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With the explosive growth of Internet video data, demands for accurate large-scale video classification and management are
increasing. In the real-world deployment, the balance between effectiveness and timeliness should be fully considered.
Generally, the video classification algorithm equipped with time segment network is used in industrial deployment, and the
frame extraction feature is used to classify video actions However, the issue of semantic deviation will be raised due to coarse
feature description. In this paper, we propose a novel method, called image dense feature and internal significant detail
description, to enhance the generalization and discrimination of feature description. Specifically, the location information layer
of space-time geometric relationship is added to effectively engrave the local features of convolution layer. Moreover, the
multimodal feature graph network is introduced to effectively improve the generalization ability of feature fusion. Extensive
experiments show that the proposed method can effectively improve the results on two commonly used benchmarks (kinetics
400 and kinetics 600).

1. Introduction

Video classification is the task of automatically identifying
the category of input video. The key challenges are not only
to serialize and understand the spatiotemporal relationship
in the image but also to abstract the most important infor-
mation and predict the categories with the extracted repre-
sentation. In the last decade, video classification network
has achieved great success, and a series of excellent methods
[1–5] have been proposed. At the same time, many bench-
mark datasets have been built [7, 15].

In the process of image recognition, the two spatial
dimensions of width and height are processed through con-
volution operation. Many experiments show that [8, 9]
image has the characteristics of isotropy such as translation
invariance under the first-order approximation. Corre-
sponding to the video, the object motion contained in it
has the same characteristics of consistent direction [10].
Therefore, it is effective to adopt the method of frame extrac-
tion for video classification [1–4], which is one commonly
used solution in industry.

The methods of dual stream video classification [1, 3,
11, 12] are favored by the industry in specific practical
applications. When implemented, this kind of methods
model RGB and optical flow data, respectively, and con-
nect features for video classification. However, they are
based on the complete features of video frames [1–3, 11,
12] and ignore the importance of features in different spa-
tiotemporal positions.

As shown in Figure 1, during penguin diving, the main
body penguin will have limb changes in action with the
progress of time, and the spatial correlation between the
motion scene and action will also be reflected. The correla-
tion is shown by the red-dashed arrow in Figure 2; there will
be the correlation of actions and the consistency of back-
ground, whether between the adjacent grids of the current
frame or between different frames adjacent to time.

On the whole, the dual stream video classification
methods have several important problems:

(1) Frame level features describe global information,
lack of key region feature mining, and insufficient
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modeling for the proportion of action subject relative
image

(2) Optical flow and image features are often learned
separately, and the lack of interaction between fea-
tures leads to the inability to fuse the two effectively.
Therefore, there is still a lot of room for improve-
ment in the method

In order to solve these problems, this paper proposes a
video classification method based on image dense features
and internal salient detail description. The proposed method
has the following advantages:

(1) We propose to find the key motion features. By com-
bining spatiotemporal location coding feature, the
key motion areas can be found more easily

(2) With the help of multimodal feature fusion, which
through cross-attention mechanism, RGB features
and optical flow features can fully interact with each
other

2. Related Work

At present, video classification includes methods based on
spatiotemporal representation and video stream recognition.
In the methods based on spatiotemporal representation,
actions can be expressed as the changes of spatiotemporal
objects in time and space. And the key feature can be filtered

and captured by spatiotemporal directional modeling [13,
14]. In order to take the spatiotemporal relationship in fea-
ture extraction into account, 3D convolution [6, 15, 16]
expands the 2D spatial image model [17–20] to spatial-
temporal domain. Among them, I3D network [15] uses dual
stream CNN with expanded 3D convolution on RGB and
optical flow sequences, which has achieved good results in
video classification. Some other methods focus on serializa-
tion timing modeling. The common method is CNN+LSTM
[1, 12, 21–23], and they use CNN to extract frame features
and LSTM to integrate temporal features. Considering that
the separate processing of spatiotemporal information can
effectively improve the computational performance, there
are some schemes to decompose the convolution into sepa-
rate two-dimensional space and one-dimensional time filters
[24–27]. Spatiotemporal joint feature filtering and fusion,
including separable spatiotemporal feature modeling, can
quickly grasp the main features and effectively model the
key information of video actions. It is also a popular imple-
mentation and deployment method in the industry. How-
ever, its disadvantages are also obvious; frame level features
describe the global information, lack of key area feature min-
ing, and insufficient modeling for the relatively small pro-
portion of the action subject’s relative image.

