Retraction

Retracted: Fusion Analysis of Chinese Painting Color Teaching and Intelligent Image Color Processing Technology

Mobile Information Systems

Received 26 September 2023; Accepted 26 September 2023; Published 27 September 2023

Copyright © 2023 Mobile Information Systems. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:

1. Discrepancies in scope
2. Discrepancies in the description of the research reported
3. Discrepancies between the availability of data and the research described
4. Inappropriate citations
5. Incoherent, meaningless and/or irrelevant content included in the article
6. Peer-review manipulation

The presence of these indicators undermines our confidence in the integrity of the article’s content and we cannot, therefore, vouch for its reliability. Please note that this notice is intended solely to alert readers that the content of this article is unreliable. We have not investigated whether authors were aware of or involved in the systematic manipulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks did not identify these issues before publication and have since put additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research Publishing teams and anonymous and named external researchers and research integrity experts for contributing to this investigation.

The corresponding author, as the representative of all authors, has been given the opportunity to register their agreement or disagreement to this retraction. We have kept a record of any response received.

References

1. Introduction

Since the birth of traditional computer graphics, its main purpose is to generate images that can imitate the effect of traditional cameras. With the continuous development of computer graphics hardware technology and graphics algorithms, people have been able to simulate various vivid graphics, such as the special effects of movies and games. In many cases, people have been unable to distinguish whether what they see is a real scene or generated by a computer [1]. The main forms of traditional Chinese painting: first, ink painting mainly appeared after the Tang and Song dynasties. From the Yuan Dynasty to the Qing Dynasty, the types and quantity of traditional Chinese painting reached its peak, with a large number and rich types. Yan BA was sincere to take off the animal husbandry lamp. Due to the long time and the limitation of the preservation conditions of paper and pigment, most of the paintings before the Yuan Dynasty had poor picture quality, the paper and silk are damaged, the color loss of pigment is serious, and the overall preservation is not good. The paintings have been preserved completely since the Yuan Dynasty [2]. Represented by Lang shining in the Qing Dynasty, traditional Chinese painting introduced western painting ideas, including the Western color system and realistic and exaggerated modeling techniques, which weakened the traditional expression of traditional Chinese painting. In order to make the selected image samples of traditional Chinese painting have certain representativeness, complete types (especially representative literati paintings), represent the mature development stage of painting theory, and consider the convenience of labeling, this paper only uses the traditional paintings of the yuan, Ming and Qing Dynasties for the selection of sample images, as shown in Figure 1:

2. Literature Review

Li and Zubrilin [3] and others believe that the rapid development of the Internet and multimedia technology makes digital image resources an effective information media. How to quickly retrieve massive digital images has become an urgent problem to be solved [3]. Guo and Qin [4] and others found that as structured data information, the retrieval method of an image is much more difficult than the text-based retrieval method [4]. Lin [5] investigated the characteristics of magnetic resonance diffusion tensor imaging (DTI) parameters and postoperative evaluation of spinal
cord function in patients with high cervical myeloma. The logistic regression model was used to analyze the factors affecting the recovery of spinal cord function after surgery. The results show that abnormal DTI parameter values in patients with high cervical myeloma can better reflect the loss of spinal cord function, can effectively predict the recovery of the physical function of patients after surgery, and provide a reference for clinical diagnosis and treatment [5]. Perrin et al. [6] found that with the rapid development of Chinese painting image digitization in recent years, there is an increasingly urgent demand for the establishment and management of a Chinese painting image digital library or digital museum. In particular, the processing technology of digital Chinese painting image has become the key to the urgent problem to be solved. The research on low-level feature extraction, data compression, automatic semantic annotation, retrieval, and automatic classification of digital Chinese painting images is more and more extensive [6].

