
Research Article
Web Service Composition Optimization with the Improved
Fireworks Algorithm

Bo Jiang , Yanbin Qin , Junchen Yang , Hang Li , Liuhai Wang , and Jiale Wang

School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

Correspondence should be addressed to Bo Jiang; nancybjiang@zjgsu.edu.cn and Jiale Wang; wjl8026@zjgsu.edu.cn

Received 21 October 2021; Revised 20 January 2022; Accepted 1 March 2022; Published 12 March 2022

Academic Editor: Claudio Agostino Ardagna

Copyright © 2022 Bo Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Even though the number of services is increasing, a single service can just complete simple tasks. In the face of complex tasks, we
require composite multiple services to complete them. For the purpose of improving the efficiency of web service composition, we
propose a service composition approach based on an improved fireworks algorithm (FWA++). First, we use the strategy of
random selection to keep N − 1 individuals for the next generation, and the purpose is to speed up the convergence speed of
the FWA++ and enhance the search ability. Second, we randomize the total number of sparks and maximum amplitude of
sparks for each generation. In this way, the search ability and the ability to jump out of the local optimal solution are
dynamically balanced throughout the execution of the algorithm. Our experimental results show that compared with other
existing approaches, the approach proposed in this paper is more efficient and stable.

1. Introduction

With the emergence of a large number of web services,
enterprises and individuals can select multiple services to
build enterprise applications and software systems through
the technology of service composition [1, 2], which is called
Service-Oriented Computing (SOC). Service composition is
one of the core technologies of SOC, which flexibly aggre-
gates the required resources and realizes service reuse [3].
However, with the convergence of a large number of web
services with the same function, quality of service (QoS)
has increasingly become an essential factor that needs to be
considered in the process of selecting services from these
function-equivalent services for composition. Therefore,
many QoS-based web service composition methods have
been proposed.

Heuristic and metaheuristic algorithms are often used to
solve the web service composition problem. Metaheuristic
algorithms have the characteristics of good optimization
effect and less time consumption. With the attention of
researchers at home and abroad, more and more metaheur-
istic algorithms have been proposed, including particle

swarm optimization (PSO) [4], artificial bee colony (ABC)
[5], Bacterial Foraging Optimization (BFO) [6], fireworks
algorithm (FWA) [7], Fruit Fly Optimization (FOA) [8],
Moth Search Algorithm (MSA) [9], Harris Hawks Optimiza-
tion (HHO) [10], Slime Mould Algorithm (SMA) [11], and
Colony Predation Algorithm (CPA) [12].

Among them, different variants of FWA have been pro-
posed to improve the performance of the traditional FWA.
Zheng et al. [13] proposed an Enhanced Fireworks Algo-
rithm (EFWA); in their work, four strategies were utilized
to improve the original FWA. First, the minimum explosion
amplitude parameter was used to avoid the case of 0 ampli-
tude. Second, the generation strategy of explosion sparks was
modified to enhance explosion ability. Third, the generation
strategy of Gaussian sparks and mapping rules were modi-
fied to avoid the degradation of optimization performance
caused by the objective function being far from the origin.
Fourth, a random selection strategy was adopted to reduce
the algorithm’s running time. However, the explosion ampli-
tude is static during the execution of the algorithm, which
limits the scope of application of the algorithm. Zheng
et al. [14] and Li et al. [15] proposed the Dynamic Search

Hindawi
Mobile Information Systems
Volume 2022, Article ID 4277909, 13 pages
https://doi.org/10.1155/2022/4277909

https://orcid.org/0000-0002-9748-1810
https://orcid.org/0000-0003-1811-5693
https://orcid.org/0000-0002-4280-8644
https://orcid.org/0000-0002-3573-849X
https://orcid.org/0000-0003-0634-6566
https://orcid.org/0000-0001-5824-7573
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4277909


Fireworks Algorithm (dynFWA) and the Adaptive Fire-
works Algorithm (AFWA). The two algorithms were
enhanced on the basis of the EFWA algorithm and improved
the setting of explosion amplitude so that the explosion
amplitude can be adaptive in the whole algorithm. Thus,
the algorithm can adapt to different optimization objectives
and search stages. The IFWA algorithm proposed by Zhang
et al. [16] was improved on the aspect of optimization strat-
egies. The strategy has stronger robustness and applicability
by using the optimal fireworks to generate sparks instead of
the explosion amplitude adjustment method of dynFWA
and AFWA. However, the optimal fireworks to mutate
reduces the diversity of the population, and the elite selec-
tion strategy makes the fireworks population close to the
local optimal position. Yu et al. [17] proposed another elite
strategy based on EFWA. Each firework and the sparks it
produces are used to calculate a gradient-like vector, and
then use it to estimate the convergence point, and may
replace the worst firework individuals in the next generation.

In addition to improving the operator, the hybrid FWA
combined with other metaheuristic algorithms is also an
important research direction. Zheng et al. [18] combined
the differential evolution (DE) algorithm with the FWA. A
feasible solution is generated by the DE operator to the
selected individual. If the fitness value of the feasible solution
is better than the original individual, the original solution
should be replaced. Zhang et al. [19] introduced the biogeo-
graphic optimization algorithm (BBO) into the EFWA to
form a new algorithm (BBO-FWA), in which BBO provides
an idea of cross-migration of firework individuals according
to fitness value, and the lower the fitness value, the higher
the probability of cross-migration.

What is more, FWA has been widely used in a wide
range of real-world problems. Bolaji et al. [20] used FWA
to train the parameters of the feedforward neural network
and applied it to the classification problem. Zare et al. [21]
introduced two effective cross-generation mutation opera-
tors into FWA to solve discrete and multiconstrained prob-
lems. Furthermore, this method was applied to solve the
problem of multiregional economic dispatch. For more
information about the applications of the FWA, please refer
to the following literature [22, 23].