In the early stage, there were more classic manual feature
design methods based on optical flow, such as flow histo-
gram [28], motion boundary histogram [29], and trajectory
graph [30]. Before the popularization of deep learning, these
methods have shown good results in motion recognition. In
the context of deep neural network, the dual stream method
[11] effectively uses optical flow to obtain the key informa-
tion of action by considering optical flow as another video
input mode. This idea has also been effectively verified in
many other methods [1, 12, 24], and some progress has been
made. In the TSN [1] method, the video is divided into mul-
tiple segments, and the sample of RGB frame image and
optical flow image is randomly selected in different time
periods to extract the information for video action recogni-
tion. However, since the two features of optical flow and
image are often learned separately and the lack of interaction
between the features, the two sources cannot be fused effec-
tively, so there is still a lot of room for improvement in the
method.

With the development of visual attention methods, they
are widely used in video understanding tasks. For video
summarization, in order to optimize the recognition effect,
a dynamic and static visual attention method is prosed
[31], and a global&local multihead attention method is
adopted in [32]. GSE-GCN [33] proses a Granularity-
Scalable Ego-Graph Convolutional Network for obtaining a
more satisfying summary. And [34] uses static and motion
features with the parallel attention to improve video summa-
rization results. For video classification, ViS4mer [35] uses a
multiscale temporal S4 decoder for subsequent long-range
temporal inference. MViT [36] proses window attention
and pooling attention operations for calculating local infor-
mation and aggregating them. In order to evaluate the
movements of infants in the video, [37] uses the spatiotem-
poral attention selection mechanism. For solving the
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Figure 1: Video subject motion spatial-temporal information
example.
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Figure 2: Video subject motion spatial-temporal information
example.
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differences between features, BA-Transformer [38] applies
different attention operations to different feature channel
groups.

Recently, the video classification methods based on
transformer has made great progress. Video Transformer
Net [39] adds the time attention on the basis of the pre-
trained VIT model [40], which has produced good perfor-
mance. TimeSformer [41] studied five structures in
spatiotemporal modeling and proposed a spatiotemporal
attention mechanism based on factorization. The experi-
mental results show that the algorithm achieves a good tra-
deoff between speed and performance. Based on the
picture classification structure, Video Swin Transformer
[42] adds the time dimension, and good results are achieved.
ViViT [43] discussed four different ways to realize spatio-
temporal attention on the basis of VIT [40]. In order to
reduce the amount of computation of the model, tokshift
transformer [44] proposes a pure convolution free video
classification algorithm. Multiscale ViT [45] is a multiscale
visual transformer for video classification; for reducing the
amount of computation, spatiotemporal modeling is carried
out through the attention mechanism, and this method has
achieved good results.

Because the algorithm in this paper is to improve the
methods based TSN [1], which are commonly used in indus-
try, the video classification methods based on transformer
are not compared in this paper.

3. Video Classification Based on Salient Detail
Description of Video Image

This paper proposes a video classification method based on
salient detail description of video images (VCM-SDD). The
flow of the proposed method is shown in Figure 3, where
our VCM-SDD includes two serial feature fusion architec-
tures. The first one is spatiotemporal consistency modeling,
which operates RGB image and optical flow image sepa-
rately. We can find the significant details of the time domain
and the spatial domain under the single mode. The second
one is multimodal feature fusion, which achieves feature
interaction by using RGB image features and optical flow
image features as query and key/value items to each other.
The fusion of these two architectures is used for final
classification.

