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�e fast popularization of the Internet of�ings (IoT) has caused the data scale to increase geometrically.�e data of IoTdevices is
processed on the cloud, but the way of processing data in the cloud center gradually causes problems, such as communication
delay, latency, and privacy leakage. Edge computing sinks some cloud center services to the edge of the device so that data
processing is completed in the terminal network, thereby realizing rapid data processing. At the same time, since long-distance
communication is avoided, user data is processed locally, so that user privacy data can be safely protected. A genetic algorithm is a
type of heuristic algorithm that is based on the genetic development of organisms in nature and has a high global optimization
capability. �e basic aim and objective of this paper is to study the existing edge computing framework along with computing
o�oading technology. �e genetic algorithm is investigated using multiedge computing-oriented collaborative computing
o�oading, which is helpful to the IoT’s growth as well as the generation and the use of data. �e use of a genetic algorithm based
on a color graph for load balancing on several edge servers is also investigated. In terms of the study’s performance evaluation, it is
obvious that our proposed approach produces superior results than previous studies.

1. Introduction

As the Internet of �ings (IoT) technology and mobile
communication technology are rapidly evolving, intelligent
mobile terminals such as smartphones, tablet computers,
and smart home devices have entered thousands of
households, which greatly facilitates people’s lives. At the
same time, the massive increase in mobile terminals will
inevitably bring about a sharp increase in mobile tra�c. �e
rapid development and application of the IoT have resulted
in a signi�cant increase in terminal data. �e traditional
computer architecture, which is based on a centralized data
center and the Internet as we know it, is not well adapted to
transferring continuously �owing rivers of real-world data.
However, the process of transferring data to the cloud for
evaluation has been plagued with faults. In one sense, the
application scenarios that need high-speed and real-time
data processing cannot be met by this method. For example,

in the event of an emergency, response measures should be
initiated immediately instead of being processed by the
cloud center. Data regarding user privacy, on the other hand,
that is sent to a cloud center may result in privacy leakage
during processing. For instance, the camera must transfer
user picture data to a cloud center for processing, which may
compromise user privacy. With the innovation of various
information services and terminal applications, users have
increasingly stringent requirements for network service
quality and network request delay.

In order to address these aforementioned challenges,
businesses are gradually adopting edge computing archi-
tecture. Edge computing can leverage model-driven intel-
ligent capabilities (storage, computing, converged networks,
etc.) to enable the actual realization of autonomous and
collaborative capabilities in the context of the intelligent
distribution architecture and platform of the network edge.
Not only that, but some gateways of edge computing can also
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connect the physical and digital world in the network
through the mutual conversion of its network connection
and related protocols, giving users more lightweight con-
nection management, quick data analysis, and practical
management tasks. Edge computing is the process of uti-
lizing an open platform in order to give the closest end
service by integrating application core capabilities on the
side close to the object or data source, storage, computing,
and network [1]. On the edge, edge computing applications
grow increasingly beneficial in terms of rapid responses,
application intelligence, privacy protection, and security, as
well as addressing the industry’s essential demands in real-
time business. Edge computing is a type of computer that lies
between or on top of physical objects and industrial con-
nections. Edge computing is a critical component of IoT
services [2–4]. Centralized cloud computing systems are
becoming more incompetent for analyzing and evaluating
the massive volumes of data generated from IoT devices
because of restricted network performance for data transfer
[5]. Preprocessing can considerablyminimize the quantity of
data that has to be delivered when edge computing pushes
computing responsibilities from the centralized cloud to the
edge side adjacent to IoT devices.

Edge computing is the process of allocating the central
cloud server’s processing capacity to edge nodes located
close to the user. Edge computing offers two significant
advantages over conventional cloud computing. First, edge
nodes can preprocess a large amount of data, and then send
it to the back-end cloud server. )e other is to boost cloud
server usage efficiency and optimize cloud assets by
endowing edge node devices with computing power [6].
Computing offloading technology was originally proposed
in mobile cloud computing. Mobile devices offload com-
puting-intensive tasks to a remote cloud computing point
for processing with the help of the core network, making up
for the shortcomings of mobile devices on different levels
including storage, computing power, and battery life. At the
same time, it breaks through the limitations of heteroge-
neous software and hardware of mobile device terminals.
However, because this technique necessitates sending a big
quantity of data to a cloud computing center located far
away from the mobile device, it consumes a significant
amount of network resources and causes a significant re-
quest delay [7, 8]. Edge computing “sinks” cloud services to
the edge of the network, so that edge servers are closer to
mobile terminal devices and can provide nearby computing
and storage resources. )e processing of some or all of the
activities is offloaded to the edge server, which can effectively
minimize network resource occupancy and request delay,
improving service quality and user experience.

