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RGB-IR cross-modality person re-identi�cation (ReID) can be seen as a multicamera retrieval problem that aims to match
pedestrian images captured by visible and infrared cameras. Most of the existing methods focus on reducing modality di�erences
through feature representation learning. However, they ignore the huge di�erence in pixel space between the two modalities.
Unlike these methods, we utilize the pixel and feature alignment network (PFANet) to reduce modal di�erences in pixel space
while aligning features in feature space in this paper. Our model contains three components, including a feature extractor, a
generator, and a joint discriminator. Like previous methods, the generator and the joint discriminator are used to generate high-
quality cross-modality images; however, we make substantial improvements to the feature extraction module. Firstly, we fuse
batch normalization and global attention (BNG) which can pay attention to channel information while conducting information
interaction between channels and spaces. Secondly, to alleviate the modal di�erence in feature space, we propose the modal
mitigation module (MMM). �en, by jointly training the entire model, our model is able to not only mitigate the cross-modality
and intramodality variations but also learn identity-consistent features. Finally, extensive experimental results show that our
model outperforms other methods. On the SYSU-MM01 dataset, our model achieves a rank-1 accuracy of 40.83% and an mAP
of 39.84%.

1. Introduction

Person ReID can be viewed as a cross-camera image retrieval
problem, which aims at matching individual pedestrian
images in a query set to ones in a gallery set captured by
di�erent cameras. Its main challenge lies in the interclass
and intraclass variations caused by di�erent lighting, poses,
occlusions, and views. Most existing methods [1–5] mainly
focus on matching RGB images captured by visible cameras,
which can be formulated as an image matching problem
under a single modality. However, these methods cannot be
applied to images taken in poor lighting conditions, because
the visible camera cannot capture pictures with discrimi-
native features. However, in practical application scenarios,
the camera should ensure all-weather operation.

Since the visible camera has limited e�ect on the security
work at night, the camera that can switch the infrared mode
is being widely used in the intelligent monitoring system. In
visible mode and infrared mode, RGB images and infrared
images are collected, respectively, which belong to two
di�erent modalities. RGB images have three channels but IR
images have only one channel, so the ReID problem in a
cross-modality setting becomes extremely challenging,
which is essentially a cross-channel retrieval problem. First,
infrared images of di�erent identities are di¤cult to dis-
tinguish but are easy to distinguish in visible images. In
addition, the same person varies greatly in di�erent mo-
dalities. It is known as modality discrepancy.

To address visible-infrared person ReID, several ap-
proaches [6–10] have been proposed, aiming to mitigate
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modal differences by aligning features or pixel distributions.
Feature alignment methods [6, 8, 10] mainly focus on
bridging the gap between RGB and IR images through
features. It is difficult to match RGB and IR images in a
shared space due to large cross-modality differences between
the two modalities. Different from existing methods that
directly match RGB and IR images, we use generative
adversarial networks to generate fake IR images based on
real RGB images and then match the generated images
through a feature alignment network. )e generated fake IR
images are used to reduce the modality difference between
the RGB and IR images. Although the generated fake IR
images are very similar to real images, there are still
intraclass differences due to pose variations, viewpoint
changes, and occlusions.

Inspired by the above discussion, in this paper, we
propose a pixel and feature alignment network (PFANet)
that simultaneously mitigates cross-modality differences in
pixel space and intramodality variation in feature space. As
shown in Figure 1, to reduce themodal difference, we apply a
generator (GI) to generate fake IR images. )en, to alleviate
the intramodality variation, a feature extraction module (F)
is designed to encode fake and real IR images into a shared
feature space by exploiting identity-based classification and
triplet loss. )e batch normalization and global (BNG) at-
tention is added to the feature extraction network (F), which
can make the network learn which channel is more im-
portant as well as can interact between channels and spaces.
Furthermore, to mitigate the modal difference in the feature
space, a modal mitigation module (MMM) is proposed,
which can significantly mitigate the difference between the
two modalities. Finally, to learn identity-consistent recog-
nition, a joint discriminator (D) is utilized. Its input is an
image-feature pair.

)emajor contributions of this work can be summarized
as follows:

(i) We propose a generative adversarial network to
generate cross-modality images that alleviated
modal differences in pixel space.)is model consists
of a generator and a joint discriminator, by playing a

max-min game, our model is able to not only reduce
the cross-modality and intramodality variations but
also learn identity-consistent features.

