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�e bit error rate (BER) formula of the M-QAM system is derived under nonequally likely condition of the constellation points,
from which improving the BER performance of the M-QAM system by optimizing the probability distribution of constellation
points is identi�ed. Based on the analysis, the bit-level XOR method is employed to encrypt the image data and modify the
probability distribution of the constellation points. �e simulation results show that bit-level XOR is helpful to obtain a better
probability distribution of the 16-QAM system compared to that without bit XOR and hence can improve the BER performance of
the proposed OFDM transmission system. Simulation results based on test images over the AWGN channel further con�rm that
the reliability of the OFDM transmission system and the reconstructed quality of the compressed image are both signi�cantly
enhanced using bit-level XOR operation.

1. Introduction

With the development of Internet of �ings, increasing
multimedia sources, such as video, image, and audio, need to
be transmitted over wireless networks. Image data is one of
the main multimedia sources. However, the unprocessed
image data is usually very large. Hence, e�cient compres-
sion of image data is necessary to reduce the storage space
for transmission. Compressive sensing (CS) theory states
that if a signal with a size of N is K-sparse (K<<N) or
compressible, it can be sampled below the Nyquist rate at the
transmission side, while it can be exactly reconstructed with
these samples of the signal at the receiver side [1]. CS
technology has been widely applied in image compression,
image encryption, and image wireless transmission [2, 3].
However, compared with the conventional compression
method, such as JPEG and JPEG2000, image-based CS still
has a signi�cant gap in reconstruction quality [4]. How to
improve the reconstruction quality of image is still an im-
portant issue in the �eld of image CS. Although some
schemes have been proposed to improve the reconstruction
quality for image CS framework [5–7], improving the CS
performance by optimizing the property of modulated

signal, which is transformed from the compressed image
data, has been rarely studied, as far as we know. In this work,
our goal is to improve the performance, in terms of re-
construction quality and bit error rate (BER) metrics, of the
compressed image transmission system by optimizing the
property of modulated signal using bit-level XOR operation,
which can encrypt the image data and ensure the security of
the system at the same time.

1.1. Related Works. In image wireless communication sys-
tems, the resulting data generated from image CS needs to be
quantized and transformed into a bit stream and then
mapped into digital modulation symbols in order to be
transmitted over wireless channels. Orthogonal-frequency-
division multiplexing (OFDM) is a physical layer trans-
mission technique that is able to provide high data rates over
multipath fading channels. �ere are many image trans-
mission schemes for OFDM communication systems [8–12].
In [10], the authors studied the compressed image OFDM
transmission based on the well-known EZW or SPIHT al-
gorithms. �en to reduce the computational complexity of
CS, the block compressed sensing (BCS) method was
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proposed [13–17]. In [15], the transmission performance of
the block compressed-sensed image data over a wireless
channel was researched, and the simulation results show that
BCS with a proper block size can greatly reduce the com-
putational complexity with a slight peak signal-to-noise ratio
(PSNR) performance loss.

On the other hand, to protect sensitive personal infor-
mation, images usually need to be encrypted before trans-
mission. Many joint image compression-encryption
algorithms have been proposed and investigated to ensure
image security during transmission [18–20]. Generally,
digital image encryption mainly consists of two phases:
diffusion and permutation. Recently, the authors in [21]
proposed double-image encryption based on convolutional
neural network (CNN) and dynamic adaptive diffusion. .e
experiment results show the feasibility of the proposed
scheme. In [22], for a range-gated laser imaging system, a
joint compression and encryption scheme is proposed, in
which the measurement matrix is constructed by the
quantum cellular neural network (QCNN) hyperchaotic
system. .e simulation results show that the proposed
scheme can achieve secure transmission of image data. In
[22] and most other image encryption schemes, the key used
is usually generated from chaotic systems. However, chaotic
systems, especially high-dimensional chaotic systems, have
the disadvantage of slow calculation speed. To solve this
issue, the authors in [23] combined Least Squares Generative
Adversarial Networks (LSGAN) with the chaotic system to
produce a high-quality random number.