Yang et al. [7] found that the research on automatic classification and annotation of digital images of Chinese painting involves the integration of computer vision, machine learning, image retrieval, cognitive psychology, and painting art. In general, because there is no direct relationship between the low-level visual features and high-level semantic concepts of Chinese painting images, the automatic semantic classification and annotation of Chinese painting images is a very challenging research topic [7]. Li et al. [8] have studied content-based image retrieval (CBIR) and image classification technology for more than ten years. Many scientific research institutions at home and abroad have done a lot of research work in general image retrieval and natural image scene classification [8]. Li [9] believes that the application of traditional Chinese painting digital images is still in its infancy [9], which is mainly due to the fact that different from the exact semantic information expressed by ordinary digital images, the characteristic of traditional Chinese painting digital images is that the semantic information reflected and represented by them is abstract. Traditional Chinese painting does not emphasize the light color change and focus perspective of objects in nature, nor does it pay attention to the realism of the appearance of objects. Traditional Chinese painting emphasizes “Writing Spirit in the form.” It also has its own characteristics in composition, pen, ink, and color. Especially in the perspective method, it is not limited by the fixed field of view. It can move its foothold to paint according to the author's feelings and needs and show the seen and invisible scenery in the works. This scattered and multi-point perspective method is not available in Western painting.

The application of color based and texture based image retrieval in traditional Chinese painting is limited by the characteristics of “color based and shape based image retrieval” in the field of traditional Chinese painting. Explanatory research work has been attempted in the research field related to the automatic classification of Chinese painting images [10]. Moreover, more and more research institutions and researchers are engaged in the research in this field. Nonphotorealistic rendering is a technology that uses a computer to generate graphics with hand-painted style instead of photo like realism. It does not pursue the effect of “photo like realism” but mainly hopes to express the artistic characteristics of graphics and simulate artistic works of different styles. The research on nonphotorealistic technology first appeared in two papers by Wang [11] in the 1980s [11]. Wang [12] published two influential papers at the Siggraph conference in 1990, but the technology they demonstrated was treated in isolation at that time. Now researchers have made bold attempts on various artistic styles, giving people a refreshing feeling, which reflects that computers have great prospects in Chinese painting with intelligent image color processing technology [12]. Compared with photorealistic rendering, nonphotorealistic rendering is different in the implementation method and the scope applicable to performance. The comparison relationship between them is given. Through the comparison, we can find that nonphotorealistic rendering has more unique advantages in some specific environments. As shown in Table 1.

3. Method

The more easily acquired two-dimensional image is taken as the input, and the simulation method based on physical modeling is combined with the simulation method based on the feature. For the important elements of ink painting, paper, and pen, we establish a physical model according to its characteristics, simulate the stroke and ink diffusion effect of ink painting, and make full use of the relevant knowledge of digital image processing in the processing process. For example, in terms of edge stroke generation, by using the combination of threshold method and region generation, considering the color and spatial information of the image, the key features of the image are extracted, the redundant information is removed, and the rendering process is simplified. For the internal spatial processing of the image, the rendering method of large block coloring in the actual ink painting is simulated through filtering and color equalization [13, 14]. The general flow of the algorithm is shown in Figure 2.

K-means clustering algorithm is used to classify and extract the colors of female costumes in Dunhuang murals in various periods of the Tang Dynasty. In order to more
objectively describe the color of women’s clothing in each period, through the quantitative analysis of the main color composition of women’s clothing in different periods of the Tang Dynasty, the 10 main colors extracted from women’s images in each period are statistically analyzed from the three dimensions of hue, saturation, and lightness. On the basis of quantitative analysis and combined with literature, this paper analyzes the causes behind the main color composition of female costumes in Dunhuang murals of the Tang Dynasty.

Through the comparison of different color spaces, the HSV color space is finally selected as the color space of this study. The three components of HSV color space are hue, saturation, and value. These three elements can affect the perception of color by human eyes. A. R. Smith created HSV color space in 1978, which can be represented by a closed inverted cone. The top view starts from red and rotates clockwise, which is composed of yellow, green, cyan, blue, and magenta [15, 16]. Lateral variation from 0° to 100% of the edge constitutes saturation. The longitudinal variation from the low end 0° to the center of the top surface constitutes lightness 176. Hue H is the main feature of color. It is the most accurate to use hue to measure the difference of color. The hue starts from 0° of red and rotates clockwise. It is composed of 60° of yellow, 120° of green, 180° of cyan, 240° of blue, and 300° of magenta. Based on this, the hue ring is
Saturation is the purity of color. If the purity of each hue is different, the value of saturation is also different. In the space represented by an inverted cone, the lateral variation from 0 to 100% of the edge constitutes saturation. Starting from the achromatic axis, extend the line segment horizontally to the edge of the circular surface, and divide the line segment into nine segments, i.e., 9 saturation divisions. The nearest three segments from the colorless axis are low saturation, the next three segments in the middle are medium saturation, and the farthest three segments are high saturation. Therefore, this paper divides the saturation into three ranges, as shown in Table 3.

