
Research Article
Design and Application of Basketball Microservice Platform

Xiangfeng Hou and Yihao Wang

School of Physical Education, Shanxi University, Taiyuan, Shanxi, China

Correspondence should be addressed to Yihao Wang; 171849040@masu.edu.cn

Received 8 January 2022; Revised 12 May 2022; Accepted 24 May 2022; Published 9 June 2022

Academic Editor: Ateeq Rehman

Copyright © 2022 Xiangfeng Hou and Yihao Wang. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

�is study is aimed at the problems of low security, low response time, and poor functionality of the currently designed basketball
microservice platform. A basketball microservice platform is designed. According to the de�nition and characteristics of
microservice architecture, the proposed study expounds the related framework of Spring. Based on the feature vector of
microservice architecture, the platform application client or other application requests are processed, the functional and
nonfunctional requirements of the platform are analyzed, and the overall architecture of the basketball microservice platform is
designed. According to the speci�c requirements of each module in the basketball microservice platform, the overall functional
structure of the platform is designed based on the Spring Cloud framework and the Spring Boot framework. According to the
monitored and managed entity objects of the microservice architecture infrastructure platform during operation, the relevant
attributes of each object are described. �rough the relational table designed by the microservice relational speci�cation, various
entity tables and relational information in the database are given to realize the design and application of the basketball
microservice platform. �e experimental results show that the proposed method has good functionality and can e�ectively
improve the security and response time of the platform.

1. Introduction

With the rapid development of software technology and the
continuous expansion of platform-scale applications, the
software architecture has gradually evolved from a simple
monolithic architecturemodel to amicroservice architecture
model. Correspondingly, framework products such as
Net�ix, Dubbo, and Spring Cloud are used to build
microservices, or the community is gradually active and
mature [1]. Microservice architecture is to vertically split a
complete application from the database layer into multiple
di�erent services. Microservices are an operational structure
that, in contrast to the typical monolithic architecture, di-
vides an application into numerous service modules.
Microservices’ designs make it easier to expand and develop
applications, allowing for more creativity and quicker re-
sponse for new features. A software created with a micro-
service architecture is made up of distinct modules that
operate each application process as a service. �ese services
interact via lightweight APIs and a well-de�ned protocol.

Services are designed to support core competencies, and
each one serves a single purpose. Since each service runs
separately, it may be modi�ed, distributed, and expanded to
match a variety of service application components. Each
service runs on a separate thread, and each service can be
deployed, maintained, and expanded independently. Ser-
vices and services communicate with each other using API of
uni�ed style protocol [2]. Basketball is a typical represen-
tative team event. With the progress of team competition
and training, all kinds of relevant data and information are
increasing. How to e�ectively manage all kinds of infor-
mation of the team, facilitate coaches to better manage the
team, and improve competition results has become a
common problem faced by the team [3]. �e microservice
platform simpli�es the project construction process, reduces
the con�guration of a large number of con�guration �les,
does not need to pay too much attention to the introduction
of related dependent jar packages, and reduces the com-
plexity of the entire code writing. It not only ensures the high
stability, scalability, and maintainability of the platform but

Hindawi
Mobile Information Systems
Volume 2022, Article ID 3928363, 12 pages
https://doi.org/10.1155/2022/3928363

mailto:171849040@masu.edu.cn
https://orcid.org/0000-0002-4261-4401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3928363

also reduces the development cost and cycle. ,erefore, it is
of great significance to study the basketball microservice
platform.

At present, the research on the basketball microservice
platform has also made great progress. In [4], the authors
designed a task-driven basketball teaching mode system
based on ITbegin cloud platform [5]. According to the
difficulty of basketball teaching and training content, it is
divided into basic content and advanced content. On this
basis, the curriculum setting of basketball teaching and
training is proposed. It is published on the ITbegin cloud
platform via the Internet. Students complete the training by
downloading or watching the course online, feedback the
training progress and problems encountered in the training
in time, and adjust the teaching mode in time to ensure the
quality of training. In the case of testers with similar physical
fitness, the basketball teaching model based on the ITbegin
cloud platform has a higher overall level, and the basketball
teaching model design is more suitable for actual training
projects. In [6], the authors designed a public service
platform for university management based on microservice
architecture. With the vigorous development of mobile
computing, cloud computing, and complex business scale,
there is an urgent need for a cloud service platform based on
distributed architecture. ,e proposed study focuses on the
problem of load balancing and its optimization. ,e plat-
form has been successfully operated in many universities,
significantly alleviating their business and operation prob-
lems. However, the above methods still have the problems of
low platform security and response time and poor platform
functionality.

To solve the above problems, a basketball microservice
platform is designed. According to the definition and
characteristics of microservice architecture, the proposed
research paper expounds the related framework of Spring.
Based on the feature vector of microservice architecture, the
contributions are listed as follows:

(i) Process the platform application client or other
application requests

(ii) Design the overall architecture of the basketball
microservice platform by analyzing the functional
and nonfunctional requirements of the platform

According to the specific requirements of each module
in the basketball microservice platform and the microservice
architecture, the overall functional structure of the platform
is designed. ,rough the relational table designed by the
microservice relational specification, various entity tables
and relational information in the database are given to
realize the design and application of the basketball micro-
service platform. ,e proposed method has good func-
tionality and can effectively improve the security and
response time of the platform.

2. Overview of Microservice Architecture

2.1. Microservice Architecture Definition. Microservice ar-
chitecture is an architectural style adopted by software
development for platform architecture design [7]. It is the

most popular distributed platform architecture scheme at
present. It is a solution with high cohesion and low coupling
in software engineering. At the same time, it is also an
excellent architecture style for interface development, which
can well reduce the coupling between services. It is an ar-
chitecture style, not the solid principle of software design.