(ii) We design a batch normalization and global (BNG)
attention, which consists of channel attention and
global attention. In the channel attention, we
measure the importance of each channel by ap-
plying the scale factor of BN to the channel di-
mension and suppressing insignificant features. As
for the global attention module, it can reduce in-
formation attenuation and amplify the features of
global dimension interaction.

(iii) We apply a modal mitigation module (MMM) to
mitigate the modal distribution. )e instance nor-
malization (IN) is utilized to mitigate modal dif-
ferences on a single instance. Moreover, the channel
attention is used to guide the learning of IN, which
can mitigate modal differences while preserving
identity information.

2. Related Works

2.1. RGB-IR Person ReID. RGB-IR cross-modality person
ReID can be seen as a multicamera retrieval problem that
aims to match pedestrian images captured by visible and
infrared cameras, which are widely used in video surveil-
lance, public security, and smart cities. Compared with
RGB-RGB single-modality person ReID which only deals
with RGB images, the key challenge in this work is to
mitigate the large differences between the two modalities. To
address the challenge caused by differences in modality
distributions, a variety of approaches to cross-modality
person re-identification have been proposed. Some early
work focused on solving the channel mismatch between
RGB images and IR images, due to RGB images having three
channels. In contrast, IR images have only one channel. Wu
et al. [10] proposed a deep zero-padding network and
contributed a new ReID dataset SYSU-MM01. In [11], a
dual-path network with a bi-directional dual-constrained
top-ranking loss was introduced to learnmodality alignment
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Figure 1: Framework of the proposed model. It consists of an image generation module (G), a joint discriminator module (D), and a feature
extraction module (F). )e G can generate fake IR images Xir

′ to mitigate the cross-modality variation, and the F can alleviate the
intramodality variation. )e F module contains ResNet-50 and BNG attention and MMMmodule. )e BNG module can focus on channel
and spatial information, and the MMM module can reduce modality differences.
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feature representations for RGB-IR ReID. Feng et al. [12]
proposed a framework for solving heterogeneous matching
problems using modality-specific networks. Ye et al. [13]
proposed a dual-stream network with feature learning and
metric learning to convert two heterogeneous modalities
into a consistent space where the modalities share a metric.
Dai et al. [6] introduced a cross-modality generative
adversarial network (cmGAN) to reduce the distribution
differences between RGB and IR features. Most of the above
approaches mostly focus on reducing intermodality differ-
ences by feature alignment, while ignoring the large cross-
modality differences in pixel space.

Unlike these approaches, the proposed model in this
paper is able to combine feature alignment and pixel
alignment, effectively reducing intramodality and cross-
modality variations. By training the model, the model is able
to learn identity consistency features.

2.2. GAN in Person ReID. A generative adversarial network
(GAN) consists of a generator and a discriminator, using the
idea of game theory, where the generator tries to generate an
image to deceive the discriminator, and the discriminator
tries to discriminate whether the image is real or generated.
)roughmultiple adversarial training, generative adversarial
networks are able to learn deep representations of data in a
self-supervised manner. GAN can generate high-quality
images, perform image enhancement, generate images from
text, and convert images from one domain to another
[14, 15]. GAN was first proposed in 2014’s [16]. After that,
researchers have proposed a variety of task-specific GAN
structures, such as CycleGAN [14], Pix2Pix [17], and
StarGAN [15]. )ere are many works in the field of pe-
destrian re-identification that also apply GAN to improve
accuracy. Li et al. [18] proposed a network that allows
querying images of different resolutions to process cross-
resolution person ReID.Wang et al. [19] designed an end-to-
end alignment generative adversarial network (AlignGAN)
for the RGB-IR ReID task. JSIA-ReID [20] implemented a
two-layer alignment of pixels and features in a unified GAN
framework.

In our work, we apply GAN to generate cross-modality
images that mitigate modal differences between RGB-IR
image data in pixel space.

2.3. AttentionMechanisms. )ere is an important feature in
the human visual system that allows people to selectively
focus on things of interest in order to capture valuable
information. Inspired by the human visual system, many
works have attempted to employ attention mechanisms to
improve the performance of CNNs.