Descriptive statistical analysis of hues in the female dress colors of Dunhuang murals of the Tang Dynasty extracted from four periods is shown in Table 4. As can be seen from the table, hue H goes clockwise for the middle Tang Dynasty, the prosperous Tang Dynasty, the early Tang Dynasty, and the late Tang Dynasty. The average hue of the early and late Tang Dynasties is around 142°, and the color on the corresponding hue ring is green with a cold tone [19, 20]. The mean hue of the prosperous Tang Dynasty is 136.37°. From the hue ring, it can be seen that the mean hue of the prosperous Tang Dynasty is less than that of the early Tang Dynasty and the late Tang Dynasty, so the corresponding color of the prosperous Tang Dynasty is warmer than that of the early Tang Dynasty and the late Tang Dynasty. The average hue of the middle Tang Dynasty is 109.30°, and the color on the corresponding hue ring is green with a warm tone, which belongs to the warmest tone of the overall tone in these four periods. Green belongs to the middle range in the warm and cold tones, that is, the middle tone. Therefore, it can be said that the overall tone of the early Tang Dynasty, the prosperous Tang Dynasty, and the late Tang Dynasty is cold, while the overall tone of the middle Tang Dynasty is warm [21, 22]. From the standard deviation of hue, the hue value fluctuated greatly in each period. Compared with other periods, the hue value fluctuated slightly in the middle Tang Dynasty, indicating that the Tang Dynasty was very bold in color use, and the colors were particularly rich, covering almost all the color systems in the whole hue ring, but the middle Tang Dynasty would focus more on the individual colors. In order to further understand the applicable law of each period on each color system, the color systems of each period are classified and analyzed, as shown in Table 4.

Saturation S refers to color purity. The higher the purity, the more distinct the performance. The lower the purity, the more elegant the performance. From the saturation S in Table 5 (the range value is 0 ∼ 100%), in fact, the overall saturation difference is small, and the saturation belongs to low saturation, which is precisely the typical feature of Chinese traditional color. The saturation of early Tang and late Tang is lower than 33%, which belongs to low saturation; It is slightly higher in the prosperous Tang Dynasty and the middle Tang Dynasty, and the saturation is greater than 33%, which belongs to medium saturation. It can be seen that the colors of the early and late Tang Dynasties are more simple and elegant, and the lower saturation makes the overall style of the color show a gentle and harmonious effect. The prosperous Tang Dynasty and the middle Tang Dynasty, one is the most powerful period of the Tang Dynasty, and the other is the period of the Tubo invasion. The color saturation of the two periods is higher, even higher in the middle Tang Dynasty.

The brightness and darkness of an object are perceived by the human eye from the visual experience of the light source. The brightness of the object is the brightness, which is affected by the intensity of the light source [23, 24]. If the light is stronger, it looks brighter; the weaker the light, the darker it looks. From the lightness distribution (Table 6), the overall lightness of the Tang Dynasty presents medium lightness, which gives people a more comfortable feeling in terms of visual effect. The average value of Mingdu in the middle Tang Dynasty is the highest, reaching 51.64%, which will be more beautiful visually, and the average value of Mingdu in the late Tang Dynasty is the lowest, which will be more vigorous compared with that in the late Tang Dynasty.

In order to obtain effective observation data of traditional Chinese painting, the standard observer needs to have certain conditions. The requirements and rules for selecting the standard observer are as follows:

(1) Education Level: high school and above, can use the mouse to operate the computer
(2) Number of People: 6
(3) Age Group: 20 ∼ 40
(4) Gender: both male and female

We will combine the six standard observers of traditional Chinese painting images in pairs and divide them into three groups. The members of each group will observe the samples of traditional Chinese painting with the themes of flowers and birds, landscapes, and characters in the yuan, Ming, and Qing Dynasties, respectively. The personnel arrangement covers all dynasties and branches of traditional Chinese painting. This can not only eliminate the preferences caused by different people's different cognition but also balance the consistency of painting expression in different dynasties. Standardize and standardize the annotation from different angles, so as to improve the relative accuracy of the annotation of the main scene area. The combination of standard observers is shown in Figures 3 and 4.

As shown in Figures 3 and 4, each group of standard observers can mark the main scene of the painting images of
the three dynasties, and the three groups of members can mark the whole collection of traditional Chinese painting images, and the amount of work is similar and relatively balanced, which is convenient for personnel organization and related work.