Computing offloading (also called computing migra-
tion) [9] refers to the process of reasonably allocating the
computing tasks of mobile terminals to remote devices with
sufficient resources for processing according to a certain
offloading strategy. As one of the most essential aspects of
edge computing research, computing offloading is usually
described as the incompetence of resource-intensive and
delay-sensitive tasks on terminal devices with limited re-
sources and computing power. Part of it is delivered to the

cloud computing center or edge server for task computing,
thereby enhancing the task processing capability of the
mobile terminal device and improving the user experience
quality [10, 11]. )e computing offloading technology
makes up for the terminal device’s computing power,
storage resources, and energy efficiency. Of course, the edge
server has limited computing resources, and when a sig-
nificant number of offloading requests cannot be satisfied
during the high-load period, the 3-layer offloading calcu-
lation can also be performed through the joint cloud center
[12]. In addition, due to the emergence of edge collaborative
applications, whenmultiple users are in the same proximity,
the results of task offloading calculations can be reused
[13, 14].

In computing offloading technology, offloading deci-
sions need to consider the influence of network link quality,
terminal device performance, edge server performance, and
other factors. Specific questions include whether the newly
generated task can be offloaded, whether it is partially or
completely offloaded, and where to offload to perform the
computation. For the question of “partial or full offloading,”
according to whether the task can be divided, it is decided
whether to offload all tasks to the edge server for execution
or to offload some tasks and leave the rest for local execution.
For the question of “where to unload to perform tasks,” the
nature of the tasks needs to be considered. )e relationship
between tasks in the same application can be either parallel
or serial, and the sequence of tasks must be calculated based
on the order of the tasks.

)rough mathematical methodologies and computer
simulation activities, a genetic algorithm converts the
problem-solving mechanism into a mechanism comparable
to the mutation and crossover of chromosomal genes in
biological evolution. Better optimization outcomes may
generally be attained faster than certain standard optimi-
zation techniques when handling more difficult combina-
torial optimization challenges. Combinatorial optimization,
machine learning, signal processing, adaptive control, and
artificial life have all benefited from genetic algorithms.

)e basic contributions of this paper are as follows: to
study the existing edge computing framework along with
computing offloading technology. )e genetic algorithm is
explored on the basis of multiedge computing-oriented
collaborative computing offloading, which is beneficial to
the growth of the IoT as well as the creation and usage of
data. Also using the genetic algorithm based on the color
graph for the load balancing on different edge servers is
studied. For the performance evolution of this study, it is
crystal clear that our proposed model gives a better result as
compared to already existing work.

)e remaining paper is organized as follows: Section 2
sheds light on the background information for the con-
struction of a genetic algorithm system for a multiedge
collaborative computing offloading scheme. Section 3 is
about the proposed method and approaches toward load
balancing among different edge servers. Section 4 presents
the experimental and application analysis of the proposed
method. Section 5 finally concludes the theme of the whole
paper.
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2. Background Information for the
ConstructionofGeneticAlgorithmSystemfor
Multiedge Collaborative Computing
Offloading Scheme

2.1. Process of Calculating Offload. According to different
indicators, computing offloading can be divided into static
offloading and dynamic offloading, full offloading and
partial offloading, single-node offloading, and multi-node
offloading [15]. However, no matter what computing off-
loading strategy is adopted, in the environment of edge
computing, the computing offloading basically follows the
following steps, as shown in Figure 1.

(1) Node search: to offload intensive computing tasks on
mobile terminal devices to edge servers, the first step
is to search for available edge computing nodes in the
edge computing environment. )e number of
computing tasks offloaded to edge servers can be
divided into single-node offloading and multi-node
offloading. Single-node offloading only needs to
divide the computing task into two parts, which are
locally processed on the mobile device and on the
edge server respectively. Multi-node offloading
needs to consider the load situation, computing
power, and network communication status of the
mobile terminal device on different nodes.

