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IoT sensors have already penetrated into extremely broad fields such as industrial production, smart home, environmental
protection, medical diagnosis, and bioengineering. Although efficient data fusion helps improve the quality of intelligent services
provided by the Internet of things, because the perceived data carry the sensitive information of the perceived object, the data
fusion process is prone to the risk of privacy leakage. To this end, in this paper, we proposed a privacy-enhanced federated learning
data fusion strategy. This strategy adds Gaussian noise at different stages of federated learning to achieve privacy protection in the
data fusion process. Experimental results show that this strategy provides better privacy protection while achieving high-precision

IoT data fusion.

1. Introduction

The Internet of things, also known as a sensor network,
connects any item to the Internet through information
sensing equipment such as radio frequency identification,
infrared sensors, global positioning systems, and laser
scanners for information exchange and communication, to
achieve intelligent identification, positioning, tracking,
monitoring, and management. The large-scale deployment
and application of various sensors is an indispensable basic
condition for the Internet of things. For example, different
applications need to deploy different sensors, covering smart
industry, smart security, smart home, smart transportation,
smart medical care, etc. It can be seen that IoT sensor
technology plays an important role in economic develop-
ment and promotes social progress.

At present, most of the intelligent services provided by
the Internet of things need to outsource user data to service
providers for analysis and processing, which may easily lead
to the leakage of sensitive information [1]. With the

improvement of user privacy protection awareness and the
promulgation of relevant laws and regulations, data analysis
services based on traditional machine learning can no longer
meet users’ privacy protection needs. Although existing
cryptographic technology can solve some privacy leakage
problems, both symmetric encryption systems and asym-
metric encryption systems have the risk of key leakage, and
high-cost encryption chips cannot be popularized to ter-
minal devices. In order to solve the problem of user data
privacy leakage in related service scenarios, Google proposed
federated learning technology [2, 3].

Federated learning is a distributed machine learning
technology with privacy-preserving properties that can
generate secure, accurate, and robust data models without
analyzing the real data of users. In the intelligent service
scenario based on federated learning, the service provider
convenes different participants to provide data models by
publishing federated learning tasks and aggregates all data
models through the aggregation server to generate a reliable
global model to provide related services. The reliability of the
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global model is crucial, and a reliable global model can
provide secure and stable services for IoT applications. It is
worth noting that the use of cryptography technology can
achieve data privacy protection. However, the use of
cryptography often requires a trusted third party to generate
a key for data encryption, which is difficult to achieve in the
Internet of things. Compared with cryptography, federated
learning does not require a trusted third party and is easy to
deploy. Even if the federated learning server is not trusted,
the privacy protection of data can be achieved by adding
noise to the model, so federated learning has more ad-
vantages in data sharing.

The problem solved in this paper is formally described
as follows, that is, how to realize data sharing under the
premise of privacy protection. Based on the above anal-
ysis, a data fusion architecture is first proposed based on
federated learning, as shown in Figure 1. The architecture
consists of three layers: perception layer, data fusion layer,
and intelligent service layer. Among them, the perception
layer obtains perception data and sends the data to the
data fusion layer through various sensors such as wearable
sensors, vehicle-mounted sensors, surveillance cameras,
and industrial sensors. In the data fusion layer, each
federated learning (FL) data fusion center is responsible
for the intelligent fusion processing of perception data
and provides the fusion data to the intelligent service
layer. This layer provides technical support for various
intelligent services of the Internet of things such as in-
telligent  transportation, smart grid, intelligent
manufacturing, and intelligent logistics. All in all, the
perception layer provides the necessary data to the in-
telligent service layer through the data fusion layer, and
the intelligent service layer sends feedback information to
it, hoping to improve the quality of the intelligent service.

According to this architecture, we consider using fed-
erated learning techniques to achieve privacy-enhanced data
fusion. Furthermore, we combine differential privacy
techniques with different stages of federated learning to
further improve privacy protection during data fusion. The
main contributions of this paper are as follows:

(1) To achieve privacy-preserving data fusion, we pro-
pose a privacy-enhanced federated learning data
fusion strategy. This strategy not only adds differ-
ential privacy noise in the local model training
process but also adds differential privacy noise in the
federated training process, at the cost of a certain
model accuracy, and the differential privacy pro-
tection of the local model and that of the global
model are achieved simultaneously.

(2) Experimental results show that this strategy provides
better privacy protection while achieving high-pre-
cision IoT data fusion.

The rest of this paper is organized as follows: Related
work is described in the Related Work section. The system
model is given in the System Model section. The specific
implementation of the proposed strategy is elaborated in the
Implementation Details of the Proposed Strategy section.
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Performance evaluations are given in the Performance
Evaluation section. The Conclusions section concludes this

paper.