Correlation is a common phenomenon in a large number of data. If there is some regularity between two or more data, it is called association. Finding association rules is to find the correlation of different items in the same event.

The concept of association rule mining first appeared in the Apriori algorithm proposed by Rakesh Agrawal. Its purpose is to mine whether transactions \(a \) and \(B \) have a high correlation. Because of its solid theoretical foundation and wide application background, association rules have become one of the most important research methods in data mining. In different situations and actual needs, this technology has been paid special attention by researchers in the fields of statistics, data analysis, computer science, data visualization, and so on. By combing the relevant literature, firstly, the relevant definitions of association rules are briefly described.

As shown in formula (1), an item set is a set with \(P \) different items, where the item refers to the elements contained in \(I \). For item set \(I \), nonempty subsets with \(K \) items are called \(k \)-item sets. The transaction set is shown in formula (2), that is, a set with \(n \) transactions. The transaction is shown in formula (3).

\[
i = \{i_1, i_2, ..., i_P\}, \quad (1)
\]

\[
D = \{T_1, T_2, ..., T_n\}, \quad (2)
\]

\[
T = \{i_1, i_2, ..., im\} \land d \leq m \leq p. \quad (3)
\]

Association Rules: if the item sets \(A \in I \) and \(B \in I \), the implication in the form of \(A \longrightarrow B \) is called association rules, where \(A \) is called the preceding item set and \(B \) is the subsequent item set. In order to measure the strength of this association form, confidence, and support are defined.

Support: support is used to measure the importance or scope of application of association rules. It reflects the universality of rules in all transactions. Indicates the probability of containing itemset \(A \) and itemset \(B \) in all data, that is, calculates the ratio of the number of transactions containing itemset \(A \) and itemset \(B \) in the transaction set \(D \) to the total number of transactions \(n \) contained in the transaction set. The calculation formula is shown in the following formula:

\[
\text{Sup}(A \longrightarrow B) = \frac{P(A \cup B)}{P(A)}. \quad (4)
\]

For the support calculation of a single itemset \(a \), that is, the sum of the number of itemset \(A \) and the total number of transactions is included in all transactions. The calculation formula is shown in the following formula:

\[
\text{Sup}(A) = \frac{P(A)}{P}. \quad (5)
\]

Definition 5–4 (confidence): confidence is a conditional probability, which measures the accuracy of this correlation.

Table 4: Mean deviation of main color hue.

<table>
<thead>
<tr>
<th>Color space</th>
<th>Period</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Weighted mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue</td>
<td>Early Tang Dynasty</td>
<td>20</td>
<td>349</td>
<td>142.36</td>
<td>112.358</td>
</tr>
<tr>
<td></td>
<td>Prosperous Tang Dynasty</td>
<td>17</td>
<td>347</td>
<td>136.37</td>
<td>117.908</td>
</tr>
<tr>
<td></td>
<td>Mid-Tang Dynasty</td>
<td>15</td>
<td>345</td>
<td>116.29</td>
<td>97.258</td>
</tr>
<tr>
<td></td>
<td>Late Tang Dynasty</td>
<td>15</td>
<td>345</td>
<td>142.98</td>
<td>113.158</td>
</tr>
</tbody>
</table>

Table 5: Mean deviation of main color saturation.

<table>
<thead>
<tr>
<th>Saturation S</th>
<th>Period</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Weighted mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Tang Dynasty</td>
<td>11</td>
<td>66</td>
<td>32.12</td>
<td>16.544</td>
<td></td>
</tr>
<tr>
<td>Prosperous Tang Dynasty</td>
<td>11</td>
<td>60</td>
<td>33.42</td>
<td>17.742</td>
<td></td>
</tr>
<tr>
<td>Mid-Tang Dynasty</td>
<td>14</td>
<td>64</td>
<td>34.84</td>
<td>15.61</td>
<td></td>
</tr>
<tr>
<td>Late Tang Dynasty</td>
<td>9</td>
<td>83</td>
<td>29.23</td>
<td>17.435</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Deviation of the mean value of main color brightness.