(2) Task segmentation: task segmentation is to use an
appropriate algorithm to divide the tasks that need
to be processed and divide them into the local ex-
ecution part and the part that must be offloaded to
the edge server for execution. In general, the locally
executed part is generally program code that must be
executed locally, such as user interface, program
code for processing peripheral devices, and the like.
)e part executed on the edge server is usually some
program code with little interaction with local de-
vice information and a large amount of
computation.

(3) Unloading decision: the unloading decision is the
core part of computing unloading, which determines
whether to unload the program and which part of the
program to unload to the edge computing node.

(4) Program transmission: the offloaded computing
program is transferred to the edge computing nodes,
and the timeliness of the transmission depends on
the bandwidth conditions of the communication
network.

(5) Execute the calculation: the edge computing node
performs computation on the programs offloaded to
the edge server. Usually, a virtual machine solution is
adopted. )e edge server will start a virtual machine
for the offloaded task and the computing task will
reside in the virtual machine and execute until the
task operation ends.

(6) Return the operation result: the result after the ex-
ecution of the calculation processing is returned to

the mobile device terminal, so far, the uninstallation
process ends.

2.2. Network Structure of Edge Computing. Figure 2 shows
the typical architecture of the current edge computing
network. In the vertical direction, data is transmitted across
the wireless network and the core network using cloud-edge-
end 3-layer collaborative computing, while distributed
horizontal collaborative computing is done amongst devices
in the same layer. Cloud computing can provide computing
power and service resources on-demand, regardless of the
amount of data to be calculated, the time tolerance of tasks,
and the quality of network connections. Although the service
resources provided by edge computing are limited, com-
pared with remote cloud computing, it can use devices with
storage functions and computing distributed on the path of
the data source and cloud center to realize data pre-
processing and store the preprocessed data. )e data is
uploaded to the cloud center or the calculation result is
returned to the mobile terminal device.

3. Proposed Method and Approaches

3.1. Color and Unicolor Graphs. In graph theory, graph
coloring is the process of allocating colors to the vertices and
edges of a graph [16]. In this work, we look at the graph
coloring issue, which entails giving colors to vertices in such
a way that no two neighboring vertices in a graph have the
same color. When assigning colors to vertices, the goal of
graph coloring is to use as few colors as possible.

Petersen graphs, a special type of undirected graph with
ten vertices and fifteen edges, are shown in Figure 3 (with
colors and without colors). In Figure 3, there are two graphs:
A and B. )e A shows a graph without coloring while B
shows graphs with three different colors including blue,
green, and dark red. )ere is one condition that should be
satisfied while coloring this graph that no neighbor vertices
should include the same color and also by keeping the
number of colors as minimum as possible.

In our proposed strategy, we use graph coloring in order
to balance the load. By analogy, a graph’s vertices may be
thought of as terminal devices, and the graph’s edges can be
thought of as nearby discoverable terminal devices. Edge
servers are distinguished by their different graph colors. )e
goal of this strategy is to spread terminal device workloads
over numerous edge servers while reducing the amount of
the necessary edge servers. If we assign work from terminal
devices that are close together to superfluous edge servers
that are geometrically far away from the terminal devices, we
meet the real-time condition.

3.2.GA (GeneticAlgorithm). A genetic algorithm is a kind of
bionic optimal strategy for finding the optimal solution set
based on the assumption of evolution theory, and its essence
is a kind of efficient, parallel, and all-around search method.
A genetic algorithm is self-learning, self-adapting, and self-
optimizing algorithm based on Darwin’s theory of evolution,
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which can solve complicated problems [17]. A genetic al-
gorithm’s essential idea is [18] that it encodes a problem’s
solution to chromosomes abstractly in such a way that one

chromosome corresponds to one answer. )e person is then
ranked according to their fitness using an evaluation cri-
terion for each chromosome. People who are physically fit
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Figure 2: Edge computing network architecture diagram.
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are more likely to get chosen. )e next-generation pop-
ulation is chosen by the selection, crossover, mutation, and
so on until the fitness of the emerging individuals matches
the demands of the algorithm, and the final individual
obtained is the optimal solution to the problem we are
looking for. Figure 4 depicts the overall flow of the genetic
algorithm.