In addition, bit-level XOR operation is another com-
monly used image encrypted method [24–27], which has
been extensively employed to further enhance the security of
image encryption. Meanwhile, in recent years, the physical
layer security approach has attracted widespread attention.
Bit-level XOR operation is also used to enhance the security
of the physical layer in wireless communication systems
[28, 29]. However, in the above-mentioned image encryp-
tion schemes, the reliability performance of encrypted image
over wireless communication system has seldom been
considered. .e effect of bit-level XOR operation on the
reliability performance in a compressed image transmission
system also has not been researched.

Recently, probabilistic shaping (PS), especially
probabilistic amplitude shaping (PAS), has been used to
improve the transmission reliability of optical communi-
cations [30, 31]. In the PS scheme, the constellation points
with equidistant space are assigned different probabilities.
In [32], the authors researched the reliability of the
transmission of PS-based wireless communication systems
over Rayleigh fading channels. In [33], PS enabled by
precoding technique is used in a low-cost IM-DD system
for optical access networks. .ese studied results all
show that the transmission performance of the commu-
nication system can be optimized by PS. Inspired by the PS
idea, we utilize bit-level XOR operation to encrypt the
transmission data as well as optimize the probability dis-
tribution of the constellation points in order to improve
both the security and reliability of the compressed image
OFDM system.

1.2. Motivation and Contribution. In digital communication
systems, the compressed image data is transformed into bit
stream and thenmapped into digital modulation signals, such
as BPSK, QPSK, and M-QAM. In this work, bit-level XOR
operation is employed on the bit stream, which is then
mapped into square 16-QAM symbols. Generally, researchers
mainly focus on the security of using bit-level XOR operation
but rarely consider the impact of bit-level XOR operation on
the transmission performance of the compressed image.

In fact, because of the bit-level XOR operation, the
probability distribution of the constellation points is dif-
ferent from that without bit-level XOR. Moreover, through
the simulation, we find that the probability distribution with
bit-level XOR is better compared with that without bit-level
XOR, which is beneficial to improving the performance of
the OFDM communication system. We will study the effect
of bit-level XOR on the BER and PSNR performances of a
compressed image OFDM transmission system and aim to
propose a method to improve the security and reliability of
the compressed image OFDM system at the same time. .e
main contributions of this work are as follows:

(1) .e mathematical model of an M-QAM system
under nonequal probability distributions of con-
stellation points was developed, based on which the
BER formula of an M-QAM system was derived..e
theoretical analysis shows that optimizing the dis-
tribution of the constellation points can improve the
BER performance of the compressed image trans-
mission system.

(2) Bit-level XOR operation was used to encrypt the bit
stream generated from the BCS; meanwhile, this
operation changes the probability distribution of
constellation points of an M-QAM system. .rough
the simulation, we find that when bit XOR is
employed, the probabilities of constellation points
close to the origin are increased while the proba-
bilities of the ones far away from the origin are
decreased; this will lead to a reduction of the average
transmit power. For the given transmit power, the
reduction of average transmit power will increase the
scaling factor and reduce the influence of noise on
the whole constellation points. Hence, the trans-
mission performance of the communication system
will thus be improved.

(3) Simulations are carried out for the proposed com-
pressed image OFDM system, and the results show
that the BER performance and the image recon-
structed quality of the OFDM system are signifi-
cantly improved by using bit-level XOR operation
when compared with that without bit-level XOR
operation.

2. The Proposed System Principles

In this section, the BCS scheme [17] based on sparse discrete
cosine transform (DCT) matrix with a partial DCT mea-
surement matrix is introduced, and then an end-to-end
compressed image transmission scheme is presented.
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2.1. BCS Preliminaries. In BCS, the image with a size of N ×

N is divided into a number of nonoverlapping blocks with a
size of NB × NB, and the number of subblocks is
(N/NB) × (N/NB).