Microservice architecture mainly decomposes complex
business functions into several service centers, reduces the
coupling of platform code, and provides more flexible
function invocation support. Each service can be deployed
and run independently without affecting each other. At the
same time, it is convenient for the platform to carry out
parallel development, which can improve the development
efficiency. ,erefore, the microservice architecture is also a
business development oriented architecture. ,e micro-
service architecture improves the development efficiency
and reduces the platform development cost and mainte-
nance cost [8]. At present, major cloud computing manu-
facturers support the one click deployment and operation of
microservice architecture, making the development,
debugging, and maintenance of microservices easier.

2.2. Microservice Architecture Features. ,ere are three
characteristics of microservice architecture, which enable it
to gain greater advantages in competition with traditional
components [9]. ,e relevant classifications are as follows:

(1) Decomposing service processing: from a technical
point of view, microservices can be regarded as
components. ,e difference between these compo-
nents and traditional components is that they are
simple to operate and occupy less space. Traditional
components isolate the business independent parts
or extract the common parts in such a way that the
application can be decoupled and reused after
modularization. Microservice architecture directly
decomposes the platform into multiple services, and
there is a certain coupling relationship between
services [10]. ,e functions in the application only
need to change a single platform and then rebuild
and deploy the corresponding services.

(2) Complexity reduction: the principle of microservice
architecture is to decompose single applications into
multiple independent services according to groups,
in order to alleviate the complexity of execution data
in the program and avoid useless data occupying the
process and affecting the processing speed [11].
Assuming that the functions are fixed, after the
application is decomposed into multiple services, the
complex functions can be modularized through the
microservice architecture, in order to solve the
problem that the application coding method is dif-
ficult to realize due to the complexity of single ap-
plication coding and simplify and facilitate the
service development and maintenance process [12].

(3) Technology diversification: in the traditional devel-
opment model, the application construction method
is to use similar technologies, while the main

2 Mobile Information Systems

technology of the microservice architecture is a
decentralized organizational structure, and the
construction method has no focus. ,e service in the
application makes corresponding judgments based
on the scope of its own services and the current
development of the industry, and after determining
the technology type, counterpart services are pro-
vided to make the service scientific, professional, and
platform-oriented, while making the service pro-
cessing faster and more efficient [13].

,erefore, compared with the monolithic architecture,
the microservice architecture is more flexible and pays more
attention to business boundaries and business details. In
actual use, the RPC protocol and HTTP protocol are used for
invocation and scheduling between services, the transmis-
sion protocol is more standardized, and the coupling is small
[14].

2.3. Spring-Related Framework. ,e Spring framework is
currently the most widely used open-source framework in
J2EE development. It is a lightweight and noninvasive
container framework that uses Java’s reflection mechanism
to achieve inversion of control and aspect-oriented pro-
gramming. ,erefore, there are many excellent frameworks
under Spring’s ecological chain.

2.3.1. Spring Boot. ,e Spring framework rescues J2EE
developers from the EJB research and development model
and ecology. Spring’s IOC (Inversion of Control) and AOP
(Aspect-Oriented Programming), as well as its reasonable
design and packaging of commonly used techniques for Java
application development, make the Spring framework be-
come the best practice for building efficient Java Web ap-
plications [15]. However, with the popularity of dynamic
languages (such as Scala, Python, and Node.js), Java ap-
plication heavy configuration, lengthy code, complex de-
ployment process, and nonstandard third-party technology
integration make Java development extremely cumbersome.

Spring Boot is the product of Spring framework’s best
practice of the concept of “Convention over Configuration.”
,e so-called “Convention over Configuration” refers to the
configuration of a large number of projects, which has many
habitual configurations built in. ,ere is no need for de-
velopers to configure [16].With Spring Boot, a small amount
of configuration can be used to easily build a Spring
framework-based project that runs independently (running
a jar file or an embedded web container). ,e position of
Spring Boot in the Spring ecosystem is shown in Figure 1.

An overview of the role of Spring can be roughly
summarized as follows: Spring Boot inherits the excellent
genes of the Spring framework, thus simplifying the con-
figuration process of Spring, allowing developers to quickly
create a W song application. ,e application of Spring Boot
to build microservices has the following advantages:

(1) Quickly build a W song application based on the
Spring framework

(2) With embedded WEB containers such as Tomcat
and Jetty, the project can be deployed in the form of a
WAR package without relying on it

(3) Using Spring-boot-start-actuator, you can obtain the
performance parameters of the process running
through REST, making service monitoring easier

(4) ,e configuration-free integration of mainstream
development frameworks and tool chains can be well
integrated with Docker container technology in
service deployment, facilitating service deployment

2.3.2. Spring Cloud. Spring Cloud is an open-source
microservice framework and a service governance frame-
work. Spring Cloud relies on Spring Boot, which is spring
boot. Spring Cloud provides many frameworks and tools for
microservice development, such as service registration and
discovery center Eureka, service gateway Zuul, and micro-
service configuration Spring Cloud Config [17].

Spring Cloud can be used simultaneously with other
framework projects under the Spring ecosystem (such as
Spring Framework, Spring Data, and Spring MVC), which
can make the entire platform uniform, and subsequently, it
can better play Spring Boot’s “habit is better than config-
uration.”It has the advantage of improving development
efficiency. ,e technical system of Spring Cloud is shown in
Figure 2.

