in the literature, giving clear answers if a scale action is
required. In [12], Bakole and Ajila developed and evaluated
cloud client prediction models using support vector machine
(SVM), neural networks (NN), and linear regression (LR),
using 11 input parameters to predict CPU utilisation, re-
sponse time and throughput of the system. For CPU uti-
lisation and throughput, SVM shows the best results, and for
response time, LR is the best prediction model. The resulting
system can manage and predict the three key parameters
correctly but results in a complex system that handles and
monitors 11 input parameters, making it difficult to integrate
them into a real system. In [19], Tofighy et al. proposed an
ensemble CPU load prediction model that chooses the best
prediction model using a Bayesian information criterion
based on the resource usage history which, with the pro-
posed framework for cloud resource management, achieved
greater prediction accuracy that similar algorithms. In [20],
Kouki and Ledoux proposed an SLA-driven autoscaling
model that uses response time, service abandon rate, and
service financial cost, combined with the SLA requirements,
workload, and infrastructure information to compute the
required scale actions using mean value analysis to achieve
the required system configuration to meet the SLA re-
quirements and expected QoS.

In [21], Ghobaei-Arani proposed a workload clustering-
based resource provisioning mechanism that uses bioge-
ography optimization with K-means clustering to classify the
workload according to the system quality of service re-
quirements. Additionally, the system uses a Bayesian
learning technique to make the scaling decisions to fulfil the
requirements. The test results show a reduced cost (due to
using the SLA cost on the decision-making process), energy
consumption, and SLA violations. Following a similar

procedure, in [22], Ghobaei-Arani and Shahidinejad pro-
posed a metaheuristic-based clustering mechanism used in
combination with fuzzy C-means technique to find the
clusters according to the quality-of-service requirements.
These clusters are later used by a gray wolf optimizer to
produce the appropriate scaling decision. The tests and
simulations show that CPU utilisation efficiency, elasticity,
and response time improved compared to other solutions.

To conclude this section, Table 1 contains a summary of
the most relevant works mentioned previously comparing
their key characteristics: (1) utilized prediction algorithm,
(2) utilized technique, (3) performance metrics, (4) ad-
vantages of the model, and (5) disadvantages of the model.

3. SLA Parameters Prediction Approach

This section introduces the concepts related to SLA pa-
rameters and their prediction, along with a detailed overview
of the empirical analysis that proves the statements about the
SLA parameter-related effects of workload patterns on
predictive autoscaling systems.

3.1. SLA Parameters. Sufficient prediction accuracy is nec-
essary so the system SLA parameters (high-level metrics), for
example, the response time and throughput, are within the
constraints specified in the SLA throughout its execution.
These values are agreed upon between the cloud customer
and the cloud service provider and must be met to max the
quality of service (QoS) offered to the end-users while
minimising the cost of running the cloud application.
Following our experience from previous works [11], we
have focused our efforts on the three most common high-
level metrics, that are also the most relevant to our work; (i)
response time, which is the time to process a message, which
depends on the occupation of the system, since if the system



Mobile Information Systems

Message

[
I
| enters Entry queue
!

- some time -

1

FIGURE 3: Measurement of response time.

i
| leaves Exit queue u save RT time

:( ................................................................... >
]

Message

Init J
Y

Init system

Running )

<
«<

( Count msgs for 1 sec )
( Save TH at current timestamp )

v

send exec?

yes

(no)

End
Y

Stop system

C\é

FIGURE 4: Measurement of throughput.

is saturated, the response time will be higher because it has,
in addition to the processing time (PT, the time required to
process a single message), to wait for some time in the queue
before being processed; (ii) throughput, the number of
messages that the system can process per unit of time, also
affected by system saturation, since a saturated system will
output fewer messages per unit of time due to the higher
processing time; and (ili) the window processing time
(WPT), the time from the first message of the window to the
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FIGURE 5: Measurement of window processing time.

moment the system closes the window and produces a result,
over a defined window of time, which is also affected by
system saturation.