2. Related Work

Federated learning for data fusion is an effective means for
IoT to provide intelligent services, and the reliability of the
federated learning global model determines the quality of
services. More and more scholars at home and abroad have
carried out research on how to ensure the reliability of the
federated learning global model under different needs and
have produced many excellent research results.

For federated learning task publishers, the reliability of
the global model is the focus of attention. Researchers
further ensure global model reliability by detecting anom-
alous models in the models to be aggregated. Cao et al. [4]
mapped the local models into a graph through the Euclidean
distance between local models and selected the local model
for aggregation by solving the maximum clique problem in
the graph, realizing the detection of anomalous models in
federated learning. Zhao et al. [5] generated a dataset for
auditing the local model through the trained generative
adversarial network, and the prediction and evaluation re-
sults of the local model in the dataset were used as the
criterion for judging whether it was an abnormal model, so
as to realize the detection of abnormal models. Zhao et al. [6]
proposed a proxy-based anomaly model detection mecha-
nism, selecting participants with relatively stable perfor-
mance in federated learning to perform anomaly model
detection. Tolpegin et al. [7] extracted abnormal model
features by performing dimensionality reduction and
principal component analysis on the local model and re-
alized abnormal model detection in the process. Liu et al. [8]
proposed a federated learning scheme PEFL to mitigate
poisoning attacks under privacy enhancement. In [9], an
asynchronous update paradigm for real-time identification
of client network parameters was proposed. This paradigm
adopted a linear fusion method based on sequential filtering,
considered communication delay, and asynchronously fused
the parameters of the federation center. Then, a client real-
time identification method based on linear filtering was
established to obtain new label samples at unequal intervals,
and the client was expected to have better performance.

For federated learning participants, the biggest demand
is that federated learning can protect the private data of their
training from being leaked. Since privacy and model reli-
ability cannot be taken into account at the same time,
existing research work mainly seeks a balance between the
two, that is, reducing the loss of global model reliability while
meeting the needs of participants for privacy protection. In
[10], a privacy-preserving federated learning scheme, LDP-
Fed, was proposed, which allows federated learning par-
ticipants to protect the privacy of the model through per-
sonalized local differential privacy technology to prevent the
leakage of deep information in the local model. Hu et al. [11]
introduced differential privacy technology in federated
learning and used the uncertainty brought by heterogeneity
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FIGURE 1: Federated learning-based data fusion architecture.

of IoT devices to perform differential privacy on the model to
reduce the risk of privacy leakage. In [12], differential privacy
technology and self-normalization technology were intro-
duced in federated learning and the differential privacy noise
layer and SELU security training layer were added during
model training to realize the privacy protection of uploaded
models. In [13], a blockchain-based federated learning
training strategy was proposed, which uses differential
privacy and homomorphic encryption technology to ensure
the privacy of participants in the process of local model
transmission and aggregation. Zhang and Luo [14] gener-
ated training data for local training by training a GAN model
and proposed a new loss function, which enabled the
generated training data to have indistinguishable visual
features from the original data and protect the privacy of the
training data of the participants. Liu et al. [15] used the
sparse features of the feature map in the network model to
represent the data that participants used for local training
and realized the privacy protection of the real data. Xu et al.
[16] proposed an efficient and privacy-preserving vertical-
federated learning framework FedV, which implemented a
two-stage noninteractive secure-federated aggregation
method by introducing functional encryption and realized
the privacy protection of real data of participants. In [17],
Lin et al. proposed a secure joint learning mechanism based
on variational autoencoders to resist inference attacks, in
which participants reconstructed the original data through
variational autoencoders, and trained local models on this
basis to protect data privacy. In [18], a heterogeneous model
fusion-federated learning mechanism was proposed, in
which each node trained learning models of different scales
according to its own computing power. After the parameter
server received the training gradient of each node, it used the
repetition matrix to correct the received gradient, then
updated the corresponding region of the global model
according to the mapping matrix, and finally assigned the
compressed model to the corresponding node.

The above literature provides a large number of excellent
algorithms for data fusion in the Internet of things. How-
ever, how to combine the privacy protection of local data

with the privacy protection of the federated learning process
to further strengthen the privacy protection of federated
learning is still a problem worthy of research.

3. System Model

To achieve privacy-preserving data fusion in IoT, we need to
consider the following three entities:

(i) Sensor (data provider): the sensor aggregates sensed
data to the data fusion center through wireless or
wired transmission.

(ii) Federated learning (FL)-based data fusion center:
the data fusion center uses local sensor data for
model training so that the local model can carry the
information of local data. In addition, differential
privacy noise needs to be added in the local model
training process to achieve differential privacy
protection of the local model.

(iii) Federated learning server: this server aggregates the
local models of each data aggregation center to form
a global model and adds differential privacy noise in
the process to further improve the differential
privacy protection capability of the global model.