Although the above research has improved the FWA’s
performance, according to the no free lunch theorem [24],
there is no specific metaheuristic algorithm that can posi-
tively affect various types of optimization problems. So, it
is encouraged to improve and apply the FWA to solve the
optimization problems. In addition, the balance between
the search ability and the ability to jump out of the local
optimum in the FWA has not been well solved. Therefore,
we propose the improved fireworks algorithm (FWA++) to
solve the optimization problem of service composition. First,
we cluster the services with the same function. AWDSL doc-
ument records a lot of information related to the service, so
we extract the service name, port type, information, docu-
ment, and operation from it and transform them as an
embedding. Then, the k-means algorithm is used to cluster
multiple services which are transformed as embeddings. Sec-
ond, we improve the original FWA in two aspects: (1) The

selection strategy in the original FWA requires a lot of com-
putation time, so we randomly keep N − 1 individuals to the
next generation under the premise of ensuring the optimiza-
tion direction. It reduces computation time. (2) The algo-
rithm falling into the local optimum was avoided, and
strong search ability was kept. In each generation, we ran-
domize the total number of sparks and maximum amplitude
of sparks. Finally, we apply the FWA++ to service composi-
tion, and the results show that our algorithm is effective.

Our main contributions are as follows:

(i) In order to speed up the convergence speed of the
FWA++ and enhance the local search ability, we
use the strategy of random selection to keep individ-
uals for the next generation

(ii) For each generation, randomize the total number of
sparks and maximum amplitude of sparks. In this
way, the search ability and the ability to jump out
of the local optimal solution are dynamically bal-
anced throughout the execution of the algorithm

(iii) We experimented with our approach in a real-world
data set which includes 9 QoS attribute values of
2500 real web services. The results show that com-
pared with several existing approaches, the perfor-
mance of our proposed approach is better

The rest of this paper is organized as follows: Section 2
summarizes the related work of web service composition.
Section 3 presents mathematical modeling for the web ser-
vice composition problem and a diagram to illustrate the
process of service composition. Section 4 introduces the
framework of approach and design details. Section 5 intro-
duces simulation experiments and performance evaluation.
Section 6 reviews and summarizes this paper.

2. Related Work

In this section, we will refer to some literature to describe the
related work of service composition. Generally, to solve the
optimization problems of service composition, heuristic
and metaheuristic algorithms are mainly used. Nevertheless,
the metaheuristic algorithms are the essential solution, so we
will focus on them in this section.

The heuristic algorithms are constructed through the
experience of specific optimization problems [25]. Klein
et al. [26] presented a method based on hill climbing to find
the best solution. In this method, the search space is limited.
So, the algorithm’s time complexity is much less than that of
the linear problem when finding an optimal solution. Liu
et al. [27] proposed a service composition method based
on a branch constraint execution plan. The algorithm is
divided into two stages: in the first stage, the composite ser-
vice state is transformed into a state transition graph; then,
the dynamic process of composite service execution can be
analyzed. The second stage uses the web service execution
language to find the best solution. Lin et al. [28] presented
a relaxable QoS-based service composition approach. In this
approach, the optimal solution is subject to local and global

2 Mobile Information Systems



constraints. Although the heuristic algorithm can get an
approximate solution in a reasonable time and data scale,
the designs of the heuristic algorithms mainly depend on
the experience of specific optimization problems, so this
limits its scope of application. Moreover, when dealing with
the problem of large-scale data, the effect is often not
guaranteed.

The metaheuristic algorithms are also approximation
algorithms. They are no longer designed for specific optimi-
zation problems and have the characteristics of a good opti-
mization effect and less time consumption. Many scholars
used metaheuristics to solve service composition problems.
Canfora et al. [29] tackled the service composition problem
by the genetic algorithm (GA). Although GA is slower than
integer programming, it is an effective method to handle ser-
vice composition optimization. Furthermore, Tang and Ai
[30] proposed a hybrid genetic algorithm for the optimal
web service composition problem, which performs better
than other algorithms. However, when service-oriented
applications are complex, GA is not suitable. Ludwig [31]
addressed the problem of service composition by introduc-
ing particle swarm optimization (PSO). The results show
that it performs very well. However, the problem of prema-
ture convergence of PSO needs to be solved.

Chandra and Niyogi [32] proposed a modified artificial
bee colony (mABC) algorithm. In this algorithm, a
chaotic-based opposition learning method is used to initial-
ize the population, and differential evolution (DE) is used to
enhance exploitation. mABC has robust scalability and high
convergence speed. However, service composition is a dis-
crete optimization problem; mABC may fall into the local
optimum. Xu et al. [33] proposed an approach based on arti-
ficial bee colony (ABC) algorithms for the service composi-
tion problem. In this approach, the author improved the
neighborhood search of the ABC algorithm to adapt to the
discretization of service composition. At the same time,
three algorithms are proposed to maintain the performance
and simplicity of the approach. The results show that this
approach has high accuracy and avoids local optimization.
However, it is time-consuming when this approach replaces
multiple component services at the same time.

Li et al. [34] introduced an elite evolutionary strategy
(EES). Furthermore, it was applied to HHO to improve the
convergence speed and capacity of jumping out of the local
optimum. Moreover, a hybrid algorithm that combined
EES and HHO was presented. This algorithm has a fast con-
vergence speed and strong robustness. However, this
approach may fall into the local optimum because service
composition is a discrete optimization problem. Li et al.
[35] presented a novel approach CHHO to find an optimal
solution by incorporating logical chaotic sequence into the
Harris Hawks Optimization (HHO) algorithm. In this
approach, the neighborhood relations of concrete services
were constructed to form a continuous space, which avoids
CHHO falling into the local optimum. Chaotic sequences
have ergodic and chaotic features, which help CHHO
improve the capacity to jump out of local optimization. In
large-scale scenarios, CHHO has less computation time.

However, CHHO’s performance will not be good when the
QoS attributes are not independent.

3. Problem Statement

Before proposing our approach, we will provide a diagram to
illustrate the process of service composition and the mathe-
matical modeling for the web service composition problem.