Eureka, the service discovery and registration center, is
one of the core components of Spring Cloud Netflix. Based
on Netflix Eureka, it implements service registration and
discovery functions and acts as a registry in the microservice
architecture. At the same time, it optimizes the RESTful style
of HTTP transmission by default [18].

2.4. Feature Vector Based on Microservice Architecture.
When the platform application processes the request of the
client or other applications, it will call the microservices and
then cause the mutual calls between the microservices to
form a call chain. One call chain corresponds to the use of

Developer

Spring Boot

Spring
Data, Batch, Web, JDBC

Figure 1: Location of Spring Boot in Spring ecology.

Mobile Information Systems 3

platform functions and permissions by a client in the
platform. ,e platform functions and permission attributes
in the aforementioned call chain are described by micro-
service application feature vectors.

Use LID to describe the call chain, and each call request in
the call chain is represented by IID. ,e feature vector of the
microservice application corresponding to one call is
composed of a four-tuple:

Q � IID, W, E, RL(􏼁. (1)

In formula (1), W represents the request service, E

represents the calling function or method, and RL represents
the request parameter list. A call chain is composed of
multiple application feature vectors, which are described by
feature vector groups, namely,

AZ � LID, A1, . . . , Ai, . . . , An, TL(􏼁. (2)

In formula (2), n is the number of feature vectors, Ai is
the i application feature vector, and TL is the list of user roles
that generated the feature vector set. It can be seen from
formula (2) that a feature vector set consists of multiple
feature vectors, for two feature vectors in a feature set AZ. If
IIDi

is the prefix of IIDi+1
, it means that there is a call path of

service Zi to method Xi+1 in service Zi+1 in the platform, that
is, the relationship between IIDi

and IIDi+1
is expressed as

follows:

IIDi
� Parent IIDi+1

􏼐 􏼑. (3)

At the same time, there is a mapping relationship from
II D to A1, . . . , Ai, . . . , An and a mapping relationship from
LI D to TL in AZ. ,e definitions of these relationships in the
feature vector set are given below. ,e relationship between
the eigenvectors is defined as follows [19]:

AZC � LID, AI, AM, AR􏼈 􏼉. (4)

In formula (4),

AI LID, Zi(􏼁 � 〈Zj, Hj〉, . . . , 〈Zk, Hk〉, . . . , 〈Zm, Hm〉􏽮 􏽯,

� Ai1, . . . , Aik, . . . , Aip􏽮 􏽯.

(5)

Formula (5) represents the call list of Ai, that is, Ai calls
Aj, . . . , Ak. AM(LID) � Am, . . . , Ak, . . . , An􏼈 􏼉 is the calling
sequence list, marked as Am1, . . . , Amk, . . . , Amp􏽮 􏽯.
AR(LID) � TL � Tm, . . . , Tk, . . . , Tn􏼈 􏼉 is the list of calling
roles, marked as Ar1, . . . , Ark, . . . , Arp􏽮 􏽯.

A feature vector relationship corresponds to the function
and permission features in the application platform. ,e
complete set of eigenvector relations of an application
platform is represented as follows:

ACZ � AC1, . . . , ACI, . . . , ACn􏼈 􏼉. (6)

3. Demand Analysis of Basketball
Microservice Platform

3.1. Platform Function Requirements

3.1.1. Basketball Microservice Management and Control
Module. ,e management and control module in the bas-
ketball microservice platform is mainly for the platform
operation and maintenance personnel and carries various
objects in the platform, such as cluster, server node, service,
service instance, service warehouse deployment, management,
monitoring, configurationmanagement, and reliable operation
ability. ,e operation and maintenance personnel are mainly
responsible for the daily operation and maintenance control
management of application services, database services, and
conventional tool services in the microservice infrastructure
platform, as well as the object management, service deploy-
ment, and configuration management in the corresponding
platform. Object management includes providing control and
management functions for clusters, warehouses, nodes, ser-
vices, and instances in themicroservice infrastructure platform.
,e configuration management module can modify and

Safely control

Spring Cloud

Service
governance Service call Service discovery

and registry

Spring Cloud
Security

Oauth

SAML

Monitoring data
collection

Spectator

Atlas

Servo

Hystrix

Ribbon

Feign

Eureka

Consul

Message
component

Spring Cloud
Bus

Spring Cloud
Stream

Configuration
center

Spring Cloud
Config

Figure 2: Technical system of Spring Cloud.

4 Mobile Information Systems

control the fault-tolerant configuration information in the
service instance and fault-tolerant module through the control
module to achieve fine-grained operation. Finally, the control
module is provided to the platform operation andmaintenance
personnel in the form of the Jar package. When using the
controlmodule, the operation andmaintenance personnel only
need to start the control module through the Java command
line in the operating platform [20] and realize the dynamic
control of the platform through the browser.

(1) Cluster creation function: it mainly provides the
basic conditions for the cluster management func-
tion for the operation andmaintenance personnel, in
such a way that the operation and maintenance
personnel can understand the operation of the
platform from a macro perspective.

(2) Cluster modification function: it mainly modifies the
basic information of the cluster in such a way that the
operation and maintenance personnel can control
the cluster. ,e modification content includes the
description information of the cluster and the op-
eration status of the cluster.

(3) Cluster warehouse: it mainly manages the warehouse
in the project file. ,e operation and maintenance
personnel shall specify the warehouse used in cluster
deployment before deployment and determine the
deployable service object through the project file in
the warehouse.

(4) Service node search function: it is mainly used to
more freely obtain the information of available nodes
in the LAN and reduce the workload of operation
and maintenance personnel.