Let x
j
i with a size of NB × 1 denote the i-th column of the

j-th block image. An image signal is usually sparse in some
sparse bases, such as discrete wavelet transform (DWT) and
DCT; the original signal x

j

i can be transformed into a sparse
signal s

j

i by using a sparse matrix ΨB with a size of NB × NB.
.e transformation can be expressed as

x
j
i � ΨBs

j
i . (1)

.en the measurement process of BCS can be expressed
as [34]

y
j
i � ΦBΨBs

j
i

� As
j
i ,

(2)

where i � 1, 2, . . . , NB, ΦB, is the measurement matrix with
a size of MB × NB, and the matrix A � ΦBΨB with a size of
MB × NB is called the sensing matrix. After all block images
are measured, the obtained compressed data vectors form a
matrix Y with a size of MB × NB, which can be expressed as

Y � y1 y2 · · · yNB
 . (3)

In the receiver side, the sparse signal s
j
i can be recovered

by solving the following optimization problem:

s
j
i �

min
s

j

i
∈RN

s
j

i

�����

�����1

subject.to. yi � ΦBx
j
i � ΦBΨBs

j
i ,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where i � 1, . . . N

With the recovered sparse signal, the i-th column of the
j-th block image can be reconstructed via x

j
i � ΨBs

j
i . .us,

the entire j-th block image data can be formed as
Xj � x

j
1 x

j
2 · · · x

j
NB

 . After all block images are recon-
structed, the whole original image can in turn be recovered.
.ere are many reconstructed algorithms that can be used to
solve (4); in this work, the orthogonal matching pursuit
(OMP) [35] is employed. Additionally, in this work, the
conventional DCTmatrix with a size of NB × NB is used as
the sparse basis matrixΨB, and the partial DCTmatrix with a
size of MB × NB is used as the measurement matrix ΦB,
which will be introduced in the following.

2.2. Partial DCT Measurement Matrix. Similar to [17], a
partial chaotic DCT matrix is utilized to serve as the mea-
surement matrix in the BCS scheme. A conventional DCT
matrix can be expressed as

FN×N � fi,j 
N×N

, (5)

where F(i) denotes the i-row vector of the matrix; fi,j

denotes the i-row and j-column element of the matrix FN×N

and is defined as

fi,j � β(k)cos
πk(2n + 1)

2N
 , 0< n, k<N − 1, (6)

where β(k) is defined as

β(k) �

1
�
2

√ , k � 0,

1, k � 1, 2, . . . , N − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

.e partial DCT measurement matrix is obtained by
randomly selecting M rows from the conventional DCT
matrix FN×N, and the detailed process is as follows.

First, a Logistic map is employed to generate the key
sequence and scramble the conventional DCT matrix. .e
Logistic map is defined as follows [36]:

xn+1 � μxn 1 − xn( , (8)

where 3.569945627< μ≤ 4 is the control parameter and
xn ∈ [0, 1]. Based on (8), an integer vector
a � a(1) a(2) ... a(B)  can be obtained according to the
following formula:

a(n) � mod floor xn + 100(  × 1010 , N  + 1, (9)

where floor(x) returns the values of x to the nearest integers
less than or equal to x and mod(z, N) returns the remainder
of z divided by N.

.en a row scrambling operation is done to the matrix F

using the chaotic vector a, and the obtained scrambled DCT
matrix can be expressed as

FN×N � F(a(1)) F(a(2)) · · · F(a(N)) 
T
. (10)

Finally, the former M (M<N) rows of the matrix FN×N

are reserved to form a new matrix, which is used to serve as
the partial DCTmeasurement matrix. It can be expressed as

Φ � FM×N � F(a(1)) F(a(2)) · · · F(a(M)) 
T
. (11)

Based on the above method, we can obtain a mea-
surement matrix ΦB with a size of MB × NB for the BCS
framework.

2.3. Compressed Image OFDM Transmission System.
Figure 1 shows the compressed image OFDM transmission
system. .e main steps of signal processing in the trans-
mitter are summarized as follows:

Step 1. Block image compressed sampling: an image is di-
vided into many nonoverlapping blocks with a size of
NB × NB. Each block is processed according to (2) using the
same sparse DCTmatrix ΨB and partial DCTmeasurement
matrix ΦB.

Step 2. .e compressed image data is quantized and
transformed into a bit stream. .e quantifying operation is
according to the following formula:

Pi,j � floor
255 × Pi,j − min 

(max − min)
⎛⎝ ⎞⎠, (12)
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where max and min denote the maximum value and
minimum value of the measurement data matrix and Pi,j

represents the i-row and j-column element of the matrix.