Attention mechanisms enable the network to focus on
areas of interest to the human body and better extract useful
information. SENet [21]integrated spatial information into
the channel-level feature responses and computed the
corresponding attention with two MLP layers. Later, bot-
tleneck attention module (BAM) [22] built independent
space and channel submodules in parallel and embedded
them into each bottleneck block. Considering the

relationship between any two positions of the feature map,
nonlocal feature attention [23] was proposed to capture the
relationship between them. )e convolution block attention
module (CBAM) [24] sequentially cascaded channel at-
tention and spatial attention. However, these works ignored
the information about the weights adjusted from the
training; therefore, we wanted to highlight the significant
features by using the variance of the trained model weights,
which also was able to amplify cross-dimensional interac-
tions and captured important features of all three dimen-
sions. We propose new attention (BNG) to solve the above
problem. Amodal mitigation module (MMM) is designed to
mitigate the modal distribution, using channel attention to
guide the learning of instance normalization (IN) for
mitigating modal differences while preserving identity
information.

3. The Proposed Method

In this part, we introduce the proposed PFANet in detail.
Our network will be presented in the following three parts,
including (1) RGB-IR images generation module, (2) BNG
attention module, and (3) modal mitigation module. To
reduce cross-modality variation, we apply generative
adversarial networks to convert RGB images to fake IR
images, which have IR style while maintaining their original
identity.

)en, the features of the two modalities are extracted for
feature alignment. )e BNG attention is designed to make
the network focus on channel and spatial information. In
addition, the modal mitigation module (MMM) is proposed
to mitigate the differences between the two modalities. )e
main output of the PFAnet during testing is the feature for
person ReID.

3.1. RGB-IR Images Generation Module. )ere is a large
cross-modality difference between RGB and IR images,
which significantly increases the difficulty of the task of
cross-modality pedestrian re-identification. To reduce cross-
modality variation, we apply generative adversarial networks
to convert RGB images Xrgb to fake IR images Xir

′ , which has
IR style while maintaining their original identities. )e
generated fake IR image Xir

′ can mitigate the modality
differences between RGB and IR images. )e module
consists of a generator GI that generates a fake IR image
from an RGB image and a joint discriminator DI that
discriminates whether the image is a real image or a gen-
erated image. )e input of the generator is the real images
Xrgb, and its output is the fake IR images Xir

′ � GI(Xrgb).
)e input of the discriminator is the generated fake IR image
Xir
′ ; if the image is real, its output is one, and if the image is

the generated image, the output is zero. )e goal of the
generator is to make the generated image as similar as
possible to the real image, and the goal of the discriminator is
to discriminate as much as possible whether the input image
is real or generated. Unlike ordinary discriminators, the
input to our discriminator is a pair of IR images and ReID
feature maps.)e generator and discriminator play the min-
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max game as [16], and the modal can make the fake IR image
Xir
′ as realistic as possible.
)e adversarial loss for generating IR images is defined

as follows:
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Among them, fXir

map,R is the extracted image feature of Xir

and f
Xir
′

map,R is the extracted image feature of generated image
Xir
′ . Equation (1) is used to train the generator model; after

the constraint of the loss function, the generator will gen-
erate a more realistic IR image. Equations (3) and (4) are
used to train the discriminator, which differs from tradi-
tional discriminators in that the input is a pair of image
features. It has two advantages, firstly, the fake IR image Xir

′
will be closer to the real IR image Xir through the max-min
game [16], and the distribution of the features f

Xir
′

map,R of the
fake IR image will be more similar to the real image features
f

Xir

map,R. Secondly, f
Xir
′

map,R is able to maintain the identity-
consistency by the corresponding image Xir

′ constraint.
Although LGI

loss can ensure that the fake IR image Xir
′

resembles the real IR image Xir, there is no guarantee that
the generated fake IR images retain the structure and content
of the original RGB images Xrgb. To deal with this problem,
we introduce a generator GR for generating IR images into
RGB images and the corresponding discriminator DR. Also
we introduce cycle-consistency loss which is defined as
follows:

Lcyc � E GR GI Xrgb   − Xrgb

�����

�����1
 

+ E GI GR Xir( (  − Xir

����
����1 .