(5) Service instance deployment function: on the basis
that the cluster provides a deployment carrier for
service instances, the platform shall build deploy-
ment instances according to the deployment scheme
provided by the operation and maintenance per-
sonnel, deploy service instances, and display the
cluster deployment status and progress to users.

(6) Service configuration modification function: it is the
main means for operation and maintenance per-
sonnel to control the platform, and it is also a means
for the control module to carry out fine-grained
control over service instances during service oper-
ation.,emodule shall provide technical support for
the fault-tolerant policy configuration modification
module. After setting a series of cluster operations,
the fault-tolerant policy configuration modification
module realizes the configuration switching of the
platform through fine-grained configuration modi-
fication of service instances.

3.1.2. Basketball Microservice Monitoring Module. ,e
basketball microservice monitoring module is mainly to
provide the operation and maintenance personnel with the
service instances during the operation of the microservice
infrastructure platform and the status collection function of

the service operation node. In addition, it also includes the
subsequent summary of the collected data and the storage
management of the collected data. ,e main participants in
the platform are the operation and maintenance personnel
in the platform. ,e operation and maintenance personnel
shall collect the status of service instances and service nodes
running in the microservice infrastructure platform in the
form of HTTP interface through the monitoring module.
Different evaluation methods are provided for different
upper application services. ,e collected data will describe
the service instance, node, and cluster status with the cor-
responding evaluation formula. Finally, it is written into the
database through the data storage function to facilitate the
display function of the monitoring module for chart ag-
gregation display. ,e above monitoring modules will
eventually be provided to the operation and maintenance
personnel in the form of service components during de-
livery. ,e operation and maintenance personnel can start
the modules by command line startup according to the
functional requirements of the platform and complete the
collection, analysis, and storage of the platform through the
cooperation between modules.

(1) Node status collection: it enables the operation and
maintenance personnel to better observe the status of
the service node during the operation of the
microservice infrastructure platform, mainly in-
cluding the static information and dynamic infor-
mation of the server node.

(2) Service instance status collection: it is mainly per-
formed through the monitoring summary module
deployed by the server node.

(3) Monitoring data summary module: it is mainly to
collect data of nodes and service instances.

(4) Monitoring status viewing function: it is the part
related to the control module and the monitoring
module. ,e operation and maintenance personnel
locate the specific status viewing object through the
control module and display and aggregate the col-
lected data in the platform by calling the monitoring
data display module.

3.1.3. Basketball Microservice Fault Tolerance Module.
,e basketball microservice fault-tolerant module mainly
configures the fault-tolerant strategies of the cluster through
the operation and maintenance personnel and provides a
variety of fault-tolerant strategies to supplement the single
fault-tolerant means in the current microservice infra-
structure platform. On the original basis, routing fault-
tolerant means, service degradation means, and flow control
means are added to ensure the reliable operation ability of
the microservice infrastructure platform. ,e main func-
tions of the fault-tolerant module of basketball microservice
platform include adding routing fault-tolerant, service
degradation, flow control integration module, and cluster
fault-tolerant policy configuration. A variety of fault-toler-
ant strategies shall be provided to the microservice infra-
structure platform in the form of annotations and added to

Mobile Information Systems 5

the infrastructure platform. ,e control module shall
combine the cluster fault-tolerant configuration function in
the fault-tolerant configuration management module to
realize the fault-tolerant management in the highly available
microservice platform. Finally, all functions will automati-
cally operate in the form of an interceptor filter when the
service is started, provide support for the microservice in-
frastructure platform, and reduce the fault-tolerant control
cost of operation and maintenance personnel.

(1) Add fault-tolerance strategy: it mainly integrates the
components in the highly available microservice
platform into the microservice infrastructure plat-
form to provide protection means for the platform.

(2) Routing fault-tolerance strategy: it is mainly a means
to deal with the request exception, which makes it
impossible to obtain the correct result.,e exception
at the platform routing level can be solved through
the integration of the retry mechanism and subse-
quent processing.

(3) Service degradation strategy: it is proposed to pro-
vide three forced degradation, fault-tolerant degra-
dation, and elegant degradation schemes to degrade
individual abnormal services, hence not to affect the
business process of the whole platform and ensure
the availability of the platform in high concurrency
scenarios.

(4) Flow control strategy: it mainly deals with the un-
controllable scenario of high concurrency of the
microservice infrastructure platform. In the highly
available microservice platform, the platform’s
current limit plan is controlled through the gateway
and the platform’s internal services. ,rough the
current limit strategy, the platform can switch the
current limit level with one click, in such a way that
the operation and maintenance personnel can better
control the service access and ensure the reliability of
the platform.

(5) Fault-tolerance policy configuration function: it is
the core function of the microservice fault-tolerance
module. During the operation of the platform, a
series of operations of the control module are to
make advanced environmental preparations for
fault-tolerance policy configuration and provide
technical support for service fault-tolerance policy
configuration management. Users can realize plat-
form level fault-tolerant control and safe and reliable
operation of the platform through one click fault-
tolerant configuration and fault-tolerant strategy
selection.

3.2. Platform Nonfunctional Requirements. Nonfunctional
requirements refer to software platform features other than
specific behavioral requirements for the platform. ,e de-
velopment of the software platform itself finally needs to be
attributed to the application. ,e nonfunctional require-
ments need to consider that the software should be available
and easy to use on the server in addition to completing its

basic function points in practical application. ,erefore, the
nonfunctional requirements of the platform mainly include
the following aspects:

(1) Security: because the platform is developed in the
style of microservice architecture and the commu-
nication between all modules is called through the
interface, it needs high security. All requests with
permission requirements shall be verified without
unauthorized call. Users or IP with too high access
frequency shall be recorded, and there shall be
complete log records.