Figure 1 shows the process of service composition by
using the integer coding method and the sequential combi-
nation pattern. First, input a composite service S = fT1, T2,
⋯, Tng. Here, each task corresponds to an abstract service,
for example, T1 corresponds to abstract service S1. And each
abstract service has m number of concrete services; for
example, S1 has m number of concrete services with the
same function. Second, select n number of concrete services
from the corresponding abstract service as a composite ser-
vice. In theory, there are

Qn
i=1mi number of composite ser-

vices. Calculate the QoS value of the composite services to
obtain an optimal value that reaches the minimal objective
value of Equation (3). Finally, output an optimal composite
service.

In this mathematical modeling, response time and price
are negative attributes; the smaller the better. Reputation
and availability are positive attributes; the larger the better.
Therefore, in order to unify metrics and calculations, it is
necessary to normalize the QoS values. The normalization
methods of QoS value are defined as follows:

qi =
qi − qmin

i

qmax
i − qmin

i

, qmin
i ≠ qmax

i ,

1, qmin
i = qmax

i ,

8><
>: ð1Þ

qi =
qmax
i − qi

qmax
i − qmin

i

, qmin
i ≠ qmax

i ,

1, qmin
i = qmax

i :

8><
>: ð2Þ

qmax
i and qmin

i are the maximum value and minimum value
of the ith QoS attribute of composite services, respectively;
Equation (1) is used to normalize the negative attributes,
such as response time and price; Equation (2) is used to nor-
malize the positive attributes, such as reputation and
availability.

We model the service composition problem as a minimi-
zation problem, and the optimization model is formulated as
follows:

minimize ∑r
k=1 qaggk ×wk

� �
∑l

j=1 qaggj ×wj

� � : ð3Þ

In a composite service, r and l are the numbers of negative
and positive QoS attributes of each service, respectively. wk
and wj represent the weights of the kth negative and jth pos-

itive attributes, respectively. qaggk is the sum of value of the k
th negative attribute of each service, and qaggj is the sum of
value of the jth positive attribute of each service.

3Mobile Information Systems



4. Proposed Approach

In this section, we will introduce the overall framework of
the approach then explain the details of our approach.

4.1. The Whole Framework. The framework of our approach
is shown in Figure 2, which consists of two parts: (1) Data
preparation: first, the document model is used to process
WSDL documents to generate the corresponding embed-
dings. Then, we use the k-means algorithm to cluster
embeddings. Finally, they are divided into four clusters as
the input data of the following algorithm. (2) Primary algo-
rithm processing: first, FWA++ initializes firework popula-
tion N randomly and evaluates their fitness values to find
the current best solution. Second, FWA++ enters into the
iterations: (a) Calculate the number of explosion sparks
and the amplitude of the explosion for each firework accord-
ing to the fitness value and then generate explosion sparks.
(b) Perform Gaussian mutation to generate Gaussian sparks.
Furthermore, map the unsatisfied sparks back to the feasible
space. (c) According to the selection strategy, keep the cur-
rent optimal solution and randomly select N − 1 individuals
from the current sparks and fireworks for the next new gen-
eration. Finally, the algorithm termination condition is met
and output the optimal solution.

4.2. Data Preparation. In this part, we will describe the pro-
cess of data preprocessing in detail.

4.2.1. WSDL to Embedding. The significant text information
of a service, including message, documents, service name,
and operations, is recorded in the WSDL (Web Service
Description Language) document. For the purpose of getting
service function information, we extract message, docu-
ments, service name, and operations from the WSDL docu-
ment. And then, we digitize the extracted text information.
Here, the sentence transformer framework is used to convert
text information into embedding. It provides an easy way to
calculate dense vector representations of sentences and
many models to realize the task of text digitization. We
choose the paraphrase-xlm-r-multilingual-v1 model to
obtain the embedding. The model is based on transformer
networks such as BERT/RoBERTa/XLM-RoBERTa and
achieves great performance in the mission. The text infor-
mation is embedded in the vector space and is close to sim-
ilar text information. After, each WSDL document is
processed by the paraphrase-xlm-r-multilingual-v1 model,
which is represented by an embedding. Finally, each service
corresponds to an embedding.

4.2.2. Classify Web Services. The k-means algorithm is an
unsupervised clustering algorithm that is relatively easy to
implement. And it is widely used for good performance.
The idea of the k-means algorithm is simple. A sample set
is divided into several clusters according to the distance
between the samples, and then, the points in the clusters
close and the distance between the clusters is as large as pos-
sible. In our approach, we use k-means to cluster embed-
dings generated by the paraphrase-xlm-r-multilingual-v1
model, where each embedding represents each concrete ser-
vice. In this way, classifying services according to functions
is realized.

4.2.3. Merge Data. The QoS information corresponding to
each service is merged according to the clustering result of
the k-means algorithm. After the merger, each abstract ser-
vice contains several concrete services. And the QoS infor-
mation of each concrete service includes four attribute
values, including cost, response time, reputation, and
availability.

4.3. Fireworks Algorithm. The fireworks algorithm (FWA) is
inspired by the fireworks explosion and presented by Tan
and Zhu [7]. The idea of the algorithm is simple, but the spe-
cific implementation is complicated. It is mainly composed
of four parts: explosion operator, mutation operator, map-
ping rule, and selection strategy. In the explosion phase,
explosion sparks will be generated. And the basic principle
is that if a firework’s fitness value is better than that of other
fireworks, it will have a smaller explosion range and generate
more explosion sparks. The purpose is to speed up the local
search ability near the current optimal solution. On the con-
trary, if a firework’s fitness value is relatively poor, it has an
extensive explosion range and generates a small number of
explosion sparks. The primary purpose is to enhance the
diversity of the population. In the mutation phase, Gaussian
sparks will be generated and increase the diversity of the
spark population. Meanwhile, unsatisfied Gaussian sparks

..

..
.
..

.

..
.
..