(6)

Lcyc loss enables the GI generated IR image to be
consistent with the input real RGB image. We use the L1
norm instead of the L2 norm because the L1 norm allows the
generator to generate better image edges. Specifically, we
input the real RGB image Xrgb into the generator GI to
generate the fake IR image Xir

′ and then use the generator GR

to generate the reconstructed RGB image from the fake IR
image. We do something similar with IR images.

Now, the loss of the generator can be defined as follows:

LG � LGI
+ ω∗Lcyc, (7)

whereω is the weight of cycle loss and ω is set to 10 as in [14].
By using this loss during adversarial training, we can gen-
erate high-quality IR images.

3.2. -e BNG Attention Module. Our proposed BNG at-
tention is an efficient and lightweight attention mechanism.
)e BNG attention can be embedded at the end of any
convolutional neural network, for the residual network
ResNet-50; the end of the residual structure can be em-
bedded. )e structure of BNG is shown in Figure 2.

BNG attention consists of two submodules, as shown in
Figure 2(a); the channel attention submodule can use the
weight information of the trained model to highlight salient
features. We obtain its scale factor from batch normalized
(BN [25]) as shown in

Bout � BN Bin(  � c
Bin − μB������

σ2B + ϵ
 + β, (8)

where μB and σB are the mean and standard deviation of
mini batchB and c and β are the trainable parameters used
to fit the data distribution.

)e formula for channel attention can be expressed as
follows:

F1 � sigmoid Wc(BN(F)) , (9)

where c is the scale factor for each channel, and the weights
are obtained as Wc � ci/j�0cj. Wemeasure the importance
of each channel by applying the scale factor of BN to the
channel dimension and suppressing insignificant features.
Since channel attention only focuses on channel informa-
tion, there is no global space-channel information interac-
tion; to solve this problem, we design a global attention
module. It can reduce information attenuation and amplify
the features of global dimension interaction. Inspired by
CBAM [24], the channel attention and spatial attention are
connected in turn. )e main structure is shown in
Figure 2(b). Given the input feature map F1 ∈ RC×H×W, the
intermediate state F2 and output F3 are defined as follows:

F2 � Mc F1( ⊗ F1,

F3 � Ms F2( ⊗ F2,
(10)

where Mc and Ms are the channel and spatial attention
maps, respectively. ⊗ denotes element-wise multiplication.

)e channel attention submodule uses a 3D arrangement
to preserve information across three dimensions and then
uses a two-layer MLP layer that amplifies the channel spatial
dependencies across dimensions. )e channel attention
submodule is illustrated in Figure 3.

In the spatial attention submodule, to focus on the
spatial information, two convolutional layers are used to fuse
the spatial information. )e size of the convolution kernel is
set to 7∗ 7. Since max-pooling reduces information and has
a negative influence, we remove the max-pooling operation
to retain more features. )e same reduction ratio c is
adopted from the channel attention submodule, same as
BAM. )e spatial attention submodule without group
convolution is shown in Figure 4.

3.3. Modal Mitigation Module (MMM). To mitigate the
modal distribution, a modal mitigation module (MMM) is
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designed. For the input image X, we denote the features
extracted in the convolution block as M ∈ Rh×w×c and input
it into the MMM, where h, w, an d c represent the height,
width, and a number of channels of the feature map M,
respectively. )e instance normalization (IN) is used to
mitigate modal differences on a single instance [27]. Instance
normalization (IN) computes the mean and variance in a
single instance and reduces the difference between the two
data distributions. However, using IN directly may has a
negative impact on the ReID task. Because the distribution of
image data has changed significantly, some identifying in-
formation may be lost.

To overcome these shortcomings, we use channel at-
tention to guide the learning of IN, which mitigates modal
differences while preserving identity information. Specifi-
cally, we input the feature into a two-layer MLP to down-
sample the channels and then upsample to the original
number of channels and use the activate function to activate
the feature as a mask to supervise the IN operation:

F � mC ⊙M + 1 − mC( ⊙ M, (11)

where mC is the channel mask, representing the identity-
related channels, and M is the instance-normalized result of
the input M.

Similar to SENet [21], the method of generating a mask
with channel dimension can be expressed as follows:

mC � σ W2δ W1g(M)( ( , (12)

whereW1 ∈ Rc/r×c andW2 ∈ Rc×c/r are learnable parameters
in the two bias-free fully connected (FC) layers, which are
followed by ReLU activation function δ(·) and sigmoid
activation function σ(·). g(·) denotes global average pooling
of features. In order to balance performance and reduce the
number of parameters, the downsampling ratio is set to
r � 16.