(2) High availability: the platform shall have high
availability. ,e failure of one node shall not affect
the operation of the whole platform. Redundancy
shall be provided for each service, and horizontal
clustering shall be carried out.

(3) Manageability: ensure that the deployment, moni-
toring, and optimization of the platform can be
tracked and visualized. ,e main service manage-
ment configuration, service monitoring and track-
ing, and service data statistics are managed with a
complete user interface, and the operation of the
whole platform can be understood at any time.

(4) Extensibility: the microservice platform framework
will include all functional modules, allowing devel-
opers to customize the content of the framework and
develop extended functional modules. ,e definition
of service interface maintains good compatibility
with old and new versions. Service deployment and
version upgrade should support a smooth transition.
,e deployment of services should support cluster
expansion.

4. Basketball Microservice Platform Design

4.1. Overall Architecture Design of Basketball Microservice
Platform. According to the requirements and boundaries of
the basketball sports microservice platform, the specific
modules included in the basketball sports microservice
platform can be derived: basketball sports microservice
monitoring module, basketball sports microservice fault-
tolerance module, basketball sports microservice manage-
ment and control module, and so on. It can be concluded
that the overall architecture of the basketball microservice
platform is as shown in Figure 3.

Figure 3 describes the overall architecture of the bas-
ketball microservice platform in the case of fine granularity.
,e relationship between each module in the basketball
microservice platform and the microservice infrastructure
platform is as follows:

(1) Microservice architecture is a favorable supplement
to the microservice infrastructure platform: in view
of the problems existing in the microservice infra-
structure platform, a microservice architecture is
added outside the microservice infrastructure plat-
form to provide management and control, fault
tolerance, monitoring, and other support for the

6 Mobile Information Systems

operation of the microservice infrastructure
platform.

(2) ,e basketball microservice monitoring module is
responsible for improving the monitoring in the
microservice infrastructure platform: the basketball
microservice monitoring module provides the col-
lection function of operation data for the micro-
service infrastructure platform. Based on the
collected data, the objects in the infrastructure
platform are evaluated, stored, and displayed per-
sistently, which provides a one-stop platform
monitoring capability for the services in the
microservice infrastructure platform.

(3) ,e basketball microservice fault-tolerant module is
responsible for improving the fault-tolerant means
of the microservice infrastructure platform: the
basketball microservice fault-tolerant module can
inject different components into the microservice
infrastructure platform, such as routing fault-toler-
ant component, service degradation component, and
flow control component. Fault-tolerant strategies
such as routing fault tolerance, service degradation,
and flow control are added to the microservice in-
frastructure platform through components. By in-
tegrating fault-tolerant policies and controlling them
with fault-tolerant policy configuration modules, the
dynamic switching and configuration of fault-tol-
erant policies in microservice infrastructure plat-
forms are realized.

(4) ,e basketball microservice management and con-
trol module is used to solve the inconvenience of

management and maintenance in the microservice
infrastructure platform: the basketball microservice
management and control module has the functions
of deployment, management, scheduling, and con-
figuration management of the microservice infra-
structure platform and stores various object data in
MySQL to ensure the controllable operation of the
platform [21]. In addition, the control module also
provides various interfaces to cooperate with the
monitoring module and fault-tolerant module to
realize the microservice architecture management of
the platform.

(5) Basketball microservice monitoring module, bas-
ketball microservice fault-tolerance module, and
basketball microservice control module are all
platform outputs: basketball microservice monitor-
ing module and basketball microservice control
module are mainly for platform operation and
maintenance personnel to help them improve their
work efficiency and reduce the management diffi-
culty of microservice infrastructure platform and the
actual operation of fault-tolerant policy management
and control. Basketball microservice fault-tolerant
module is mainly service-oriented developers, which
is provided to developers in the form of annotations
to reduce the development cost of developers and lay
the foundation for the configuration of fault-tolerant
strategy in the fault-tolerant module.

4.2. Functional Structure Design of Basketball Microservice
Platform. By analyzing the overall requirements and

Microservice infrastructure platform

Control, deployment and scheduling

Node acquisition component

Instance collection component

Monitor display components

Basketball micro service
monitoring module

Monitoring collection
summary module

Routing fault-tolerant
components

Service degradation
component

Flow control components

Basketball microservice
fault tolerance module

Fault tolerant policy
configuration module

Cluster
management

Node
management

Instance
management

Basketball micro service
management and control module

Migration scheduling
management

Service
management

Warehouse
management

Configuration
management

Data storage layer MYSQLDB

Persistence Persistence

Overall architecture of basketball microservice platform

Figure 3: Overall architecture of basketball microservice platform.

Mobile Information Systems 7

functional requirements of the basketball microservice
platform, we studied the monitoring, fault tolerance, and
control functions required by the platform in detail.
According to the specific requirements of eachmodule in the
basketball microservice platform, the overall functional
structure of the platform is designed and divided from the
perspective of the functional structure of the platform.
,e functional structure of the basketball microservice
platform is shown in Figure 4.

As can be seen from Figure 4, the basketball microservice
platform mainly includes three modules: basketball
microservice monitoring module, basketball microservice
fault-tolerance module, and basketball microservice man-
agement and control module. According to the results of
demand analysis, combined with the overall architecture of
the basketball microservice platform, the functions are
subdivided again.

,e basketball microservice monitoring module mainly
includes five core modules which are presented in Table 1.