Input: composite servic service S

T1 T2 Tj Tn

S1 S2 Sj Sn

S1
2 S2

2 Sj
2 Sn

2

S1
2 S2

3 Sj
5 Sn

8

S1
1 S2

1 Sj
1 Sn

1

S1
m S2

m Sj
m Sn

m

Output: the reuslt of sel selection

Integer coding

2 3 ... 5 8

Figure 1: The process of service composition.

4 Mobile Information Systems



are mapped to the feasible space by the mapping rule. In the
selection phase, the algorithm will refer to the pros and cons
of sparks’ location and randomly keep a specified number of
sparks. The framework of the fireworks algorithm is shown
in Figure 3. For each generation of explosion, N number of
locations are selected; N fireworks are set off. And then, we
obtain the location of sparks and evaluate the quality of
the locations. The algorithm stops once the optimal solution
is found. On the contrary, we select N other locations from
the current fireworks and sparks as the next generation of
explosion.

4.4. Feasible Solution Encoding. Before using the algorithm
to implement service composition, each concrete service
must be coded. The integer coding method is adopted to
code them. Here, the concrete service in each abstract service
is coded starting from 1. If there are N services in an abstract
service, then ½1, 2, 3, 4,⋯,N� is the code of its services, and
the remaining abstract services are also used this way.
Figure 4 shows a feasible solution [1–3, 5], which means that
service 1 is selected from the first abstract service, service 5 is
selected from the second abstract service, service 3 is selected
from the third abstract service, and service 2 is selected from
the fourth abstract service.

4.5. Operator Analysis. Suppose the problem to be optimized is

Min f xð Þ ∈ R, x ∈Ω, ð4Þ

where Ω is the feasible region of the solution. Below, we will
introduce each part in detail.

4.5.1. Explosion Operator. The explosion operation is essen-
tial for the fireworks to generate sparks. Generally, fireworks
with better fitness values can generate more sparks in a
smaller area; it enhances the algorithm’s capability of local
search. Conversely, fireworks with poor fitness values can
only generate fewer sparks in a larger range; it is aimed at
increasing the diversity of sparks and improving the algo-
rithm’s global search capability.

In the FWA, the explosion amplitude of each firework
and the number of explosion sparks are calculated based
on its fitness value relative to other fireworks. For a firework
xi, the formulas for the explosion amplitude Ai and the
number of explosion sparks Si are defined as follows:

Ai = Â × f xið Þ − ymin + ε

∑N
i=1 f xið Þ − yminð Þ + ε

, ð5Þ

Si =M × ymax − f xið Þ + ε

∑N
i=1 ymax − f xið Þð Þ + ε

, ð6Þ

where ymin = min ð f ðxiÞÞ (i = 1, 2,⋯,N) is the minimum fit-
ness value in the current firework population and ymax =
max ð f ðxiÞÞ (i = 1, 2,⋯,N) is the maximum fitness value
in the current firework population. Â is a constant used to
adjust the amplitude of the explosion, M is also a constant
used to adjust the number of explosion sparks, and ε is the
minimum positive constant to avoid division by zero. In
order to dynamically balance the search ability and the abil-
ity to jump out of the local optimal solution of the FWA++,
FWA++ randomizes the total number of spark M and
amplitude of sparks Â in each generation.

Optimal solution

FWA-based service composition

Cluster 2
Embedding & cluster

QoS values

WSDL

QoS collector

…

Cluster 1

Figure 2: The framework of the proposed web service composition approach.

5Mobile Information Systems



Limit the fireworks with good fitness value to generate
too many explosion sparks. At the same time, fireworks with
poor fitness value will generate few explosion sparks, and the
number of sparks Si is determined by the following formula:

Ŝi =
round a ∗Mð Þ, Si < aM,
round b ∗Mð Þ, Si > bM, a < b < 1,
round Sið Þ, otherwise,

8>><
>>: ð7Þ

where a is lower bound for explosion amplitude, b is upper
bound for explosion amplitude, and roundð·Þ is a rounding
function based on the rounding principle.

When a firework explodes, the sparks can be affected
by the explosion in any z direction. The FWA uses a for-
mula to randomly obtain several dimensions affected by
the explosion:

z = round d∗ rand 0, 1ð Þð Þ, ð8Þ

where d is the dimension of a firework and rand ð0, 1Þ
represents a random number function conforming to a
uniform distribution on the interval ½0, 1�.

Assuming that the ith firework is xi = ðx1, x2,⋯, xNÞ, the
formula for generating sparks is

h = Ai ∗ rand −1, 1ð Þ,
exik = xik + h:

ð9Þ

4.5.2. Mutation Operator. Many sparks can be generated
through the explosion operation, but these sparks are mainly
around the original firework and have similar properties to
the original firework population. In order to keep the diver-
sity of the sparks, FWA introduces a mutation operator to
generate Gaussian sparks. The process of generating Gauss-
ian sparks is as follows: FWA selects a firework xi from the
firework population randomly, and then, it randomly selects
a certain number of dimensions for the firework to perform
Gaussian mutation operation. Performing Gaussian muta-
tion operation on the selected dimension k of a firework xi is

x̂ik = xik × e, ð10Þ

where e ~ n ð1, 1Þ, n ð1, 1Þ represents the Gaussian distribu-
tion with a mean value of 1 and variance of 1.

No

Select N locations

Optimal location
found

Evaluate the quality of the locations

Obtain the locations of sparks

Set off N fireworks at N locations

Select N initial locations

End

Yes

Figure 3: The framework of fireworks algorithm.

1 5 3 2

Figure 4: Feasible solution encoding format.

6 Mobile Information Systems



4.5.3. Mapping Rules. The explosion sparks and Gaussian
sparks may exceed the boundary range of feasible region Ω
. When the spark xi exceeds the boundary in dimension k,
it is mapped to a new location through the mapping rule
of formula (11):

x̂ik = xLB,k + ∣x̂ik∣% xUB,k − xLB,kð Þ, ð11Þ

where xUB,k and xLB,k are the upper and lower bounds of the
solution space on dimension k, respectively.