<table>
<thead>
<tr>
<th>Lightness V</th>
<th>Period</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Weighted mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Tang Dynasty</td>
<td>21</td>
<td>73</td>
<td>46.19</td>
<td>18.374</td>
<td></td>
</tr>
<tr>
<td>Prosperous Tang Dynasty</td>
<td>23</td>
<td>74</td>
<td>45.9</td>
<td>18.087</td>
<td></td>
</tr>
<tr>
<td>Mid-Tang Dynasty</td>
<td>17</td>
<td>73</td>
<td>51.64</td>
<td>19.424</td>
<td></td>
</tr>
<tr>
<td>Late Tang Dynasty</td>
<td>17</td>
<td>65</td>
<td>43.04</td>
<td>18.287</td>
<td></td>
</tr>
</tbody>
</table>
Indicates the probability that itemset B also exists when the existence of itemset A in the transaction is known, that is, calculates the ratio of the number of transactions containing itemset A and itemset B in the transaction set D to the number of transactions containing itemset A in the transaction set. The calculation formula is shown in the following formula:

$$\text{Conf}(A \rightarrow B) = \frac{|B \cap \text{A}|}{|A|}$$

When using association rules, it is necessary to give a controllable minimum range value of support and confidence according to specific application scenarios and purposes. The lowest range value of support is called the minimum support threshold minSup, which represents the lowest universality of the applicable range of association rules. The lowest range of confidence is called the minimum confidence threshold minConf, which is used to represent the lowest accuracy of the correlation.

The purpose of mining association rules is to find strong association rules that exceed the minimum support threshold minSup and minimum confidence threshold minConf specified by researchers in the transaction set D. The mining of association rules mainly consists of two steps. The first step is an important step of association rule mining. We need to find all frequent item sets with support not less than the minimum support threshold in the database. Through this step, we can quickly get all frequent item sets in the data. The second step is simpler and more direct than the first step. This step needs to build the association relationship between frequent item sets and screen out strong association rules, which belong to the process of enumeration exploration. According to the above-given steps, the association rule mining process is summarized into the model in Figure 5. When researchers input data into the program, the algorithm for finding frequent item sets begins to work, so as to search all frequent sets. Then, the output of rules with strong association relationship is obtained through the algorithm of association rule mining. In this process, the minimum support threshold minSup and the minimum confidence threshold minConf are set by the analyst to control the output results as shown in Figure 5.

The objects in the image are usually expressed in different sizes. In order to solve the disadvantage of analyzing the image signal by Fourier transform, researchers will use all the time-domain information of a signal when extracting the signal spectrum. The overall global transformation lacks the time-domain positioning function of the wavelet transform, there is no way to simultaneously the information of the time domain and frequency domain, and the resolution of the time domain and frequency domain can not be adjusted adaptively according to different signals. Therefore, wavelet transform is usually used for image analysis. The images are decomposed one by one at different scales. The larger the scale, the coarser, otherwise the more detailed. Finally, the results are compared to obtain valuable information. The multiresolution analysis is in line with the following characteristics: system closed subspace, let $\{V_j\}$ belong to $L^2(R)$.

1. Uniform Monotonicity: as shown in formula (10)
2. Progressive Completeness: as shown in formula (11)
3. Scaling Regularity: as shown in formula (12)
4. Translation Invariance: as shown in formula (13)

$$V_j < V_j - 1, j \in Z, \quad \cap V_j = \{0\}, \cap V_j = L^2(R), $$

$$f(t) \in V_j, \quad f(t) \in V_0. $$

According to the compression analysis of signals and images by researchers, the matrix $\mathbf{\Psi}$ can be decomposed into two parts: significant area and nonsignificant area, as shown in formula (14).

$$X = XZ_0 + E_0.$$
min \(f(X) \),

\[s.t. h(X) = 0, \]

where \(f: R \rightarrow R, f: R \rightarrow R' \). Its augmented Lagrange function is shown in the following formula:

\[L(X, Y, \mu) = f(X) + Y, h(X) + \frac{\mu}{2} h(X). \]

Table 7: Performance confusion matrix of Chinese painting image semantic classification based on the proposed algorithm.

<table>
<thead>
<tr>
<th></th>
<th>Landscape painting</th>
<th>Flower and bird painting</th>
<th>Figure painting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape painting</td>
<td>0.79</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Flower and bird painting</td>
<td>0.22</td>
<td>0.75</td>
<td>0.03</td>
</tr>
<tr>
<td>Figure painting</td>
<td>0.17</td>
<td>0.14</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Based on the above-given feature representation and related parameters, the performance of this algorithm in the semantic classification of three types of Chinese painting images is approximately 74.4%. The element values on the diagonal in the confusion matrix shown in Table 7 represent the classification recall rate of each type of Chinese painting semantic image.