Step 3. Bit-level XOR encryption: let
m � m0, m1 · · · , mK , k � k0, k1 · · · , kK , and
c � c0, c1 · · · , cK  be the information bit steam, the key
bit stream, and the encrypted bit stream, respectively, and
then the bit-level XOR encryption can be expressed as

c � m⊕ k, (13)

where ⊕ denotes the XOR operation. In this work, we
employ the Chebyshev map [37] to generate the key bit
stream k.

Step 4. Precoding operation: the encrypted bit stream is
mapped into a square 16-QAM symbol stream and forms a
symbol vector S � S(1) S(2) ... S(Ndata) . .en, the 16-
QAM symbol vector is precoded by a Discrete Hartley
transform (DHT) precoding matrix P according to reference
[38], and the resulting precoded signal vector can be
expressed as X � PS.

Step 5. IFFT operation: the precoded signal is processed by
an IFFT unit to produce a time domain OFDM signal.

In the receiver side, the corresponding inverse opera-
tions, such as FFT, inverse DHT precoding, and inverse
quantization, are employed. Finally, the original image is
recovered by OMP (orthogonal matching pursuit) recon-
structed algorithm.

3. Error Probability Analysis

3.1.ErrorProbabilityAnalysis underEquallyLikelyCondition.
In general, the theoretical error probability formula of an
M-QAM communication system is obtained by assuming
that the transmitted M-QAM symbols are equally likely and
the additive noise n follows the Gaussian probability dis-
tribution function; that is, p(x) � (1/

����
2πσ2

√
)e− (x− μ)2/2σ2

with μ � 0 and σ2 � (N0/2). In this case, the symbol error
rate (SER) Pe for the M-QAM system can be written as
follows [39]:

Pe �
4(

��
M

√
− 1)

��
M

√ Q

����������
3Es

(M − 1)N0



⎛⎝ ⎞⎠. (14)

When the 16-QAM modulation format is used, M is
equal to 16.

Figure 2 shows the square 16-QAM signal constellation
under Gray’s rule. Let the points along the I axis be

− 3d, − d, d 3d  and the points along the Q axis be the
same, and then each constellation point can be expressed as
si � sI

i + js
Q
i , where sI

i , s
Q
i ∈ − 3d, − d, d 3d . In this case,

the 16-QAM alphabet can be expressed as Γ �

± d ± jd, ± d ± j3d, ± 3d ± jd, ± 3d ± j3d , where
d �

�����
Es/10


. When the constellation points have equal

probability, the average energy/symbol of the 16-QAM
constellation is given by

Es �
1
16



M− 1

i�0
si

����
����
2

� 
16

i�1
d
2

× s
I
i 

2
+ s

Q
i 

2
 

� 10d
2
.

(15)

Inserting (15) into (14), the SER of 16-QAM under
equally likely condition can further be expressed as

Pe �
4(

��
M

√
− 1)

��
M

√ Q

����������

3 × 10d
2

(M − 1)N0



⎛⎝ ⎞⎠. (16)

3.2. Error Probability Analysis under Nonequally Likely
Condition. Recently, the researched results for PS [32, 33]
show that the reliable performance of M-QAM systems can
be improved by assigning different probabilities to the
M-QAM constellation points. In this case, the probability
distribution of M-QAM constellation points becomes
nonequally likely. .e SER of the 16-QAM system under a
nonequally likely condition can be derived by using a similar
method to that of an equally likely condition.

From Figure 2, it can be seen that the probability of error
of 16-QAM constellation points can be divided into three
cases [40]: first, four points that are inside (◇), with each
point having four nearest neighbors; second, four points that
are in the corner (Δ), with each point having two nearest
neighbors; third, four points that are not inside or in the
corner (O), with each point having three nearest neighbors.

For the first case (s5, s7, s13, and s15), the probability of
error of each point can be expressed as

Pe si(  � Py

n≥d

2
  + Px

n≥ d

n≥ d
 

− Px

n≥ d

2
  × Py

n≥d

2
 

� 2Q
d

2σ
  − Q

2 d

2σ
 .

(17)

For the second case (s0, s2, s8, and s10), the probability of
error of each point can be expressed as
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Figure 1: .e compressed image OFDM transmission system.