3.1. Spatiotemporal Consistency Modeling. Many experi-
ments show that [8, 9] images have isotropic characteristics
such as translation invariance under the first-order approxi-
mation. At the same time, the image feature based on non-
overlapping grid can describe the characteristics of moving
subject in more detail. No matter between adjacent grids of
the current frame or between frames with similar time, there
will be action correlation and consistency of action occur-
rence background. Therefore, it is feasible to mine the salient
details of actions under the condition of spatiotemporal con-
sistency modeling. We represent a video as V = RN∗t∗c∗h∗w;
that is, a video is first decomposed into n segments from
the whole video. The video length of each subsegment is T ,
C represents the number of image channels, and h and w

represent the width and height of the image, respectively.
Image appearance features (RGB) and motion optical flow
features are extracted from each subsegment of the video.

In the RGB image grid feature extraction, the last convo-
lution layer is selected to obtain a two-dimensional image
feature description:

Frgb conv = Convn Convn−1 ⋯ Conv1 IRGBð Þð Þð Þð Þ, ð1Þ

where n represents the serial number of the convolution
layer, convn represents the convolution feature map of the n
th layer in the network, IRGB is the input image, and f rgb Conv
represents the n th layer convolution feature of the extracted
RGB image. The final output dimension is n ∗ n ∗D, where
n represents the resolution of the feature map and D repre-
sents the number of feature map channels.

In the optical flow image grid feature extraction, the
same network as the image feature extraction is selected,
and is specifically expressed as

Fflow conv = Convn Convn−1 ⋯ Conv1 Iflowð Þð Þð Þð Þ, ð2Þ

where n represents the serial number of the convolution
layer, convn represents the convolution feature mapping of
the n th layer in the network, Iflow is the input image, and
Iflow Conv represents the n th layer convolution feature of
the extracted optical flow image, and the final output dimen-
sion is n ∗ n ∗D, where n represents the resolution of the
feature map and D represents the number of feature map
channels.

In order to better integrate the relative position informa-
tion of visual features, the relative position information
according to the grid geometry is added. The bounding
box of the region can be expressed as ðx, y,W,HÞ, where x
, y, W, and H represent the central coordinates of the grid
and its width and height; therefore, for any two grids gridi
and gridj, their geometric relationship as a 4-dimensional
vector is expressed:

geom img i, jð Þ = log
xi − xj
�� ��
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Considering wi =wj and hi = hj in the grid feature, the last
two terms of the geometric relationship vector in the above
formula can be removed, so it can be simplified as

geom img i, jð Þ = log
xi − xj
�� ��
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It can be seen that the farther the distance, the smaller
the corresponding geometric relationship value. The rela-
tionship between different grids is shown in Figure 4. Con-
sidering that the interframe features are adjacent in time
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sequence, their expression will be closer. We propose a geo-
metric measure of time relationship:

geom time i, jð Þ = log
ti − t j
�� ��

T

 !−1

: ð5Þ

In the above formula, ti and t j, respectively, represent the
time of the current feature, and T is the number of frames
extracted from the current video clip. It can be seen from
the above formula that the closer the distance, the greater
the value; the geometric relationship measurement after
spatial-temporal combination can be finally expressed as

geom all i, jð Þ = log
xi − xj
�� ��

wi
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In order to prevent abnormal logarithm operation of
geometric relationship in the same spatial position or time
position, we add an offset term e after each feature. Next,
we build the feature similarity matrix according to the

spatial-temporal geometric relationship:

sim i, jð Þ = RELU geom all i, jð ÞWp

� �
Wg: ð7Þ

In the above formula, Wp is a learnable feature mapping
matrix, and its dimension is 3 ∗ 32 in the experiment. Wg is
a learnable similarity mapping matrix, and the dimension is
set to 32 ∗ 1 during the experiment. The specific method is
to expand the geometric relationship vector to the high-
dimensional space through the mapping matrix Wp and
carry out the similarity mapping Wg after RELU activation
to obtain the similarity eigenvalue.