It can be seen from Table 7 that the misclassification rate of landscape and flower and bird Chinese painting images has maintained a relatively low level. In particular, landscape Chinese painting images have achieved the best classification recall rate, while Figure Chinese painting images have the lowest classification recall rate. It should be pointed out that the intraclass difference of landscape Chinese painting images is small because the intraclass texture structure is relatively similar, and the color information is relatively unified; On the contrary, due to the small number of training samples and large differences within the class, some character Chinese painting images belong to close-up portraits, while others belong to distant sketches. Therefore, the classification performance of this algorithm in character Chinese painting images is worse than that of landscape, flowers, and birds. Because the visual word package model used in this algorithm makes full use of top-down supervised learning and bottom-up visual saliency information, semantic weighting is carried out for the traditional visual word package model, with special emphasis on the weight of sub-blocks corresponding to saliency regions and the importance of visual words representing specific categories in classification; Moreover, the extracted low-level visual features are color sift descriptors fused with color information, so this algorithm has achieved good results in the semantic classification of Chinese painting images.

4. Results and Analysis

Image feature extraction and representation is the most basic and key link in image classification. At present, the commonly used low-level visual features mainly include color, texture, and shape. They can be used to describe local and...
global features of images. For the visual word package representation model [25, 26].

In order to effectively measure the proposed saliency region extraction algorithm, we first give the experimental results of the proposed algorithm on the current MIT and Bruce eye movement databases and MSRA database. Subjectively, we can see that the proposed algorithm has better similarity with the standard saliency map composed of eye movement data. Furthermore, Figure 6 shows the ROC curve of the algorithm. From the comparison of the three databases, the relative performance of the Bruce dataset is poor. The relationship between the image content and the performance of the algorithm is analyzed by measuring the entropy of the original image. Image entropy is a statistical form of features, which reflects the average amount of information in the graph. The one-dimensional line of an image represents the amount of information contained in the aggregation features of gray distribution in the image, while the two-dimensional line can also reflect the spatial features of image restoration distribution. It can be seen from this that the low line image often contains a core object (i.e., the significant area is more obvious), while the high line image contains more than one under different textures (the significant area is not obvious or more than one area attracts observation). In the Bruce dataset, the image has a relatively high entropy. Some image backgrounds in the image library are messy and the region of interest is fuzzy [27, 28]. The mean value in the MIT database is 0.10 and the standard deviation is 0.04, while the mean value in the Bruce database is 0.15 and the standard deviation is 0.07. Therefore, the algorithm proposed in this chapter can be better neutral in low line image as shown in Figure 6.

In order to further verify the effectiveness of this algorithm, Tables 8 and 9 show the comparison results between this algorithm and other typical algorithms. Experiments on MIT and Bruce eye movement databases show that the proposed algorithm is obviously superior to other methods. The proposed algorithm is more consistent with the process of human visual attention. These results show that the proposed algorithm has advantages in significance detection. The efficiency of the proposed algorithm is mainly due to its ability to capture information from multiple features of the unified reasoning process. In terms of the AUC index, the algorithm in the Bruce database has equivalent performance with Si and CSD, but the algorithm proposed in this chapter has significantly improved in terms of correlation with the saliency map generated by eye movement data.

5. Conclusion

It is proved that the application of color observation technology in Chinese image processing is feasible. It can effectively solve the problem of color processing of classical Chinese painting, meet the requirements of digital museum technology for the digital development of classical Chinese painting and the restoration of ancient painting, make up for the shortcomings that Chinese painting is difficult to repair, and improve the love of most people for Chinese painting. It can reasonably establish the relationship between high-level semantics and low-level features of images, so as to make computers better understand Chinese painting images and improve the performance of semantic analysis and classification of Chinese painting images. It is an important means to realize perception oriented Chinese painting image semantic processing. It is an important means to improve the semantic classification performance of Chinese painting images.

Data Availability

The labeled dataset used to support the findings of this study is available from the author upon request.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This study was supported by the Teaching Quality and Teaching Reform Project in 2019 of Guangdong: On the development of Chinese painting teaching by visual communication (Grant no. 2019014).

References