)e formula for instance normalization is defined as
follows:

Mj � IN Mj  �
Mj − E Mj 
�����������
Var Mj  + ϵ

 , (13)

where E[·] is to calculate the mean of each dimension and
Var[·] is to calculate the standard deviation of each di-
mension. To avoid dividing by zero, we add ϵ to the de-
nominator, and Mj ∈ Rh×w is the j-th dimension of the
feature map M.

3.4. Loss Function. In this section, we will introduce the loss
we used when training the generator to generate a fake IR
image Xir

′ . On the one hand, Xir
′ should be classified to the

same identity class as the corresponding Xrgb; on the other
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hand, Xir
′ should satisfy the triplet loss [28] of the corre-

sponding Xrgb identity constraint. We define these two
losses as Lgan

cls and L
gan
tri and denote them in

L
gan

cls � Lcls Xir
′(  � Ex∈Xir

′[−logp(x)],

L
gan

tri �
1
2

Ltri Xir
′ , Xir, Xir(  + Ltri Xir, Xir

′ , Xir
′(  ,

(14)

where p(·) is the predicted probability of belonging to the
ground-truth identity; the ground-truth identity of the fake
IR image Xir

′ should be the same as that of the original RGB
image Xrgb.

Although the generated image Xir can reduce cross-
modality differences, there are still large intramodality
differences caused by lighting, human pose, and view. We
minimize the fake IR imageXir

′ and the real IR imageXir in a
shared space via identity-based classification and triplet loss.
We define these two losses as Lfeat

cls and L
feat

tri and denote
them in

L
feat

cls � Lcls Xir ∪Xir
′(  � Ex∈Xir∪Xir

′[−logp(x)],

L
feat
tri � Ltri Xir, Xir

′ , Xir
′(  + Ltri Xir

′ , XirXir( ,
(15)

where p(·) represents the predicted probability that the
input belongs to the ground-truth identity, and ∪ means the
union sets. In summary, the overall loss of our module is
shown in

LReID � λ1LG + λ2LDI
+ λ3L

gan

cls + λ4L
gan
tri

+ λ5L
feat

cls + λ6L
feat
tri ,

(16)

whereLG and LDI
are calculated by equations (1) and (2).

L
gan

cls , Lgan
tri , L

feat

cls , and L
feat
tri are calculated by equations

(14) and (15), respectively. Among them, λ1 � 1.0, λ2 � 1.0,
λ3 � 0.1, λ4 � 0.1, λ5 � 1.0, and λ6 � 1.0 .

4. Experiments

4.1. Datasets and Settings. We evaluate our model on SYSU-
MM01 [10]. SYSU-MM01 is a very popular RGB-IR ReID
dataset; it contains pedestrian images captured by six
cameras, including two infrared cameras (camera3 and
camera6), and four natural light cameras (camera1, camera2,
camera4, and camera5). For each pedestrian, there are at
least 400 RGB images and IR images with different poses and
viewpoints. Among them, 296 IDs are used for training, 99
IDs are used for verification, and 96 IDs are used for testing.
Following [29], there are two test modes, i.e., all-search
mode and indoor-search mode. For the all-search mode, all
images are used. For the indoor-search mode, only use
indoor images from 1st, 2nd, 3rd, and 6th cameras. Both
modes employ single-shot and multishot settings, in which 1
or 10 images of a person are randomly selected to form a
gallery setting. Both modes use IR images as probe sets and
RGB images as gallery sets.

Evaluation protocols: we use cumulative matching fea-
tures (CMC) and mean average precision (mAP) as evalu-
ation metrics. Following [29], the results of SYSU-MM01 are

evaluated using the official code based on the mean of 10
repeated random splits of the gallery and probe set.