,e basketball microservice fault-tolerance module
mainly includes two main functions:

(1) Fault-tolerant policy integration module: based on
the Spring Cloud framework, design and implement
the fault-tolerant policy integration module of bas-
ketball microservice platform. ,e fault-tolerant
integration module is embedded into the service
gateway and service consumers of the microservice
infrastructure platform to realize the expansion of
the microservice fault-tolerant strategy. ,e specific
expansion strategies include routing fault-tolerant
strategy, service degradation strategy, and flow
control strategy.

(2) Fault-tolerant policy configuration module: the
fault-tolerant configuration module is designed and
implemented based on the Spring Boot framework,
which is responsible for modifying the fault-tolerant
policy configuration of the services injected by the
microservice fault-tolerant policy integration mod-
ule. ,e control module provides a fault-tolerant
configuration scheme. After receiving the configu-
ration content of the control module, the fault-tol-
erant policy configuration module analyzes and
selects the gateway or service consumer in the
microservice infrastructure platform, fills in the
configuration content, and finally calls the config-
uration center in the microservice infrastructure
platform to write and refresh the configuration of the
corresponding instance.

,e basketball microservice management and control
module includes 9 main functions as shown in Table 2.

When the service instance in the cluster runs abnor-
mally, the monitoring module will alert the microservice
control module to call the service instance scheduling

module. ,rough the instance scheduling function, the
service instance will be reselected to migrate and deploy, in
order to achieve the automatic repair of the instance.

4.3. Platform Database Design. After giving the functional
structure of the platform, according to the monitored and
managed entity objects of the microservice architecture
infrastructure platform in the operation process, the relevant
attributes of each object are described, and the entity re-
lationship is determined according to the relationship table
designed by the microservice relationship specification as
shown in Table 3. ,e structure of each table in the database
is given, including various entity tables and relationship
information. ,e description of the table structure in the
platform is given in table form, including table name, type of
each field, primary and foreign keys, and notes.

5. Basketball Sports Microservice
Platform Application

5.1. SettingUp thePlatformTestEnvironment. In order to test
the effectiveness of the designed basketball sports micro-
service platform, through platform design requirements,
consider the deployment mode of the microservice archi-
tecture infrastructure platform and deploy multiple service
instances in multiservice nodes. Combined with the mutual
cooperation between services, complete the business func-
tions and processing procedures of the platform and deploy
the basketball microservice platform. Set the network en-
vironment as a laboratory LAN with a bandwidth of
100Mbps. ,eManager component is deployed in a node to
control the deployment of the platform. ,e MySQL da-
tabase runs on the server in the form of Docker contain-
erization. Other services include the microservice
infrastructure platform and the platform components in the
basketball microservice platform. ,e management and
control module data are stored uniformly by MySQL. Select
the number of 1000MB platform clients. ,e test indicators
are platform functionality, platform security, and platform
response time. ,e method in [4, 6] and the proposed
method are, respectively, compared to verify the perfor-
mance of the proposed method design platform.

5.2. PlatformFunctionalTestResults. ,e functional test is to
verify each function of the platform according to the
characteristics and operation description of the platform and
judge whether the platform can meet the design require-
ments. Functional testing is also called black box testing or
data-driven testing. It only needs to consider the platform
functions to be tested and does not need to consider the
internal structure and code implementation of the platform.
According to the functional modules determined in the
requirement analysis, functional tests are carried out,

8 Mobile Information Systems

Basketball micro service
fault tolerance module

Functional structure of basketball
microservice platform

Monitoring data storage

Monitoring data display

Fault tolerant policy
integration

Fault tolerance strategy
configuration

Service warehouse
management

Service instance
collection

Server node collection

Monitoring data
summary

Basketball micro service
monitoring module

Service deployment
management

Basketball micro service
management and control

module

User management

Cluster management

Node management

Service management

Service instance
management

Configuration
management

Service instance
scheduling

Figure 4: Functional structure diagram of basketball microservice platform.

Table 1: Basketball microservice monitoring core modules.

1 Service instance collection
module

Based on the Spring Boot framework design, the collection module of the service instance running status
in the microservice infrastructure platform is finally integrated into the platform service instance

2 Server node collection
module

Based on the Spring Boot framework design, it realizes the collection service of the operating state of the
service node, the basic environment for the operation of the microservice infrastructure platform

3 Monitoring summary
module

It is integrated in the service node collection module to collect, analyze, summarize, and evaluate the
status information of service instances and service nodes

4 Monitoring data storage
module

A module based on the JPA framework to design and implement the persistence of the collected data and
realize the persistent storage of the monitoring data by cooperating with the monitoring summary

module

5 Monitoring display module
It provides the cluster operation and maintenance status viewing function for the operation and

maintenance personnel. ,e user calls the monitoring display module through the control module to
view the status of each object in the cluster

Mobile Information Systems 9

Table 3: Microservice relationship specification.

1 User table Mainly used to store user information, including user password, permission, logical deletion, and other
fields

2 Cluster table

It mainly stores the cluster information, defines the cluster through the cluster name and description
information, displays the operation status of the cluster through the status information, determines the
location of the configuration center in the cluster through the configuration path, and provides the logical

deletion field to provide the logical deletion function for the platform

3 User cluster table An intermediate table generated by the many-to-many relationship between users and clusters. It is used to
store the relationship between users and clusters

4 Node table
It is mainly used to store the basic information of the node, which is the hosting object of the service
instance running in the platform, including the node status and the cluster to which the node belongs, and

realize the logical deletion of the node through the node status

5 Node resource table

It mainly relies on the existence of the node table. Because of the one-to-one relationship with the node
table, the primary key of the node table is used as its own primary key and the immutable basic information
in the node is stored, including the CPU number of cores, memory size, hard disk usage, and name and

version of the operating platform

6 Node dynamic resource
table

Mainly used to store the platform’s collection information on the running status of the server node, collect
the running status of the node at a preset timing, and evaluate the running quality of the node after the

resource

7 Service table It mainly stores the service information that can be run in the platform, filters abnormal services, and
serves subsequent instances