The similarity eigenvalue proposed in this paper can be
regarded as a spatiotemporal constrained cross attention
mechanism. The consistency and difference between regions
can be measured to realize the feature fusion between
regions. To avoid introducing semantic noise, we create a
geometric alignment graph G = ðV , EÞ. The grid features
extracted with time are represented as independent node V
. In the dimensions of time, width, and height, when the dis-
tance between nodes is less than or equal to 2, the grid nodes
will be connected to form edge set E. According to the above
rules, we construct an undirected graph. According to the
geometric position relationship information of equation
(7), the weight matrix W can be obtained and normalized:

si,j =
esim i,jð Þ

∑j∈A við Þe
sim i,jð Þ : ð8Þ

Si,j represent the normalized similarity between node i
and node j. Vi represents the characteristic node of the grid,
and AðViÞ represents all neighbor nodes adjacent to node Vi
. After the above similarity operation, the feature output
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after RGB spatial-temporal fusion can be expressed as

Ffusion = 〠
j∈A Við Þ

si,jV j: ð9Þ

RGB image grid features and optical flow image grid fea-
tures can obtain their respective spatial-temporal fusion fea-
tures through the above operations. This operation can
extract the significant visual information in the image. It is
helpful to improve the effect of video classification. The fol-
lowing experiments also prove the effectiveness of the pro-
posed algorithm. The specific features after the fusion of
RGB image and optical flow image are expressed as follows:

Frgb fusion = 〠
j∈A Við Þ

si,jFrgb conv,

Fflow fusion = 〠
j∈A Við Þ

si,jFflow conv:
ð10Þ

3.2. Multimodal Feature Fusion. This paper is an improve-
ment of TSN [1] and TSM [2], which belongs to the seg-
mented video classification method commonly used in
industry. The two features of optical flow and image are
studied separately, and there is a lack of interaction between
the features, which makes it impossible to fuse them effec-
tively. In order to solve this problem, this paper carries out
feature fusion modeling by means of cross attention mecha-
nism and used as retrieval items and value/key items to each
other. At this stage, RGB image grid features and optical
flow image grid features alternately act as retrieval items
and numerical items. For RGB image features, to fuse with
optical flow features, the modeling method of cross attention

can be expressed as

Fatt rgb = softmax
Frgb fusion ∗ Fflow fusionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frgb fusion ∗ Fflow fusion
�� ��q

0
B@

1
CAFflow fusion:

ð11Þ

For optical flow image features, to fuse with RGB fea-
tures, cross attention can be expressed as

Fatt flow = softmax
Frgb fusion ∗ Fflow fusionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frgb fusion ∗ Fflow fusion
�� ��q

0
B@

1
CAFrgb fusion:

ð12Þ

Considering the above two equations, f rgb fusion and
f flow fusion feature dimension increases the amount of calcu-
lation. This will lead to long reasoning and training time.
In this paper, the method similar to that in transformer
[46] is used to disassemble and group the features. The fea-
tures with larger dimensions are divided into multiple parts
for calculation according to the method of multihead
calculation.

3.3. Classification Result Fusion. In TSN [1], in the video
result prediction stage, all segment recognition networks
share model parameters. The learned model performs frame
level evaluation like a normal image network. The details are
as follows:

Rclip = AVG M cliprgbi
� �

,M clipflowi

� �h i
, where i = 1,⋯, n,

ð13Þ
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Table 1: Experimental parameter setting and hardware selection.

lr Epochs Batch size Optimizer GPU Platform

Kinetics 400 0.008 100 128 Adamw TeslaV100∗8 Pytorch1.6

Kinetics 600 0.012 100 128 Adamw TeslaV100∗8 Pytorch1.6
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where cliprgbi and clipflowi represent the result of RGB
image and optical flow frame extraction in segment i of the
video. Here, one frame is extracted from each video, M rep-
resents the result of single-stage model reasoning, and Rclip
represents the final classification result. The method of mul-
tisegment averaging is adopted.