Implementation details: we use the ResNet-50 [30]
pretrained on ImageNet as the CNN backbone, use the
output of its pool5 layer as the feature map M, and use the
average pooling to obtain the feature vector V. We add
BNG-attention to each layer of residual blocks in ResNet-50
and MMM module after the third and fourth layers. For
triplet loss, we use the FC layer to map the feature vector V
into a 256-dimensional embedding vector. For classification
loss, the classifier takes the feature vector V as input and
includes a 256-dim fully connected (FC) layer, followed by
batch normalization [25], dropout, and RELU as the middle
layer, and an FC layer with the identity number logit as the
output layer. )e dropout rate is set at 0.5. We use PyTorch
to implement the model, the images are data augmented by
horizontal flipping, and the batch size is set to 72 (9 people,
each of which has 4 RGB images and 4 IR images). For the
learning rate, the learning rate of the generation module and
discriminator module is set to 0.0002 and optimized using
the Adam optimizer. We set the classifier and the embedder
to 0.2 and the CNN backbone to 0.02 and optimize them by
SGD.

4.2. Comparison with the Other Methods. In this section, we
compare our method with several different cross-modality
person ReID methods including the following methods: (1)
with different structures and loss functions, two-stream [10],
one-stream [10], zero-padding [10], BCTR [13], BDTR [13],
D-HSME [26], and DGD+MSR [12] learned modality-in-
variant features and align them in feature space and (2)
cmGAN [6] and JSIA [20] use the generative adversarial
networks (GANs) to generate cross-modality IR images; they
mitigate modal differences in pixel space. )e experimental
results are shown in Table 1.

In Table 1, we can find that there are various evaluation
protocols, i.e., all-search/indoor-search and single-shot/
multishot; firstly, for the same method, indoor-search per-
forms better than all-search, because the images have less
background variation in indoormode, andmatching is easier.
Secondly, the rank scores of single-shot are lower than ones of
multi-shot, butmAPscores of single-shot arehigher thanones
of multishot.)is is because, in multishot mode, there are ten
images in the gallery setting, while in single-shot, there is only
one image. As a consequence, under the multishot mode, it is
much easier to hit an image but difficult to hit all images.)is
situation is inverse under the single-shot mode.

)e R1, R10, and R20 denote Rank-1, Rank-10, and
Rank-20 accuracy (%). )e mAP denotes the mean average
precision score (%), and our model shows good perfor-
mance. Compared with JSIA, our model achieves over 2.7%
on Rank-1 and 2.49% on mAP in the single-shot setting of
all-search mode. In the single-shot setting of indoor-search
mode, our model achieves a rank-1 accuracy of 44.0% and an
mAP of 52.96%. In the multishot setting of indoor search,
our model achieves a rank-1 accuracy of 53.40%, and an
mAP of 44.35%, which is higher than JSIA by 0.7% and
1.65%, respectively.
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4.3. Ablation Study. In this section, we design ablation ex-
periments to test the effectiveness of the BNG module and
MMMmodule. Our ablation experiments are performed on
the dataset SYSU-MM01 and use the single-shot setting of
all-search mode.

Influence of BNG module: the results of ablation ex-
periments for BNG attention are shown in Table 2. Com-
pared with the baseline model (B), by adding BNG attention,
the rank-1 accuracy and mAP are improved by 5.57% and
4.39%, proving the effectiveness of BNG attention.

Influence of MMM module: as shown in Table 2, the
model withMMM (B+MMM) achieves a rank-1 accuracy of
39.97%and anmAPof 39.52%,which arehigher than those of
the baseline (B) by 5.84% and 5.98%, respectively. It is proved
that our proposed MMM module has good performance.

4.4. Visualization of Generated Images. For a more intuitive
understanding of the generator model, we show the learned

fake IR images in Figure 5. As shown in Figure 5, the first
row is the real RGB image, the middle is the fake IR image
generated by the generator, and the last row is the real IR
image. We can observe that fake IR images have similar
content (e.g., pose and view) andmaintain the identity of the
corresponding real RGB images while having an IR style.
)erefore, the generated fake IR images can bridge the gap
between RGB and IR images and can reduce cross-modality
variation in pixel space.

5. Conclusion

In this paper, we proposed a new pixel and feature alignment
network (PFANet) for the RGB-IR ReID task. )e model
consisted of a feature extractor, a generator, and a joint
discriminator. )e BNG attention and the MMM module
were designed in the feature extraction module. )rough
these two modules, the model not only mitigated modality
differences but also paid attention to channel and global

Table 1: Comparison of CMC (%) and mAP (%) performances with other methods on SYSU-MM01.