8 Cluster service table Used to associate services with clusters. A service can also be used by multiple clusters; thus, it exists as an
intermediate table

9 Service instance table Because services run in the form of service instances in the cluster, the instance table mainly stores the
basic information held by the running services

10 Instance resource table It has the same meaning as the node resource table and has a one-to-one relationship with the service
instance. It is used to store the environment information of service operation

11 Service dynamic resource
table

Used to store the running information of the service instance, including the dynamic running status of the
service instance. In addition, its specific quality evaluation value is also stored

12 Warehouse table

It is mainly used to store the information of the warehouse where the project files of the service are located,
which is convenient for the automatic deployment and use of the platform. It contains information such as
the deployment type, the username and password of the server node where the warehouse is located, the

address, and the path

Table 2: Basketball microservice management and control module.

1 Service warehouse
management

Operation and maintenance personnel configure the warehouse address of service files required for
cluster deployment through service warehouse management and manage the service version in the

warehouse

2 Service deployment
management

Provide a one click cluster service deployment function for operation and maintenance personnel and
automatically deploy the platform after obtaining the deployment services and service scale required by

users

3 User management Manage users in the control module, i.e., operation and maintenance personnel, mainly including
registration and login functions to assist subsequent operations

4 Cluster management Provides users with cluster management capabilities. Users can create, delete, modify, and query clusters
through the control module interface

5 Node management It provides users with the management capability of server nodes. Users can join the cluster, remove,
modify, query, and explore the server nodes through the control module interface

6 Service management
It provides the operation and maintenance personnel with the management ability of services in the
cluster. ,e operation and maintenance personnel control the service table through the control module
interface and add services through the cluster warehouse to provide deployable services for the cluster

7 Service instance
management

It provides operation andmaintenance personnel with the ability tomanage service deployment instances
in the cluster. Users can deploy, modify, close, delete, and view service instances through the control

module interface

8 Configuration management Provides users with the ability to configure and manage service instances. Users can view, modify, and
delete specific service instances running in the cluster through the control module interface

9 Service instance scheduling It provides users with service instance scheduling capability

10 Mobile Information Systems

respectively. First, functional test cases are designed, and
then the corresponding test cases are executed to verify
whether the functions realized by each module can meet the
requirements. ,e methods of [4, 6] and the proposed
methods are compared to verify the functional test results of
the platform designed by different methods, as shown in
Table 4.

According to Table 4, the basketball microservice
monitoring module and basketball microservice control
module of the platform designed by the method [4] are in
normal state, but the basketball microservice fault-tolerant
module of the platform designed by the method in [4] is
abnormal.,e basketball microservice fault-tolerant module
of the platform designed by the method in [6] is in normal
state, but the basketball microservice monitoring module
and basketball microservice control module of the platform
designed by the method in [6] are abnormal. All functional
modules of the proposed design platform are in normal state.
It can be seen that the proposed method has good
functionality.

5.3. Platform Security Test Results. On this basis, the security
of the platform designed by the proposed method is further
tested and the proportion of platform bugs is taken as the
platform security evaluation index.,e lower the proportion
of the number of platform bugs, the less the vulnerabilities of
the method design platform and the higher the security of
the platform. We have compared the methods of [4, 6] and
the proposedmethods, respectively, to verify the security test
results of different design platforms, as shown in Figure 5.

As can be seen from Figure 5, with the increase of it-
eration times, the number and proportion of bugs on dif-
ferent design platforms increase. Among them, when the
number of iterations reaches 500, the number of bugs of the
design platform based on the method in [4] accounts for 2%
and the number of bugs of the design platform based on the
method in [6] accounts for 2.38%, while the number of bugs
of the design platform based on the proposed method ac-
counts for only 0.8%. It can be seen that the number of bugs
of the proposed method design platform is relatively low,
indicating that the proposed method design platform has
fewer vulnerabilities and higher platform security.

5.4. Platform Response Time Test Results. ,e response time
of the platform designed by the proposed method is further
verified. ,e method in [4, 6] and the proposed method,
respectively, are compared to verify the response time of the
platform designed by different methods. ,e test results are
shown in Figure 6.

As can be seen from Figure 6, with the increase of the
number of platform clients, the response time of platforms
designed by different methods increases. When the number
of platform clients reaches 1000mb, the response time of the
platform designed by the method in [4] is 25.2 s and the
response time of the platform designed by the method in [6]
is 36.8 s, while the response time of the platform designed by
the proposed method is only 15 s. ,erefore, the response
time of the proposed design platform is short.

Pe
rc

en
ta

ge
 o

f p
la

tfo
rm

 b
ug

s (
%

)

200 300 400 500100
Number of iterations (time)

0

1

2

3

4

5

Reference [4] method
Reference [6] method

The proposed method

Figure 5: Security test results of different method design platforms.

Pl
at

fo
rm

 re
sp

on
se

 ti
m

e (
s)

0

10

20

30

40

50

400 600 800 1000200
Number of platform clients (MB)

Reference [4] method
Reference [6] method

The proposed method

Figure 6: Response time test results of different method design
platforms.

Table 4: Functional test results of different method design platforms.