Despite the diverse ecosystem of this type of system and
its prediction methods and techniques, the type (pattern) of
the workload it receives is also a key factor in its behavior
since the same workload affects the SLA parameters of



different systems in various ways. If a system adjusted to a
workload pattern receives a different one, it will behave
erratically and may trigger out-of-the-ordinary scaling ac-
tions, which may cause SLA violations and affect the QoS of
the end-users. Choosing a prediction algorithm that fits the
expected workload pattern and produces the best results is
imperative to obtain the best prediction accuracy, as proven
in [7, 10, 16].

3.2. Prediction of SLA Parameters. As mentioned above, the
method for predicting the SLA parameters of the system are
different in each predictive autoscaling system [11, 12, 14],
despite this, the use of a monitor component is essential to
measure the chosen prediction parameter(s), which, in our
case, are the window processing time (WPT) [23], the re-
sponse time (RT), and the throughput (TH). Together, these
measurements represent a high-fidelity snapshot of the
system status.

Each measurement is implemented with a different
technique since they occur and start at different times and
places. We attach a sequence number to each message so
that each measurement can be used by the prediction al-
gorithm later: (i) the response time (RT) measurement
starts once the message enters the entry queue and stops
when it exits the exit queue (see Figure 3); (ii) the
throughput (TH) is measured each second, counting the
number of messages output since the last measurement (see
Figure 4); and (iii) the window processing time (WPT) is
measured every N seconds, N being the time defined for the
window, processing the messages on each window (see
Figure 5).

The prediction algorithm will use these measured values
to estimate future values and cross this knowledge with
previous knowledge of the system behaviour using machine
learning (ML) and deep learning (DL) methods, through
which the autoscaling system will decide on the necessity of a
scaling action.

3.3. Empirical Analysis. To prove our hypothesis, we studied
the relation of the workload pattern of a system with its SLA
parameters using different workload patterns in a single
system, and each workload pattern in different systems.
Through this technique, we have collected data on the SLA
parameters of the system throughout this test execution to
compare their results and to prove that workloads affect both
SLA parameters and low-level metrics.

Furthermore, we have also conducted an empirical
analysis with various workload patterns and predictive
models, using multiple ML and DL methods to predict the
SLA parameters and compare the results of each model to
find which predictive model suits each environment in terms
of system SLA parameters and behaviour.

For these tests, we have used three of the previously
mentioned workloads (growing, periodic, and unpredict-
able) since they represent situations the system might face in
a real environment. Each pattern helps measure the changes
of the SLA parameters being the unpredictable workload
closer to a real environment due to the sudden changes in
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the load, testing the prediction models and their ability to
keep the SLA parameters on the constraints defined by the
SLA. Growing workloads stress the system to find its limits,
whereas periodic workloads oscillate the system load to test
if it can keep up with the constant changes.

The study results (see Section 4.2) have been gathered by
measuring the system throughput and response time in the
same configuration while applying different workload pat-
terns and comparing their effects on these values to prove
that they do affect them. We have used an analogous
technique to measure the results of a workload pattern on
different systems.

For the empirical analysis, based on the positive results
observed in some previous and similar works [6, 11, 14, 16],
we used time series (e.g., roller forecasting origin, ARIMA,
and STL+ETS models) and machine learning and deep
learning methods (e.g., linear regression, linear congruential
generators, random forest, and neural network models). To
evaluate each method’s root mean squared error (RMSE)
and mean absolute error (MAE) metrics and prove which
predictive model is the most accurate, we have performed a
k-fold cross-validation (https://otexts.com/fpp2/accuracy.
html) (k=10) comparing the deviation of predicted values
from the actual values. Once trained, these models should
predict the SLA parameters with the highest possible pre-
diction based on the model and training data.


https://otexts.com/fpp2/accuracy.html
https://otexts.com/fpp2/accuracy.html
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FiGURE 7: Periodic workload and system WPT.