Methods
All-search Indoor-search

Single-shot multishot Single-shot multishot
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

Two-stream [10] 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.20 21.49 22.49 72.22 88.61 13.92
One-stream [10] 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04
Zero-padding [10] 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.86
BCTR [13] 16.20 54.90 71.5 19.2 — — — — — — — — — — — —
BDTR [13] 17.1 55.5 72.0 19.7 — — — — — — — — — — — —
D-HSME [26] 20.7 62.8 78.0 23.2 — — — — — — — — — — — —
cmGAN [6] 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.7 77.2 89.2 42.2 37.0 80.9 92.3 32.8
DGD+MSR [12] 37.35 83.40 93.34 38.11 43.86 86.94 95.68 30.48 39.64 89.92 97.66 50.88 46.56 93.57 98.8 40.08
JSIA-ReID [20] 38.10 80.70 89.90 36.90 45.10 85.70 93.80 29.50 43.80 86.20 94.20 52.90 52.70 91.10 96.40 42.70
Ours 40.83 83.40 92.38 39.84 48.13 86.0 93.67 32.54 44.0 86.8 94.87 52.96 53.40 90.52 95.70 44.35

Table 2: Ablation study in terms of CMC (%) and mAP (%) SYSU-MM01.

Method
SYSU-MM01

Single-shot all-search
R1 R10 R20 mAP

Baseline 34.13 78.86 90.07 33.54
B+BNG 39.60 81.95 91.60 37.93
B+MMM 39.97 82.38 92.54 39.52
B+BNG+MMM 40.83 83.40 92.38 39.84

real RGB

fake IR

real IR

Figure 5: Fake IR images generated by ourmodule.)e fake IR images canmaintain identities and contents with original real RGB ones and
have IR style.
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information. )e cross-modality IR images were generated
by the generator, which could bridge the gap between RGB
and IR images and reduce cross-modality variation. Ablation
experiments verified the effectiveness of each module. Ex-
tensive experiments on the SYSU-MM01 dataset illustrated
that our model achieved state-of-the-art performance.

Data Availability

)e SYSU-MM01 data used to support the findings of this
study have been deposited in the “Rgb-infrared cross-mo-
dality person re-identification” repository (http://isee.sysu.
edu.cn/project/RGBIRReID.html).

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was partially supported by the National Natural
Science Foundation of China (grant nos. 51906217,
61906168, and 62176237), Joint Funds of the Zhejiang
Provincial Natural Science Foundation of China (grant no.
LZJWZ22E090001), Zhejiang Provincial Natural Science
Foundation of China under (grant no. LQ20F020024), and
the Hangzhou AI Major Scientific and Technological In-
novation Project (2022AIZD0061).

References

[1] X. Jin, C. Lan, W. Zeng, Z. Chen, and Li Zhang, “Style
normalization and restitution for generalizable person re-
identification,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 3143–3152,
Seattle, WA, USA, June 2020.

[2] J. Song, Y. Yang, Yi-Z. Song, T. Xiang, and T. M. Hospedales,
“Generalizable person re-identification by domain-invariant
mapping network,” in Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pp. 719–728,
Long Beach, CA, USA, June 2019.

[3] J. Wang, X. Zhu, S. Gong, and W. Li, “Transferable joint
attribute-identity deep learning for unsupervised person re-
identification,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2275–2284, Salt
Lake City, UT, USA, June 2018.

[4] Z. Zhong, L. Zheng, S. Li, and Yi Yang, “Generalizing a person
retrieval model hetero-and homogeneously,” in Proceedings of
the European conference on computer vision (ECCV),
pp. 172–188, Munich, Germany, August 2018.

[5] Z. Zheng, X. Yang, and Z. Yu, “Joint discriminative and
generative learning for person re-identification,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2138–2147, Long Beach, CA, USA,
June 2019.

[6] P. Dai, R. Ji, H.Wang, Q.Wu, and Y. Huang, “Cross-modality
person re-identification with generative adversarial training,”
in Proceedings of the IJCAI, vol. 1, p. 6, Stockholm, Sweden,
July 2018.

[7] H. Yi, N. Wang, X. Gao, J. Li, and X. Wang, “Dual-alignment
feature embedding for cross-modality person re-

identification,” in Proceedings of the 27th ACM International
Conference on Multimedia, pp. 57–65, Nice, France, October
2019.