3.1. Security Model. The privacy breach scenarios we con-
sider are as follows. First, [oT smart service providers may be
interested and commercialize private information about
objects whose sensors are collecting data, thereby exposing
their privacy, and federated learning can help reduce that
risk. However, the aggregation server of federated learning
may also be curious about the privacy of the perceived
object, so there is also the risk of privacy leakage during the
federated learning process. Differential privacy protection in
local model training helps mitigate this risk. In addition,
malicious attackers try to obtain the private information of
perceptual objects from the global model through inference
attacks. Adding differential privacy protection to the global
model can effectively resist such attacks.
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Output: Final model parameter 0
(1) fort € T do
(2) Calculate the gradient g; for each batch D; € D
(4) Perform gradient descent by 60— ng

(6) end for

Input: Initial model parameter 6 received from the FL fusion server, learning rate #, local sensor dataset D, gradient clipping C,
privacy budget e, sensitivity s, and Gaussian noise to be added satisfying (e, o) — DP

(3)  Clip the gradient by g; = g;/max (1,|g;//C) and calculate average gradient g = 1/|D| Y g;

(5)  Add Gaussian noise by 8 = 8 + N (02), where ¢® = 25 log (1.25/0)/€?

ALGORITHM 1: Local data fusion with differential privacy protection.

Output: Global model parameter 6 to be released
(1) for each FL-based data fusion center do

(4) end for

Input: Local model parameter 6, privacy budget e, sensitivity s, and Gaussian noise to be added satisfying (e, d) — DP

(2)  Calculate the weighted average model by 0=y5, e/ nbk
(3)  Add Gaussian noise by 0 = 6 + N (¢%), where ¢* = 25 log (1.25/0)/€?

ALGORITHM 2: Global data fusion with differential privacy protection.

4. Implementation Details of the
Proposed Strategy

The data fusion strategy proposed in this paper is mainly
composed of two modules, namely, the local data fusion
module with differential privacy protection and the global
data fusion module with differential privacy protection. The
difference between these two modules is to add differential
privacy noise to different stages of the federated learning
process, thereby resisting privacy leak attacks on different
objects.

4.1. Local Data Fusion with Differential Privacy Protection.
Local data fusion is achieved by training a deep neural
network model on local sensor data. In a deep neural net-
work, by deploying multiple neurons at multiple levels and
adjusting the connection weights between neurons by means
of layer-by-layer training, the original feature data can
undergo multiple nonlinear transformations. The fitting of
any limited given input and output data finally obtains stable
features for subsequent problem analysis. In the deep neural
network algorithm, in order to evaluate the difference be-
tween the predicted value of the proposed neural network
and the actual value, it is represented by a loss function L,
and the mean square error loss function is used in this paper,
ie, L(6,x)=1/nY", (y;-x;)*, where 0 is the weight co-
efficient of the neural network to be trained, x represents the
target value, y represents the predicted value output, and the
subscript i represents the sample label. The purpose of deep
neural network algorithm training is to minimize the loss
function L. For complex neural networks, minimizing the
loss function L is usually performed by stochastic gradient
descent. That is, we randomly select training samples in
batches during each iteration and calculate the partial de-
rivative of the loss function L, denoted by

g =1/IDI|Y .cpVyL(0,x), where D denotes the batches of
samples, and then update the weight coeflicient 8 along the
negative gradient direction towards the local minimum.

We adopt the differential privacy stochastic gradient
algorithm whose objective function minimizes the loss
function L by continuously training and adjusting the weight
coefficients 0. The basic idea is as follows: in each iteration
process, we first calculate the gradient of randomly gener-
ated batch samples VL(0,x;), and gradient clipping is
performed based on the L, norm of the computed gradient
values. Considering the privacy protection of the sample
data, the clipped gradient is updated with the mean value of
the sum of the gradient and random noise based on the
additional Gaussian noise method [19]. That is, by adding
Gaussian noise with ¢? = 2s*log (1.25/0)/€?, the (€, 0)
differential privacy is achieved. Then, the weight coeflicient 6
of the next iteration is obtained. The implementation details
of the local data fusion with differential privacy protection
are summarized in Algorithm 1.

4.2. Global Data Fusion with Differential Privacy Protection.
After the local model data fusion model is trained, the model
will be sent to the federated learning server for aggregation.
During training of the local model, we add Gaussian noise to
resist privacy leakage attacks that may be launched by curious
federated learning servers and IoT smart service providers.
However, for inference attacks that malicious attackers may
launch on the model, we add Gaussian noise again during the
model release process to further enhance the model’s privacy
protection capabilities. The execution process of global data
fusion with privacy protection is summarized in Algorithm 2.

4.3. Security Analysis. The strategy proposed in this paper
can resist privacy leakage attacks. First, in the training of the
local model by the data fusion center, we add differential
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TaBLE 1: Parameter setup.