4.5.4. Selection Strategy. In FWA, in order to keep the excel-
lent individuals in the firework population to the next gener-
ation population, N individuals need to be selected from the
candidate set composed of explosion sparks, Gaussian
sparks, and fireworks in the current generation. Suppose that
the candidate set is k and the population size is N . The indi-
vidual with the smallest fitness value in the candidate set will
be determinedly selected to the next generation as a firework
(elite strategy), and the remaining N − 1 fireworks will be
selected from the candidate set. For candidate xi, the calcu-
lation formula of the selected probability is as follows:

p xið Þ = R xið Þ
∑xj∈KR xj

� � ,
R xið Þ = 〠

xj∈K
d xi − xj
� �

= 〠
x j∈K

∥xi − xj∥,
ð12Þ

where RðxiÞ is the sum of the distances between the current
individual xi and other individuals in the candidate set. pðxiÞ
is the probability of the individual being selected. In the can-
didate set, if an individual is far away from other individuals,
then the probability of it being selected is high. But the above
selection strategy is time-consuming, so FWA++ uses the
way of random selection to keep N − 1 individuals for the
next generation.

4.6. Fitness Function. The utility function is used to evaluate
the pros and cons of the composite service. In order to cal-
culate the fitness value of the current composite service,
the utility function is constructed as follows:

fitness = ∑r
k=1 qaggk ×wk

� �
∑l

j=1 qaggj ×wj

� � −D pð Þ,

D pð Þ = tc
tm

× 〠
4

i=1
wi ×

Δqi
qicon

� �2
" #

,

ð13Þ

where DðpÞ is the penalty coefficient, tc is the current gener-
ation, tm is the maximum generation, wi is the weight of the
ith QoS attribute of the composite service, Δqi is related to
the positive and negative of QoS attributes, and qicon is the
user’s constraint on the ith QoS attribute, which is offered
by users. The formula for calculating Δqi is as follows.

If the QoS attributes are positive attributes (such as rep-
utation and availability), then

Δqi =
qicon − qi, qi < qicon,
0, qi > qicon:

(
ð14Þ

If the QoS attributes are negative (such as price and response
time), then

Δqi =
qi − qicon, qi > qicon,
0, qi < qicon:

(
ð15Þ

4.7. Pseudocode of FWA++ and Computational Complexity.
The pseudocode of FWA++ is reported in Algorithm 1.
Meanwhile, in the FWA++, each generation consists of ini-
tialization operation, explosion operation, mutation opera-
tion, and selection operation. The initialization operation
includes initializing the population size and calculating the
fitness values, and the computational complexity is OðNÞ
and OðNÞ, respectively. N is the population size. The explo-
sion operation includes calculating the explosion amplitude,
calculating the number of explosion sparks, generating the
number of explosion sparks, and calculating the fitness
values, and the computational complexity is OðNÞ, OðNÞ,
OðŜiÞ, and OðŜiÞ, respectively. Ŝi is the number of explosion
sparks. The mutation operation includes generating Gauss-
ian sparks and calculating fitness values, and the computa-
tional complexity is OðMgÞ and OðMgÞ, respectively. The
select operation chooses N sparks from fireworks, explosion
sparks, and Gaussian sparks for the next generation, and the
computational complexity is OðN +Mg + ŜiÞ. Mg is the
number of Gaussian sparks in each generation. Therefore,
with the maximum number of generations T , the computa-
tional complexity of FWA++ is OðT × ð5N + 3Mg + 3ŜiÞÞ.

5. Experiments and Evaluation

All algorithms were developed in Python, and all experi-
ments were run on a PC equipped with AMD Ryzen 7
5800H CPU, 16GB memory, and Windows 10 OS.

5.1. Data Set. In order to verify the effectiveness of our
approach, we use QWS2.0 real-world data provided by
[36]. The data set includes 9 QoS attributes of 2500 real
web services. Since the data set does not include the price
attribute of services, the attribute value of the service price
is generated in a certain range (0.01-1.00) through a random
algorithm.

5.2. Baseline Approaches. In this paper, we select the follow-
ing well-known metaheuristic optimization algorithms to
compare with our algorithm:

(1) Fireworks Algorithm (FWA) [36]. FWA is a global
optimization algorithm inspired by exploding fire-
works. It has advantages in convergence speed and
global solution accuracy.

7Mobile Information Systems



(2) Particle Swarm Optimization with Corrective Proce-
dure (CPSO) [38]. In this approach, the corrective
procedure was introduced to upgrade particles effec-
tively. The results show that it greatly improves the
problems of premature convergence and local
optima.

(3) Modified Artificial Bee Colony (mABC) Algorithm
[32]. In this algorithm, a chaotic-based opposition
learning method is used to initialize the population,
and differential evolution (DE) is used to enhance
exploitation. mABC has robust scalability and high
convergence speed.

5.3. Parameter Settings. The following parameter settings
were used in our experiments: For fitness function, user
preference qccon, q

t
con, q

r
con, and qacon for four QoS attributes

are set to 0.50, 0.30, 0.80, and 0.80, respectively. The prefer-
ence values are provided by the user; if the user does not
provide the preference values, the default values are used.
The weights of four attributes are set to 0.2, 0.2, 0.3, and
0.3, respectively. For FWA++, the population size N is set
to 5,M is set to a random number between 50 and 80 in each
generation, Â = 40, a = 0:04, b = 0:8, Mg = 11, and the maxi-
mum number of generations (iterations) is set to 500. For

FWA, the population size N is set to 5, and M = 5, Â = 40,
a = 0:04, b = 0:8, Mg = 5, and the maximum number of gen-
erations (iterations) is set to 500. For CPSO, the population
size N is set to 30; the maximum number of iterations is set
to 500. For mABC, the population size N is set to 30, the
maximum number of iterations is set to 500, μ = 4, and
limit =DXN/2 (D is the dimension size).

5.4. Performance Comparison. In the experiments, the mean
value of 20 independent runs of each algorithm was obtained
to make a reasonable evaluation. And we fix the number of
abstract services to 4 with the same number of candidate ser-
vices and vary total candidate service from 100 to 500 to ver-
ify the effectiveness of FWA++.