Functional module ,e proposed method ,e method of [4] ,e method of [6]
Basketball microservice monitoring module Normal Normal Abnormal
Basketball microservice fault-tolerance module Normal Abnormal Normal
Basketball microservice management and control module Normal Normal Abnormal

Mobile Information Systems 11

6. Conclusion

,e basketball microservice platform designed in the pro-
posed study gives full play to the advantages of microservice
architecture. ,is basketball microservice platform has good
functionality and can effectively improve the security and
response time of the platform. ,e response time of the
proposed design platform is reduced. However, in the
basketball microservice platform, when the scale of service
instances deployed by service nodes is too large, the mon-
itoring summary module still occupies too many resources
without considering.

In future, we aim to work with more platform clients/
MB. Second, the monitoring and acquisition architecture
needs to be further improved and the storage can be opti-
mized or stored using a time series database and NoSQL
database.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare no conflicts of interest.

References

[1] C. K. Rudrabhatla, “Security Design Patterns in Distributed
Microservice Architecture,” Article ID 03395, 2020, https://
arxiv.org/abs/2008.03395.

[2] A. Avritzer, V. Ferme, A. Janes et al., “Scalability assessment of
microservice architecture deployment configurations: a do-
main-based approach leveraging operational profiles and load
tests,” Journal of Systems and Software, vol. 165, no. 9, Article
ID 110564, 2020.

[3] H. Wu and L. Wang, “Analysis of lower limb high-risk injury
factors of patellar tendon enthesis of basketball players based
on deep learning and big data,” 2e Journal of Super-
computing, vol. 78, no. 3, pp. 4467–4486, 2021.

[4] N. N. Zhang, “Research on task driven basketball teaching
mode based on ITbegin cloud platform,” Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Tele-
communications Engineering, vol. 327, pp. 92–104, 2020.

[5] N. N. Zhang, “Research on task driven basketball teaching
mode based on ITbegin cloud platform,” in Proceedings of the
International Conference on Multimedia Technology And
Enhanced Learning, pp. 92–104, Leicester, UK, April 2020.

[6] L. Huang, C. Zhang, and Z. Zeng, “Design of a public services
platform for university management based on microservice
architecture,” Microsystem Technologies, vol. 27, no. 4,
pp. 1693–1698, 2021.

[7] K. Yin andQ. Du, “On representing resilience requirements of
microservice architecture systems,” International Journal of
Software Engineering and Knowledge Engineering, vol. 31,
no. 6, pp. 863–888, 2021.

[8] E. Al-Masri, “Enhancing the microservices architecture for
the internet of things,” in Proceedings of the 2018 IEEE In-
ternational Conference on Big Data (Big Data), pp. 5119–5125,
IEEE, Seattle, WA, USA, 10-13 December, 2018.

[9] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual un-
derstanding of microservice architecture,” ACM SIGAPP -
Applied Computing Review, vol. 17, no. 4, pp. 29–45, 2018.

[10] D. Taibi and K. Systä, “A decomposition and metric-based
evaluation framework for microservices,” in Communications
in Computer and Information Science, International Confer-
ence on Cloud Computing And Services Science, pp. 133–149,
Springer, Cham, 2020.

[11] K. Kravari and N. Bassiliades, “StoRM: a social agent-based
trust model for the internet of things adopting microservice
architecture,” Simulation Modelling Practice and 2eory,
vol. 94, pp. 286–302, 2019.

[12] X. Zhou, X. Peng, T. Xie et al., “Fault analysis and debugging
of microservice systems: industrial survey, benchmark system,
and empirical study,” IEEE Transactions on Software Engi-
neering, vol. 47, no. 2, pp. 243–260, 2021.

[13] F. Zhiyong, X. Yanwei, X. Xiao, and C. Shizhan, “Review on
the development of microservice architecture,” Journal of
Computer Research and Development, vol. 57, no. 5, p. 1103,
2020.

[14] N. Okumura, K. Ogata, and Y. Shinoda, “Formal analysis of
RFC 8120 authentication protocol for HTTP under different
assumptions,” Journal of Information Security and Applica-
tions, vol. 53, Article ID 102529, 2020.

[15] A. Ginanjar and M. Hendayun, “Spring framework reliability
investigation against database bridging layer using Java
platform,” Procedia Computer Science, vol. 161, pp. 1036–
1045, 2019.

[16] R. Bucea-Manea-Oni and R. Bucea-Manea-Oni, “How to
design a web survey using spring boot with mysql: a Ro-
manian network case study,” vol. 17, no. 2, Article ID 26458,
2019.

[17] H. Guo, Z. Xu, and G. Chen, “Design and implementation of
microservice in immigration system based on spring cloud,”
China Computer & Communication, vol. 14, pp. 63–65, 2019.

[18] M. Zhang, B. Marculescu, and A. Arcuri, “Resource and
dependency based test case generation for RESTful Web
services,” Empirical Software Engineering, vol. 26, no. 4, p. 76,
2021.

[19] Y. Feng, “Gradient feature extraction of landscape spatial
pattern based on vega,” Computer Simulation, vol. 37, no. 11,
pp. 366–370, 2020.

[20] L. Wang, J. Li, and B. Li, “Tracking runtime concurrent de-
pendences in Java threads using thread control profiling,”
Journal of Systems and Software, vol. 148, pp. 116–131, 2019.

[21] A. B. Manduri, A. Ghani, S. Shamshirband, and
A. T. Chronopoulos, “Optimizing infrastructure as a service
provider revenue through customer satisfaction and efficient
resource provisioning in cloud computing,” IET Communi-
cations, vol. 13, no. 18, pp. 2913–2922, 2019.

12 Mobile Information Systems

https://arxiv.org/abs/2008.03395
https://arxiv.org/abs/2008.03395