TaBLE 2: RMSE and MAE of prediction models with growing
workload.

model meanRMSE meanMAE
Cubist 18.96 17.19
Gam 25.64 24.17
Bam 25.65 24.18
Qrf 61.41 56.99
gamLoess 65.96 64.74
parRF 67.97 63.96
Rf 67.98 63.97
Cforest 129.2 126.8
M5 134.2 131.5
Mb5Rules 134.2 131.5
svmRadialSigma 194.6 193.8
svmPoly 207.5 206.9
Nnet 292.4 291.3
svmRadialCost 313.1 305.2
svmRadial 317 309.1

A trade-off between training time and energy consumed
is required to achieve the desired accuracy. The training
phase may take more time than similar algorithms but re-
duces the energy consumed and time taken for each pre-
diction while working in a live environment, which helps
reduce the cost of running this system.

For each predictive model, we have used the SLA pa-
rameters measured from our system, running each of the

TaBLE 3: RMSE and MAE of prediction models with periodic
workload.

model meanRMSE meanMAE
Cubist 32.42 28.46
Qrf 102.7 95.51
M5 104.8 97.69
M5Rules 105.4 98.23
parRF 114.3 107.7
Rf 114.3 107.7
svmRadialSigma 174.3 167.9
svmRadialCost 177 170.3
svmRadial 178 171.1
Gam 321.2 316.8
Bam 323.3 318.9
Cforest 369.1 365.3
gamLoess 648.1 644.1
Nnet 663.7 659.9
svmPoly 709.6 706.3

TaBLE 4: RMSE and MAE of prediction models with unpredictable
workload.

model meanRMSE meanMAE
Cubist 24.56 22.29
Qrf 27.09 24.47
parRF 29.1 26.59
Rf 29.11 26.6
M5 30.81 28.41
Mb5Rules 31.81 29.44
Bam 48.02 46.03
Gam 48.02 46.03
Cforest 81.52 79.77
svmRadialCost 88.72 84.74
svmRadial 90.79 86.79
svmRadialSigma 93.83 89.66
gamLoess 155 152.5
svmPoly 222.1 220.8
Nnet 233.2 231.8

chosen workload patterns, and applied these results to each
predictive algorithm, measuring its RMSE and MAE and
saving these measurements for later comparison and
analysis.

4. Experimental Evaluation

This section presents information related to the experi-
mental environment, relevant concepts, and the experiment
results as well as their analysis.

4.1. Experimental Environment. The system we have used for
the experiments, a complex event processing (CEP) dis-
tributed system, that calculates the topk using the Min-
TopK + N algorithm developed in [23] has been deployed
using Apache Katka and Zoopeker. For these experiments,
we have used two T2 EC2 instances of Amazon Web Services
cloud, each with 16 GB of RAM, 4 vCPUs running the 4.14
Amazon Linux kernel and Java OpenJDK 11.0.7 2020-04-14
LTS.
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Figure 8: Continued.
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FiGgure 8: Comparison of RMSE of prediction models with growing workload based on window size (h).

As a workload, we have used an over-sampled real
dataset that contains tweets mentioning 400 verified users of
Twitter, collected using the Twitter streaming API. We
increased the number of users to 200k, randomized the
number of followers of each user, and added more user
interactions to include some saturation points while keeping
the load true to the original. For more information, see [23].

4.2. Experimental Results. Figures 6 and 7 show the effects of a
workload on the SLA parameters, in this case, the window
processing time. We have used growing, periodic, and

unpredictable workload patterns, that, as figures show, affect
SLA parameters.

In Figure 6, when the load increases (top graph), the
window processing time increases constantly, even when the
load stops increasing. This is due to the number of messages
queued waiting to be processed since the system is saturated
and cannot process messages fast enough to return to
normal operations. Furthermore, in Figure 7, the spikes of
the periodic load cause the window processing time to in-
crease drastically in a very small window of time since the
messages are queued very rapidly. Once the load spike ends,
the system can process all those queued messages and return
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to its normal state. These spikes may cause SLA violations,
since the system saturates and is unable to process the
messages fast enough, which decreases the QoS for the end-
users.

Tables 2-4 show the results of the empirical analysis that
represent the root mean squared error (RMSE) and mean
absolute error (MAE), which are the deviation of the pre-
dicted values from the expected ones of each model. Out of
the 30 models we have tested, these tables show the 15
models with the least mean RMSE and MAE.