Hyperparameter Value
Dp_¢6 le-5
Dp_e 10, 20, 30
Epochs 100
Num_users 100
Frac 0.1
Local_ep 1
Local_bs 100
Learning rate 0.01
Lr_decay 0.995

Test Accuracy (%)

Test Accuracy (%)
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100
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FiGURE 2: Continued.
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FIGURE 2: Accuracy on the MNIST dataset with different differential privacy protections: (a) € = 10, (b) € = 20, and (c) € = 30.

privacy noise to the gradient of the model update so that the
local model can get differential privacy protection after the
local model training is completed. Second, after the local
model is aggregated to the federated learning server, the
server adds differential privacy noise to the aggregated
model again and then distributes the noise model to each
data fusion center so that the global model can get stronger
differential privacy protection. We repeat the above process
until federated learning converges. Due to the post-
processing properties of differential privacy, the entire
federated learning process has differential privacy protec-
tion. In addition, since the model is protected by differential
privacy, it increases the possibility of attackers recovering
user data through reasoning attacks and also increases the
difficulty of attackers launching known plaintext attacks and
ciphertext only attacks.

5. Performance Evaluation

5.1. Experimental Environment. The experiment is con-
ducted to evaluate the performance of the proposed strategy
on the computer equipped with i7 6.4GHZ processor, 32G
memory, and win7 64-bit system. Federated learning is
constructed through the Python-based deep learning
framework (Tensorflow 2.2.0).

In the experiment, both the local model and the global
model use CNN, which has 2 convolutional layers (1 * 10,
kernelsize = 5; 10 = 20, kernelsize =5), dropout layers, and
two fully connected layers (320 = 50; 50 * 10). The datasets
used in this experiment are the MNIST dataset and the
Fashion- MNIST dataset. The MNIST dataset is a widely
used handwritten digit recognition dataset, commonly
used for performance evaluation of image classification
algorithms in the field of computer vision. There are 10

digit classes in this dataset, from digit 0 to digit 9. The
MNIST dataset contains 70,000 grayscale images with a
resolution of 28 % 28, of which 60,000 images are used for
training the model and another 10,000 images are used
for validation. The Fashion-MNIST dataset is an extended
version of MNIST. The Fashion-MNIST dataset contains
70,000 grayscale images, including a training set of 60,000
images and a test set of 10,000 images. Each is a 28 = 28
grayscale image, including different types of t-shirts,
dresses, and boots. In the experiments, we fix other
hyperparameters and adjust € € (10,20,30) for multiple
experiments. The rest of parameters are given in Table 1.
In this experiment, we compare noise-added local model
training, denoted by client level DP, noise-added global
model training, denoted by round level DP, and the baseline
strategy (FedAvg) [20] in terms of model accuracy.

6. Experimental Results

Figures 2 and 3 show the accuracy of our proposed
strategy for local model training and global model
training under different privacy budgets, i.e.,
€ € (10,20, 30). It can be observed from Figure 2 that the
accuracies of three strategies all rise rapidly before 20
rounds, then slowly rise after that, and converge to the
optimal accuracy when approaching 100 rounds, which is
about 90%. In addition, local model training and global
model training do not have lower accuracy than FedAvg
under the same number of epochs due to the addition of
Gaussian noise. Furthermore, under different privacy
budgets, the accuracy of the local model and the global
model is not much different. It can be observed from
Figure 2 that the accuracy of three strategies increases
rapidly before 30 rounds, then slowly increases, and
converges to the optimal accuracy, which is about 70%,
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FIGURE 3: Accuracy on the Fashion-MNIST dataset with different differential privacy protections: (a) € = 10, (b) € = 20, and (c) € = 30.

when approaching 100 rounds. In addition, the accuracy
of local model training and global model training under
the same number of epochs is close to FedAvg, and under
different privacy budgets, the accuracy of the local model
and the global model is not much different.

7. Conclusions

The deep fusion of data collected by various sensors in the
Internet of things is an urgent problem to be solved. In addition,
in the process of data fusion, the privacy of objects collected by

sensors may be leaked due to data fusion, which means the
necessity of data fusion and privacy protection. To this end, we
propose a privacy-enhanced federated learning data fusion
strategy. This strategy not only adds differential privacy noise in
the local model training process but also adds differential
privacy noise in the federated training process, so as to realize
the differential privacy protection of the local model and the
differential privacy protection of the global model at the same
time. Experimental results and theoretical analysis show that
this strategy provides better privacy protection while achieving
high-precision IoT data fusion. Considering that the addition of



noise will affect the accuracy of the model, our future research
directions include how to reduce the impact of noise on the
global model accuracy under different local models.

Data Availability

The Fashion-MNIST data used to support the findings of this
study have been deposited in the repository, that is, https://
github.com/zalandoresearch/fashion-mnist.
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