Figure 5 shows the optimization results of the algorithms
that are introduced above where iteration varies from 50 to
500 and the total number of services fixed to 300. We can
see that as the iteration increases, the fitness value of the
FWA++ is decreasing rapidly. The fitness value of FWA++
is superior to FWA, mABC, and CPSO when iteration
reaches 100. The fitness hardly changes when the iteration
is between 250 and 500, which means that FWA++ has con-
verged. The result ensures that the performance of FWA++
outperforms other algorithms.

Input: N- population size,
M- total numbers of sparks generated by the fireworks,
Â- the maximum explosion amplitude,
Mg - the number of mutation sparks each generation

Output:Xbest (the best solution)
1: Initialize fireworks population P = Xiði = 1, 2,⋯,NÞ;
2: Calculate the fitness value of each firework and store them to the
3: candidate set.
4: whileðt ≤Max number of evolutionsÞdo
5: for each firework Xido
6: //in Eq. (5), Ai is dynamic in each generation.
7: //in Eq. (6), M is random in each generation.
8: Calculate the explosion amplitude Ai and the number Ŝi of explosion sparks
9: by Eqs. (5), (6), and (7);
10: Obtain locations of Ŝi sparks of the firework Xi using Eqs. (6), (7), and (8);
11: Calculate the fitness value of each explosion spark and store them to the
12: candidate set.
13: end for
14: fork = 1 to Mgdo
15: Randomly select an individual Xi from all fireworks;
16: Generate a Gaussian spark for the firework by Eq. (10);
17: Map the sparks exceeding the search range into the search space by Eq. (11);
18: Calculate the fitness value of each Gaussian spark and store them to the
19: candidate set.
20: end for
21: Select the best location and keep it for next explosion generation;
22: Randomly select N − 1 locations from the candidate set (two types of sparks
23: and the current fireworks);
24: t = t + 1;
25: end while
26:Return Xbest

Algorithm 1: The pseudocode of FWA++.

8 Mobile Information Systems



From Figure 6, we can observe the optimization results
where the total number of candidate services varies from
100 to 500. The fitness values of FWA++ are better than
other algorithms in all cases. Meanwhile, all algorithms
maintain a certain level of fitness value with the increase of

the number of candidate services, which means that the
number of candidate services has less influence on the algo-
rithm performance.

From Figure 7, optimization results can be seen obvi-
ously where the number of the total candidate service varies

0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
ar

ag
e fi

tn
es

s v
al

ue

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

FWA
FWA++

mABC
CPSO

50 100 150 200 250 300

Iteration

350 400 450 500

Figure 5: Comparison of optimization performance of different algorithms under different iterations.

FWA
FWA++

mABC
CPSO

100 200 300 400 500
The size of candidate servise

0.5

0.6

0.7

0.8

0.9

1.0

Av
ar

ag
e f

itn
es

s v
al

ue

1.1

1.2

1.3

1.4

1.5

Figure 6: Comparison of optimization performance of different algorithms under the different sizes of candidate service.

9Mobile Information Systems



from 100 to 500 and the total number of services fixed to
300. With the increasing number of candidate services, the
computation time is maintained at a certain level. What is
more, the computation time of FWA++ is least than other
algorithms in all of the cases. In addition, FWA needs more
computation time for the selection strategy, which is not
comparable with other algorithms.

5.5. Sensitivity Analysis of Parameters

5.5.1. Impact of N . The variable N represents the population
size, and the population size is the total number of individ-
uals in any generation. Usually, this parameter is artificially
set. The population size has an essential influence on the final
solution. In order to obtain a more appropriate population

FWA
FWA++

mABC
CPSO

100 200 300 400 500
The size of candidate service

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

C
om

pu
ta

tio
n 

tim
e (

s)

Figure 7: Comparison of computation time of different algorithms under the different sizes of candidate service.

FWA++

5 10 15 20 25 30 35 40 45 50
N

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Av
ar

ag
e f

itn
es

s v
al

ue

Figure 8: Comparison of optimization performance of different algorithms under the different sizes of the population.

10 Mobile Information Systems



size, we first set N between ½5, 50�. By setting different popula-
tion sizes, we obtain different fitness values. We consider fit-
ness values under different population sizes. Through
experiments, the fitness values under different population sizes
are shown in Figure 8; we found that the fitness values are
quite different under different population sizes. It shows that
the population size greatly influences the experimental results.
And we can observe that the population size is 5; a relatively
small fitness value is obtained. So, we set the population size
of FWA++ in our experiments to 5.

5.5.2. Impact of Mg. Mg represents the number of Gaussian
sparks. If Mg is too small, FWA++ cannot maintain the
diversity of the population. And it may fall into the local
optimum and is difficult to obtain the optimal solution.
Figure 9 shows the optimization results under different
Mg; we can see that Mg is 11 and the fitness value
obtained is the smallest, so we set Mg to 11 in our
experiments.

5.6. Statistical Analysis. We perform the Friedman test
[38–40] method and Wilcoxon signed rank test [41] method
for statistical analysis to prove that our proposed approach
is statistically significant. Table 1 shows the statistical anal-
ysis of the FWA++ compared with FWA, mABC, and
CPSO, where “NAC” represents the number of abstract
services, “MAC” represents the total number of concrete
services, p value < 0.05 represents two approaches have
distinct differences, and “+” represents that our approach
is preferred to another one. It can be seen now that the
p values of FWA++ are particularly low in all of the case
(NAC = 4, MAC varies from 100 to 500), which demon-
strate that FWA++ have distinct differences with FWA,

mABC, and CPSO. Furthermore, we can observe from
the “performance” index that the FWA++ algorithm has
the best performance among these algorithms. Therefore,
FWA++ is significantly effective.

6. Conclusions

Even though the number of services is increasing, it is diffi-
cult for a single service to complete complex tasks. There-
fore, we need to combine multiple services to complete
them. The efficiency of service composition has become a
problem to be solved.