Different from the above fusion results, here the multi-
modal fusion feature is used:

Rclip = AVG
M avg F Fatt rgb

� �� �
,

M avg F Fatt rgb
� �� �

" #
, where i = 1,⋯, n,

ð14Þ

where avg F means that the extracted multiframe image
features are averaged. The reason why the average value is
used here is that there is action continuity in multiple
frames. Using the average value to comprehensively measure
the characteristic value can effectively reflect the significance

detail description, Fatt RGB and f att Flow represent the fusion
features obtained by taking RGB image and optical flow
image as retrieval items, respectively.

4. Experiments

4.1. Model and Parameter Setting. The model in this paper is
shown in Figure 5. Firstly, image features and optical flow
features are extracted according to ResNet101. Then, the
spatiotemporal information is added through spatiotempo-
ral consistency modeling. And obtain modal interaction
information through multimodal feature fusion. Video clas-
sification is carried out after feature enhancement. The num-
ber in Figure 5 shows the shape information of the feature.

In order to explore the impact of different video seg-
ments on the classification results, 8 and 16 clips of a video
are collected evenly along the time axis during the test. For
each segment, 6 frames of images are evenly extracted for
feature extraction, and finally, the results are fused in the
way of average of the results described in Section 3.3.

Table 1 shows the parameter settings and hardware
information in the experiment. When extracting RGB image
and optical flow features, similar to TSN and TSM methods,
firstly scale the images to 256 ∗ 256, get 224 ∗ 224 images by
center cropping. In order to facilitate comparison, this paper
selects Top1 and Top5 evaluation indicators commonly used
in video classification.

4.2. Experiment Dataset. In the experiment, in order to eval-
uate the effectiveness of the algorithm proposed in this
paper, we evaluated it on kinetics dataset [15]. Kinetics is a
large-scale and high-quality YouTube video URL dataset,
which contains many human action markers. The dataset
was released by DeepMind to help the research of machine
learning on video understanding. It contains two different
versions according to different categories. The kinetics 400
contains about 260K video clips, including 240 k training
data and 20K verification data, covering 400 types of human
actions, with at least 400 video clips for each type of action.
Each clip is about 10 seconds long and is marked with an
action category. All clips are manually annotated in multiple
rounds, and each clip comes from a separate YouTube video.
These actions include a wide range of human object interac-
tion actions, such as playing musical instruments, and
human-human interaction actions, such as shaking hands
and hugging. Kinetics 600 contains 420K YouTube videos,
including 392 k training data and 30K verification data, with
a total of 600 categories. Each category has at least 600
videos, and each video lasts about 10 seconds. At the same
time, kinetics is also the basic dataset of the international
human action classification competition organized by
ActivityNet.

4.3. Comparison and Discussion. In order to prove the effec-
tiveness of the algorithm, experiments are carried out on
whether to add spatiotemporal consistency and multimodal
feature fusion. Table 2 shows the corresponding experimen-
tal results. The experiment is based on the pretraining model
of ResNet101 on ImageNet as the feature extraction model

Table 2: Exploration of spatial-temporal consistency and
multimodal fusion of kinetics 400.

Top1 Top5

VCM-SDD No_STC No_MFF 71.7 90.9

VCM-SDD STC No_MFF 73.9 91.4

VCM-SDD No_STC MFF 78.5 93.6

VCM-SDD STC MFF 80.1 94.4

TSN [1] 71.3 91.5

TSM [2] 75.1 91.8

Table 3: The comparison between this algorithm and other
methods on the kinetics 400.