Selection operation, crossover operation, and mutation
operation are the three basic processes of a genetic algo-
rithm. Only by scientifically and rationally linking these
operation phases and constructingmatching operation plans
based on the individual issues to be solved, the algorithm’s
performance can be maximized and the best answer can be
obtained fast and correctly.

(a) (b)

Figure 3: Petersen graphs. (a) Without color. (b) With colors.
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Figure 4: Basic flow chart of genetic algorithm.
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3.3. Characteristics of GA. In the field of natural heuristic
algorithms, the genetic algorithm (GA) is a rather well-
knownmethod. It was initially proposed in the 1960s by John
Holland of the University of Michigan [17]. A genetic al-
gorithm, as the name implies, is an algorithm that is created
and executed using the principles of biological evolution and
inheritance in nature. With the passage of time and the
advancement of science and technology, computer perfor-
mance has increased significantly and GAs have progres-
sively made their way from the theoretical to the practical
realm. GAs have grown in popularity as a framework
technique for solving large optimization problems as a result
of scholarly study and are now widely employed in domains
such as computer science, commerce, and finance.

Scholars have presented numerous sorts of intelligent
optimization algorithms for various types of optimization
issues in various domains, such as particle swarm optimi-
zation and simulated annealing. )ese algorithms are built
on various theoretical foundations and are appropriate for
various domains, each with its own set of benefits and
drawbacks. )e legacy algorithm has the following features
as a sophisticated problem-solving algorithm.

First, the GA is a stochastic optimization algorithm. It
does not have a lot of mathematical prerequisites for solving
the optimization issue. )e inherent properties of the
problem do not need to be taken into account during the
search process because of its evolutionary characteristics
such as its ability to directly operate on the structural object,
discrete or continuous, linear or nonlinear, and the appli-
cation scenarios and scope are relatively broad.

)e second is that the GA directly uses the objective
function as the search heuristics and also the individual is
evaluated by using the fitness function [19], without any
other complicated derivation or supplementary data, and on
this basis, performs genetic operations to realize the indi-
vidual in the population. Information exchanges between
them, so that it is less reliant on problem-solving and has a
lot of flexibility.

)e GA’s third feature is that it uses a multi-point
parallel search approach rather than a single-point search,
which effectively prevents the search from convergent to the
local optimal solution. Simultaneously, it is exactly because
of the parallel settlement properties of genetic algorithms
that we may increase the algorithm’s operating speed via

Input to the algorithm: G such that G is the tuple of V and E
Output to the algorithm: A colored graph denoted by Gcolorand equal to (Vcolor E)
total_color← ran_num
fit_fun ← generate_fit_fun()
cond← F
max_gen← retrieve_parameters(gen)
call lifeBegin(total_color)
func lifeBegin(total_color)

counter� 0
for Vi �G do
Vi.color← generateRandomColor(total_color)

end for
while (cond� � F and counter≤max_gen)
call colorGraph(G, total_color)
cond← checkstopcondition()
counter← counter + 1

end while
if cond� � true then
for all Vi �G do

Vi.color← pickColor(fit_fun, total_color)
end for
total_color← total_color -
lifeBegin(total_color)

else
total_color� total_color + 1
lifeBegin(total_color)

end if
end func
func colorGraph(G, total_color)

evaluateFitness(G, fit_fun)
selection(G, fit_fun)
crossover(G, fit_fun)
mutation(G, fit_fun)

end func

ALGORITHM 1: Balancing distribution.
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wide-ranging parallel computing, allowing for quick opti-
mization in real-time.

Fourth, rather than working with the parameters
themselves, the GA works with the coding of parameters,
and its optimization principles are based on chance rather
than determinism. In essence, it is a comprehensive
framework for solving system optimization difficulties with a
lot of space for development, rather than merely an opti-
mization approach.

3.4. Balancing Distribution. )e distribution balancing
strategies in edge cloud computing setting for edge servers
are elaborated in Algorithm 1. Here, G denotes the graph
which is the tuple of vertices and edges and it is input to the
algorithm. )e output of the algorithm is a color graph
which is denoted by Gcolor.

Edge servers also verify whether they are capable of
executing the offloaded tasks while installing the suggested
load balancing algorithm. If the offloaded tasks are sup-
ported by the edge server, task execution is scheduled.
Otherwise, it sends the offloaded duties through extra
network traffic to the primary cloud server. )is strategy
avoids task failures that aren’t essential.