This paper proposes a service composition approach
based on the improved fireworks algorithm (FWA++). We
adopt a random selection strategy, which greatly reduces
the running time of the algorithm. We balance the search
ability and the ability to jump out of the local optimal solu-
tion by dynamically adjusting the total number of sparks and
maximum amplitude of sparks for each generation. In this
way, the optimization results are more accurate. Compared

FWA++

5 10 15 20 25
Mg

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Av
ar

ag
e f

itn
es

s v
al

ue

Figure 9: Comparison of optimization performance of different algorithms under the different numbers of Gaussian sparks.

Table 1: Statistical analysis results of the proposed new algorithm
(FWA++) and comparison algorithms.

NAC NCS
FWA++/FWA FWA++/FWA FWA++/FWA

p value
performance

p value
performance

p value
performance

100 3:28E − 04 “+” 7:62E − 06 “+” 7:62E − 06 “+”

200 1:52E − 05 “+” 7:62E − 06 “+” 1:52E − 05 “+”

4 300 2:28E − 05 “+” 7:62E − 05 “+” 7:62E − 06 “+”

400 1:52E − 05 “+” 7:69E − 03 “+” 7:62E − 05 “+”

500 7:62E − 06 “+” 1:52E − 05 “+” 2:33E − 03 “+”

11Mobile Information Systems



with the existing algorithms, our algorithm has better
performance.

In the future, we hope to integrate more multidimen-
sional QoS attributes into the model, including waiting time,
throughput, and reliability. In addition, we hope that web
service composition will be more user-friendly, which can
be combined with service recommendations. It can analyze
user preferences through historical data and then recom-
mend more personalized composite services to users.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding authors upon request.

Conflicts of Interest

The authors declare no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this paper.

Acknowledgments

This work was supported in part by the Natural Science
Foundation of Zhejiang Province under Grant
LY22F020007 and Grant LY21F020002, in part by the Key
Research and Development Program Project of Zhejiang
Province under Grant 2019C01004 and Grant 2019C03123,
and in part by the Commonweal Project of Science and
Technology Department of Zhejiang Province under Grant
LGF19F020007.

References

[1] W. F. Pan, X. X. Xu, H. Ming, and C. K. Chang, “Clustering
Mashups by integrating structural and semantic similarities
using fuzzy AHP,” International Journal of Web Services
Research, vol. 18, no. 1, pp. 34–57, 2021.

[2] W. F. Pan and C. L. Chai, “Structure-aware Mashup service
clustering for cloud-based Internet of Things using genetic
algorithm based clustering algorithm,” Future Generation
Computer Systems, vol. 87, pp. 267–277, 2018.

[3] W. F. Pan, J. L. Dong, K. Liu, and J. Wang, “Topology and
topic-aware service clustering,” International Journal of Web
Services Research, vol. 15, no. 3, pp. 18–37, 2018.

[4] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimi-
zation,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[5] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Applied Soft Computing, vol. 8,
no. 1, pp. 687–697, 2008.

[6] K. M. Passino, “Bacterial foraging optimization,” International
Journal of Swarm Intelligence Research (IJSIR), vol. 1, no. 1,
pp. 1–16, 2010.

[7] Y. Tan and Y. Zhu, Fireworks Algorithm for Optimization[C]//
International Conference in Swarm Intelligence, Springer, Ber-
lin, Heidelberg, 2010.

[8] W. T. Pan, “A new fruit fly optimization algorithm: taking the
financial distress model as an example,” Knowledge-Based Sys-
tems, vol. 26, pp. 69–74, 2012.

[9] G. G. Wang, “Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization problems,”Meme-
tic Computing, vol. 10, no. 2, pp. 151–164, 2018.

[10] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and applica-
tions,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[11] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: a new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323,
2020.

[12] J. Tu, H. Chen, M. Wang, and A. H. Gandomi, “The colony
predation algorithm,” Journal of Bionic Engineering, vol. 18,
no. 3, pp. 674–710, 2021.

[13] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algo-
rithm,” in 2013 IEEE congress on evolutionary computation,
pp. 2069–2077, Cancun, Mexico, 2013.

[14] S. Zheng, A. Janecek, J. Li, and Y. Tan, “Dynamic search in
fireworks algorithm,” in 2014 IEEE congress on evolutionary
computation (CEC), pp. 3222–3229, Beijing, China, 2014.

[15] J. Li, S. Zheng, and Y. Tan, “Adaptive fireworks algorithm,” in
2014 IEEE congress on evolutionary computation (CEC),
pp. 3214–3221, Beijing, China, 2014.

[16] Y. W. Zhang, J. Wu, S. Zhao, and J. Tang, “Optimization ser-
vice composition based on improved firework algorithm,”
Computer Integrated Manufacturing Systems, vol. 22, no. 2,
pp. 422–432, 2016.

[17] J. Yu, H. Takagi, and Y. Tan, “Accelerating the Fireworks
Algorithm with an Estimated Convergence Point,” in Interna-
tional Conference on Swarm Intelligence, pp. 263–272,
Springer, Cham, 2018.

[18] Y. J. Zheng, X. L. Xu, H. F. Ling, and S. Y. Chen, “A hybrid fire-
works optimization method with differential evolution opera-
tors,” Neurocomputing, vol. 148, pp. 75–82, 2015.

[19] B. Zhang, M. X. Zhang, and Y. J. Zheng, “A hybrid
biogeography-based optimization and fireworks algorithm,”
in 2014 IEEE congress on evolutionary computation (CEC),
pp. 3200–3206, Beijing, China, 2014.

[20] A. L. Bolaji, A. A. Ahmad, and P. B. Shola, “Training of neural
network for pattern classification using fireworks algorithm,”
International Journal of System Assurance Engineering and
Management, vol. 9, no. 1, pp. 208–215, 2018.

[21] M. Zare, M. R. Narimani, M. Malekpour, R. Azizipanah-Abar-
ghooee, and V. Terzija, “Reserve constrained dynamic eco-
nomic dispatch in multi-area power systems: an improved
fireworks algorithm,” International Journal of Electrical Power
& Energy Systems, vol. 126, p. 106579, 2021.