As shown in Table 2, the most accurate prediction
model, with the least RMSE and MAE, is the cubists model,
a rule-based regression model, followed by the gam and
bam generalised additive models and quantile random
forest, M5, and M5 rules random forest models. In con-
trast, in Table 3, all models show worse accuracy, with
much higher RMSE and MAE. While being the most
accurate, the cubist model shows worse accuracy than the
previous, and the same happens with the gam and bam,
and M5, and M5 rules. These random forest models are
now more accurate than the previous quantile random
forest model, using a periodic workload. We have also
measured the RMSE and MAE of the predictive models
using an unpredictable workload (Table 4) with similar
results to the ones obtained with a periodic workload. The
cubist model is still the most accurate, followed by the M5
and M5 rules models, also followed closely by the bam and
gam models.

With these results, we see that the random forest cubist
model is the most accurate predictive model regardless of the
workload pattern, and the one to be used for a generic
autoscaling system since our system will be workload-
independent.

Furthermore, we have analyzed the effects of changing
the prediction window on each predictive model. This
window represents how far in the future the prediction is
made. For example, a prediction window of 1 means that the
predicted values correspond to the immediate next value;
but if the prediction window is 5, the predicted values will
correspond to the fifth next value. In Figure 8(a), we have
measured the prediction accuracy for each predictive model
using a growing workload, and as can be observed, the
prediction error remains stable despite the increase of the
prediction window. This means that the prediction window
does not affect the prediction results significantly. Therefore,
the forecasting models are robust enough to predict values
over a distant forecast horizon with the same accuracy as the
more immediate forecasts.

On the other hand, Figure 8(b) shows that the prediction
models are not as robust for periodic workloads, as the
prediction error increases slightly as the prediction horizon
gets further away. This decrease in prediction accuracy is not
the same for all models. For example, the cubist model has
worse accuracy when the higher the prediction window, but
this change is not significant enough.

To conclude this analysis, we have repeated this com-
parison with an unpredictable workload with the same re-
sults as the predictions with the previous workloads
(Figure 8).

Mobile Information Systems

The results obtained from these experiments show that
the workload does have a direct influence on the system SLA
parameters, with the risk of SLA violations if the load spikes
are not managed correctly; and the most suitable and ac-
curate model for a generic predictive autoscaling system is
the cubist random forest model, disregarding the received
workload.

5. Conclusions

In this work, we have raised some problems with the pre-
dictive autoscaling approach based on workload prediction.
In addition, we have proposed an alternative approach based
on the prediction of the SLA parameters, thus avoiding
double prediction problems and offering a solution less
coupled to the type of system to be scaled and, therefore,
more generic.

For this purpose, this work has developed an empirical
experiment that has allowed us to analyze the impact of
different workload patterns on the SLA parameters, dem-
onstrating the problems of the classical approaches of
autoscaling based on workload prediction. In addition, we
have presented an experiment in which more than 30
predictive models were trained to predict the window
processing time with different workloads of a CEP used in
mobile communications. Finally, we have analyzed the re-
sults of this experiment to offer a set of conclusions and
recommendations for the development of autonomous
predictive autoscaling systems.

6. Future Work

One feature that would add great value would be to extend
the study of prediction models. To this end, we consider
several lines of action: testing whether using low-level
metrics as predictors improves model predictions and
predicting not only SLA parameters but their first de-
rivative as well, to take into account the trend. Further-
more, we want to extend the study and experimentation
shown in this work to other distributed cloud-based
systems relevant to mobile communications, such as pub/
sub systems. We also want to extend our evaluation to
other workloads to study our findings in different
environments.

Moreover, it would be of a great value to create an
autonomous system capable of deciding which prediction
model to use based on the conclusions of this work. In this
way, the autoscaling system would choose the best predic-
tion model for the SLA parameters based on the type of
workload, system, and similar parameters. This autonomous
system will be designed and implemented using the
knowledge obtained from this and previous works to further
improve our research.

Data Availability

The data used to support the findings of this study can be
obtained from the corresponding author upon request.
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