[8] D. Li, X. Wei, X. Hong, and Y. Gong, “Infrared-visible cross-
modal person re-identification with an x modality,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 4, pp. 4610–4617, 2020.

[9] Z. Wang, Z. Wang, Y. Zheng, Y.-Yu Chuang, and
S.’ichi Satoh, “Learning to reduce dual-level discrepancy for
infrared-visible person re-identification,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 618–626, Long Beach, CA, USA, June 2019.

[10] A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong, and J. Lai, “Rgb-
infrared cross-modality person re-identification,” in Pro-
ceedings of the IEEE international conference on computer
vision, pp. 5380–5389, Venice, Italy, October 2017.

[11] M. Ye, Z. Wang, X. Lan, and P. C. Yuen, “Visible thermal
person re-identification via dual-constrained top-ranking,” in
Proceedings of the IJCAI, vol. 1, p. 2, Stockholm, Sweden, July
2018.

[12] Z. Feng, J. Lai, and X. Xie, “Learning modality-specific rep-
resentations for visible-infrared person re-identification,”
IEEE Transactions on Image Processing, vol. 29, pp. 579–590,
2020.

[13] M. Ye, X. Lan, J. Li, and P. Yuen, “Hierarchical discriminative
learning for visible thermal person re-identification,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[14] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial net-
works,” in Proceedings of the IEEE international conference on
computer vision, pp. 2223–2232, Venice, Italy, October 2017.

[15] Y. Choi, M. Choi, and M. Kim, “Stargan: unified generative
adversarial networks for multi-domain image-to-image
translation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 8789–8797, Salt Lake
City, UT, USA, June 2018.

[16] I. Goodfellow, J. Pouget-Abadie, and M. Mirza, “Generative
adversarial nets,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1125–1134, Honolulu, HI, USA, June 2017.

[18] Yu-J. Li, Y.-C. Chen, Y.-Yu Lin, X. Du, and Yu-C. F. Wang,
“Recover and identify: a generative dual model for cross-
resolution person re-identification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 8090–8099, Seoul, Korea, October 2019.

[19] G.’an Wang, T. Zhang, and J. Cheng, “Rgb-infrared cross-
modality person re-identification via joint pixel and feature
alignment,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3623–3632, Seoul, Korea,
October 2019.

[20] G.-An Wang, T. Zhang, Y. Yang et al., “Cross-modality
paired-images generation for rgb-infrared person re-identi-
fication,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 7, pp. 12144–12151, 2020.

[21] J. Hu, Li Shen, and G. Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7132–7141, Salt Lake City,
UT, USA, June 2018.

8 Mobile Information Systems

http://isee.sysu.edu.cn/project/RGBIRReID.html
http://isee.sysu.edu.cn/project/RGBIRReID.html


[22] J. Park, S. Woo, L. Joon-Young, and K. In So, “Bam: bot-
tleneck attention module,” arXiv preprint arXiv:1807.06514,
2018.

[23] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7794–7803, Salt Lake City,
UT, USA, June 2018.

[24] S. Woo, J. Park, L. Joon-Young, and K. In So, “Cbam: con-
volutional block attention module,” in Proceedings of the
European conference on computer vision (ECCV), pp. 3–19,
Munich, Germany, August 2018.

[25] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the International conference on machine
learning, pp. 448–456, PMLR, Lille, France, July 2015.

[26] H. Yi, N. Wang, and J. Li, “Hsme: hypersphere manifold
embedding for visible thermal person re-identification,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 8385–8392, 2019.

[27] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: enhancing
learning and generalization capacities via ibn-net,” in Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pp. 464–479, Munich, Germany, August 2018.

[28] F. Schroff, D. Kalenichenko, and P. James, “Facenet: a unified
embedding for face recognition and clustering,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, Boston, MA, USA, June 2015.

[29] Y. Yang, Z. Lei, J. Wang, and Z. Stan, “In defense of color
names for small-scale person re-identification,” in Proceedings
of the 2019 International Conference on Biometrics (ICB),
pp. 1–6, IEEE, Crete, Greece, June 2019.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, Las
Vegas, NV, USA, June 2016.

Mobile Information Systems 9