Top1 Top5 GFLOPs

I3D [15] 72.1 90.3 108

Two-stream I3D [15] 75.7 92.0 216

S3D-G [26] 77.2 93.0 —

Nonlocal R50 [47] 76.5 92.6 —

Nonlocal R101 [47] 77.7 93.3 —

R(2 + 1)D Flow [25] 67.5 87.2 152

STC [48] 68.7 88.5 —

ARTNet [49] 69.2 88.3 23.5

S3D [26] 69.4 89.1 66.4

ECO [50] 70.0 89.4 216

R(2 + 1)D [25] 73.9 90.9 152

TSN [1] 71.3 91.5 33

TSM [2] 75.1 91.8 65

SlowFast 16 ∗ 8, R101 [3] 78.9 93.5 213

SlowFast 16 ∗ 8, R101+NL [3] 79.8 93.9 234

VCM-SDD 8 ∗ 6, R101_NP 77.4 93.1 46.8

VCM-SDD 8 ∗ 6, R101 78.5 93.5 46.8

VCM-SDD 16 ∗ 6, R101_NP 79.3 93.9 46.8

VCM-SDD 16 ∗ 6, R101 80.1 94.4 46.8

6 Mobile Information Systems



of RGB image and optical flow image. The video is divided
into 16 segments, and 6 frames are extracted from each
segment.

VCM-SDD No_STC No_MFF means that do not
include the spatial-temporal consistency and multimodal
feature fusion in model training and inference, from which
we can see that the effect is the worst.

VCM-SDD STC No_MFF means that spatial-temporal
consistency is added in training and reasoning, but there is
no multimodal fusion. Compared with the experimental
items that are not added, Top1 and Top5 are increased from
71.7 and 90.9 to 73.9 and 91.4, respectively, with absolute
values of 2.2 and 0.5. Experiments show the effectiveness
of the spatiotemporal consistency algorithm.

VCM-SDD No_STC MFF indicates that there is no
spatial-temporal consistency in training and reasoning, but
multimodal fusion is added. Compared with the experimen-
tal items with spatial-temporal consistency, Top1 and Top5
are increased from 73.9 and 91.4 to 78.5 and 93.6, respec-
tively, with absolute values of 4.6 and 2.2. It can be seen that
multimodal fusion is more critical to the improvement of
classification performance.

VCM-SDD STC MFF indicates that spatial-temporal
consistency and multimodal feature fusion are added in the
experiment. The accuracy rates of Top1 and Top5 are 80.1
and 94.4, respectively, which is the highest in the whole abla-
tion experiment, which proves the effectiveness of the algo-
rithm proposed in this paper.

Compared with the benchmark algorithms TSN and
TSM, VCM-SDD STC MFF has made significant progress
in kinetics 400. This is mainly due to spatial-temporal con-
sistency and multimodal feature fusion. If without these
two operations, the result of VCM-SDD No_STC No_MFF
is similar to TSN but worse than TSM; this is mainly because
the temporal and spatial correlations of features are not con-
sidered. When the spatial-temporal consistency operation is
added, the temporal and spatial relationship between fea-
tures is strengthened, and the VCM-SDD STC No_MFF
result is better than TSN and slightly worse than TSM.
When multimodal fusion is added, the cross modeling is car-

ried out between different features. The generalization per-
formance is strengthened, and the VCM-SDD No_STC
MFF result is better than TSN and TSM. It shows that modal
interaction plays a positive role in video classification algo-
rithm. Compared with the separate operation, the video clas-
sification effect has been further improved after combining
the two operations. It is proved that the operation of
spatial-temporal consistency and multimodal fusion is effec-
tive. As shown in Table 3, the experiment in kinematics 600
also proves the effectiveness of the proposed algorithm.

4.4. Comparison of Experimental Results of Different
Methods. Table 3 shows the comparison results of different
methods on the kinetics 400; R101_NP is the result of not
loading the pretraining model. It can be seen that the effect
of dividing into 16 segments is better. Without ImageNet
pretraining, the accuracy of Top1 divided into 16 segments
is 79.3, and the accuracy of Top1 divided into 8 segments
is 77.4, an increase of 1.9 percentage points. Top5 also has
an improvement of 0.8 points. In the case of ImageNet pre-
training, the accuracy of Top1 divided into 16 segments is
80.1, the accuracy of Top1 divided into 8 segments is 78.5,
an increase of 1.6 percentage points, and the accuracy of
top5 is also increased by 0.9 points.