)e proposed approach takes into account the waiting
time for edge servers and the forwarding time for shifting
work from edge servers to the central cloud server when
determining whether to move workloads from edge servers
to the central cloud server. )e suggested approach does not
send offloaded work to the central cloud when the edge
server waiting time is smaller than the forwarding time for
offloading workloads from edge servers to the central cloud
server. Other than that, the offloaded duties are sent to the
main cloud server.

Here, in the balancing distribution algorithm, the term
ran_num means the random number which assigns to the
total_color variable. )e term fit_fun means the fitness
function and the value of generate_fit_fun() is assigned to it.
)e value of the cond variable is F which means false.

4. Experiment and Application Analysis

Using ECLDEVGSDEF Luna-SR 3 as a development IDE
implemented by big data center resource allocation code
[20], a large data center is selected as the experimental object,
and two real data sets in the large data center are randomly
selected as the resources of the big data center, namely, the
TYHUSGE data set and CFISNJA data set. To verify the

Table 1: Comparison of distribution balance.

Number of assignments (times) )e distribution balance of the experimental group Control group distribution balance
3 1.33 0.58
6 1.40 0.73
9 1.37 0.61
12 1.40 0.52
15 1.61 0.65
18 1.35 0.57
21 1.42 0.62
24 1.63 0.51
27 1.41 0.60
30 1.27 0.66

The distribution balance of the experimental group
Control group distribution balance
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Figure 5: Comparison of distribution balance.
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superiority and advancement of the proposed method of this
paper, )e experimental item is chosen in a circular region
with an 8-kilometer side length, which belongs to a wireless
network, and 250 communication nodes are set up.

Firstly, the genetic algorithm system based on the
multiedge collaborative computing offloading scheme in this
paper is used to allocate the resources of the big data center,
and the distribution balance is calculated by Kerterly soft-
ware, which is recorded as the experimental group.)en, the
traditional allocation method is used to allocate the re-
sources of the big data center. )e distribution equilibrium

was measured by Kerterly software and recorded as the
control group. )e content of the experiment is to test the
distribution balance of the two distribution methods. )e
higher the distribution balance, the higher the distribution
rationality of the distribution method. )e number of as-
signments is set to 30 and every 3 times it is used as a re-
cording node to record the experimental results.

Table 1 shows the outcomes of the concluding experi-
ments. )e distribution balance of the experimental group is
higher than that of the control group, as shown in Table 1. A
comparison chart of the experimental data, as shown in
Figures 5 and 6, is produced to more intuitively highlight the
difference between the two distribution strategies. Figure 5
shows that the distribution balance of the genetic algorithm
system for the multiedge collaborative computing offloading
scheme designed in this paper is significantly higher than
that of the control group, indicating that the genetic algo-
rithm system for the multiedge collaborative computing
offloading scheme designed in this paper can achieve a
balanced distribution of large data center resources and has
practical application value.

Figure 7 compares the load distribution of two groups,
namely, the control group and the experimental group. It
can be seen from Figure 6 that the distribution balance
strategy proposed in this work clearly wine the control
group.

5. Conclusion

Edge computing has the potential to perform various
functionalities such as low latency, high bandwidth, support
for massive connections, and information privacy and
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security protection. Edge computing-based IoT architecture
offers substantial benefits in terms of boosting communi-
cation security and lowering system resource usage. In this
paper, the genetic algorithm based on the multiedge col-
laborative computing offloading scheme and color graph is
studied, and the results show that the algorithm system has
the value of promotion. Computing offloading is one of the
critical technologies of edge computing, which mainly solves
the shortcomings of mobile terminal equipment in terms of
computing performance, resource storage, and energy effi-
ciency. Computing offloading decision-making is the key
topic of computing offloading technology research, and it
primarily focuses on the feasibility and utility of computing
offloading to users within the constraints of request time and
energy usage. Computing offloading can realize the off-
loading of computing tasks onmobile devices to edge servers
with rich computing resources, thereby improving com-
puting efficiency and reducing the burden onmobile devices.
Making good use of genetic algorithms and edge collabo-
rative computing offload is beneficial to our lives and allows
us to make better use of the network.
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