[22] T. Gonsalves, “Feature subset optimization through the fire-
works algorithm,” International Journal of Electrical and Com-
puter Engineering (IJECE), vol. 4, no. 3, pp. 211–218, 2015.

[23] H. A. Bouarara, R. M. Hamou, A. Amine, and A. Rahmani, “A
fireworks algorithm for modern web information retrieval
with visual results mining,” International Journal of Swarm
Intelligence Research (IJSIR), vol. 6, no. 3, pp. 1–23, 2015.

[24] Y. C. Ho and D. L. Pepyne, “Simple explanation of the no-free-
lunch theorem and its implications,” Journal of Optimization
Theory and Applications, vol. 115, no. 3, pp. 549–570, 2002.

[25] Q. She, X. Wei, G. Nie, and D. Chen, “QoS-aware cloud service
composition: a systematic mapping study from the perspective
of computational intelligence,” Expert Systems with Applica-
tions, vol. 138, p. 112804, 2019.

12 Mobile Information Systems



[26] A. Klein, F. Ishikawa, and S. Honiden, “Efficient heuristic
approach with improved time complexity for QoS-aware ser-
vice composition,” in 2011 IEEE international conference on
web services, pp. 436–443, Washington, DC, USA, 2011.

[27] M. Liu, M. Wang, W. Shen, N. Luo, and J. Yan, “A quality of
service (QoS)-aware execution plan selection approach for a
service composition process,” Future Generation Computer
Systems, vol. 28, no. 7, pp. 1080–1089, 2012.

[28] C. F. Lin, R. K. Sheu, Y. S. Chang, and S. M. Yuan, “A relaxable
service selection algorithm for QoS-based web service compo-
sition,” Information and Software Technology, vol. 53, no. 12,
pp. 1370–1381, 2011.

[29] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An
approach for QoS-aware service composition based on genetic
algorithms,” in Proceedings of the 7th annual conference on
Genetic and evolutionary computation, pp. 1069–1075, Wash-
ington DC, USA, 2005.

[30] M. Tang and L. Ai, “A hybrid genetic algorithm for the optimal
constrained web service selection problem in web service com-
position,” in IEEE congress on evolutionary computation,
pp. 1–8, Barcelona, Spain, 2010.

[31] S. A. Ludwig, “Applying particle swarm optimization to
quality-of-service-driven web service composition,” in 2012
IEEE 26th international conference on advanced information
networking and applications, pp. 613–620, Fukuoka, Japan,
2012.

[32] M. Chandra and R. Niyogi, “Web service selection using mod-
ified artificial bee colony algorithm,” IEEE Access, vol. 7,
pp. 88673–88684, 2019.

[33] X. Xu, Q. Z. Sheng, Z. Wang, and L. Yao, “Novel artificial bee
colony algorithms for QoS-aware service selection,” IEEE
Transactions on Services Computing, vol. 12, no. 2, pp. 247–
261, 2019.

[34] C. Y. Li, J. Li, H. L. Chen, and A. A. Heidari, “Memetic Harris
Hawks optimization: developments and perspectives on pro-
ject scheduling and QoS-aware web service composition,”
Expert Systems with Applications, vol. 171, p. 114529, 2021.

[35] C. Li, J. Li, and H. Chen, “Ameta-heuristic-based approach for
QoS-aware service composition,” IEEE Access, vol. 8,
pp. 69579–69592, 2020.

[36] E. Al-Masri and Q. H. Mahmoud, “Qos-based discovery and
ranking of web services,” in 2007 16th international conference
on computer communications and networks, pp. 529–534,
Honolulu, HI, USA, 2007.

[37] B. Borowska, “An improved CPSO algorithm,” in 2016 XIth
international scientific and technical conference computer sci-
ences and information technologies (CSIT), pp. 1–3, Lviv,
Ukraine, 2016.

[38] A. Zhu, W. Chen, J. Zhang, X. Zong, W. Zhao, and Y. Xie,
“Investor immunization to Ponzi scheme diffusion in social
networks and financial risk analysis,” International Journal of
Modern Physics B, vol. 33, no. 11, p. 1950104, 2019.

[39] H. Li, T. Wang, W. F. Pan et al., “Mining key classes in Java
projects by examining a very small number of classes: a com-
plex network-based approach,” IEEE Access, vol. 9,
pp. 28076–28088, 2021.

[40] W. F. Pan, B. B. Song, K. S. Li, and K. J. Zhang, “Identifying key
classes in object-oriented software using generalized k-core
decomposition,” Future Generation Computer Systems,
vol. 81, pp. 188–202, 2018.

[41] W. F. Pan, H. Ming, Z. J. Yang, and T. Wang, “Comments on
"using k-core decomposition on class dependency networks to
improve bug prediction model's practical performance",” IEEE
Transactions on Software Engineering, 2022.

13Mobile Information Systems


	Web Service Composition Optimization with the Improved Fireworks Algorithm
	1. Introduction
	2. Related Work
	3. Problem Statement
	4. Proposed Approach
	4.1. The Whole Framework
	4.2. Data Preparation
	4.2.1. WSDL to Embedding
	4.2.2. Classify Web Services
	4.2.3. Merge Data

	4.3. Fireworks Algorithm
	4.4. Feasible Solution Encoding
	4.5. Operator Analysis
	4.5.1. Explosion Operator
	4.5.2. Mutation Operator
	4.5.3. Mapping Rules
	4.5.4. Selection Strategy

	4.6. Fitness Function
	4.7. Pseudocode of FWA++ and Computational Complexity

	5. Experiments and Evaluation
	5.1. Data Set
	5.2. Baseline Approaches
	5.3. Parameter Settings
	5.4. Performance Comparison
	5.5. Sensitivity Analysis of Parameters
	5.5.1. Impact of N
	5.5.2. Impact of Mg

	5.6. Statistical Analysis

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