This algorithm divides the video into 16 ∗ 6. With Ima-
geNet pretraining, Top1 and Top5 are 80.1 and 94.4, respec-
tively, which are 8.8 and 3.9 percentage points higher than
TSN algorithm, 5.0 and 2.6 percentage points higher than
TSM algorithm, and 0.3 and 0.5 percentage points higher
than SlowFast algorithm with better performance. It can be
seen from the experimental results that the combination of
spatial-temporal consistency and multimodal fusion has a
certain improvement in the image-based two-way recogni-
tion method.

In order to compare the amount of calculation between
different methods, this paper compares the GFLOPs of each
algorithm. It can be seen that compared with the baseline
TSN and TSM, the amount of computation of this algorithm
is between the two algorithms, and the computational effi-
ciency of this algorithm meets the deployment requirements.
Compared with SlowFast, the amount of calculation of this
algorithm is significantly reduced.

Table 4 shows the comparison results of different
methods on the kinetics 600 dataset. ResNet101 is also used
as the backbone here. In order to explore the influence of the
number of different video segments on the classification
results, the video is also divided into 8 segments and 16 seg-
ments. It can be seen that the effect of being divided into 16
paragraphs is also better. Without ImageNet pretraining, the
accuracy of Top1 divided into 16 segments was 81.3, and the
accuracy of Top1 divided into 8 segments was 79.6, an
increase of 1.7 percentage points; top5 also has an increase
of 0.7 points. With ImageNet pretraining, the accuracy of
Top1 divided into 16 segments was 81.9, and the accuracy
of Top1 divided into 8 segments was 80.4, an increase of
1.5 percentage points; top5 also has an increase of 0.4 points.
This algorithm divides the video into 16 ∗ 6. With ImageNet
pretraining, Top1 and Top5 are 81.9 and 95.1, respectively,
which are 10.2 and 4.5 percentage points higher than TSN

Table 4: The comparison between this algorithm and other
methods on the kinetics 600.

Top1 Top5 GFLOPs

I3D [15] 71.9 90.1 108

StNet-IRv2 RGB [51] 79.0 — —

AttentionNAS [5] 79.8 94.4 —

LGD-3D R101 [52] 81.5 95.6 —

SlowFast 16 ∗ 8, R101 [3] 81.1 95.1 213

SlowFast 16 ∗ 8, R101+NL [3] 81.8 95.1 234

TSN [1] 71.7 90.6 33

TSM [2] 75.6 92.1 65

VCM-SDD 8 × 6, R101_NP 79.6 94.3 46.8

VCM-SDD 8 × 6, R101 80.4 94.7 46.8

VCM-SDD 16 × 6, R101_NP 81.3 94.9 46.8

VCM-SDD 16 × 6, R101 81.9 95.3 46.8
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algorithm, 5.3 and 3.0 percentage points higher than TSM
algorithm, and 0.1 and 0.2 percentage points higher than
SlowFast algorithm with better performance. From the
experimental results in kinetics 600, it can be seen that the
combination of spatial-temporal consistency and multi-
modal fusion has been improved in the image-based two-
stream recognition method.

5. Conclusion

This paper presents a method to describe image dense fea-
tures and internal salient details. It is used to enhance the
generalization and distinguishability of feature description
and improve the effect of video classification. In this paper,
the location information layer of spatial-temporal geometric
relationship is added to effectively carve the local features of
convolution layer and enhance the ability of visual represen-
tation and detail description of local features of grid. The
multimodal feature graph network interaction modeling
mechanism is introduced to effectively improve the general-
ization ability of feature fusion. The results on the two data-
sets verify the effectiveness of the proposed method. At the
same time, the proposed algorithm in this paper still has
room for improvement. Firstly, this paper only models the
grid features, while we find that the bounding box features
of the moving subject have better expression performance.
Secondly, we only fuse different modal features in the later
stage of modeling. In future study, we will consider integrat-
ing modal fusion into the whole modeling process.
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