4 Mobile Information Systems



Pe si(  � 2Py

n≥d

2
  + Px

n≥ d

2
 

− 2Px

n≥ d

2
  × Py

n≥ d

2
 

� 3Q
d

2σ
  − 2Q

2 d

2σ
 .

(18)

For the third case (s1, s3, s4, s6, s9, s11, s12, and s14), the
probability of error of each point can be expressed as

Pe si(  � 2Py

n≥d

2
  + 2Px

n≥ d

2
 

− 4Px

n≥ d

2
  × Py

n≥ d

2
 

� 4Q
d

2σ
  − 4Q

2 d

2σ
 .

(19)

.erefore, the theoretical SER of the nonequally likely
16-QAM system can be expressed as

Pe � 
M− 1

i�o

Pe si(  × p si( , (20)

where p(si) denotes the occurrence probability of the
transmitted symbol si. Based on (20), it can be seen that SER
is related to the probability distribution of constellation
points p(si). When p(si) is given, the SER of a 16-QAM
system can be calculated according to (20).

On the other hand, the average energy/symbol of the 16-
QAM constellation Es under nonequally likely condition can
be obtained by

Es � 
M− 1

i�0
si

����
����
2
p si( . (21)

From (21), we can see that the average energy/symbol of
the 16-QAM constellation is also related to the probability
distribution of constellation points p(si).

3.3. Effect of Bit-Level XOR on SER of the Proposed System.
Bit-level XOR has been employed to achieve secure CS and
enhance the security of the physical layer signals. However,
the effect of bit-level XOR on the SER of the compressed
image transmission has seldom been studied. In this work,
the key generated from the Chebyshev map is used for the
bit-level XOR operation. .e Chebyshev map is defined as
follows [37]:

yn+1 � cos warccosyn( , (22)

where w≥ 20 is the control parameter and yn ∈ [− 1, 1].
Based on (22), a key bit stream k � k0, k1 · · · , kK  can be
generated according to the following formula:

kn �
1, yn ≥ 0,

0, yn ≤ 0.
 (23)

.e resulting key stream is used to encrypt the infor-
mation bit stream generated from the image CS by using a
bit-level XOR operation.

In our simulation experiment, a test image with a size of
256 × 256 is firstly compressively sampled with a com-
pressive ratio of 0.75, and the generated data is transformed
into information bit stream..en per K-bit information bits
are grouped to form a bit vector m � m0, m1 · · · , mK .
.e length of the key stream and the length of information
bit vector are both fixed at 2048. Next, each information bit
vector is encrypted to form an encrypted bit vector c

according to the bit-level XOR operation of (13). Finally, the
encrypted bit stream c is transformed into a 16-QAM
symbol stream according to the 16-QAM constellations with
Gray’s rule.

In the following, we will investigate the effect of bit-level
XOR on the SER of 16-QAM communication systems for
different compressed image data. Four test images with a size
of 256 × 256, as shown in Figure 3, are used to generate the
compressed image data.

First, the probability distributions of the 16-QAM
constellation points for different compressed image data
with and without bit-level XOR are obtained, as shown in
Table 1, where “w/” denotes “with bit-level XOR operation”
and “w/o” denotes “without bit-level XOR operation.” It can
be seen that the probability distribution of the 16-QAM
symbols directly generated from the compressed image is
nonequally likely. When bit-level XOR is employed to the
image data, the probability of each 16-QAM symbol further
changes, leading to a new probability distribution.

To intuitively show the change of the probability dis-
tribution when bit-level XOR operation is applied, Figures 4
and 5 give the probability distributions of the 16-QAM

I

Q
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Figure 2: 16-QAM constellations with Gray’s rule.
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Figure 3: Four test images used in the simulations. “Lena,” “Cameraman,” “Couple,” and “Mandrill” (from left to right).

Table 1: Probability distribution of the 16-QAM constellation points for images with and without bit XOR operation.

Image P (si)
Lena Cameraman Couple Mandrill

w/o w/ w/o w/ w/o w/ w/o w/
P (s0) 0.4752 0.1832 0.5505 0.1922 0.5205 0.1803 0.4358 0.1737
P (s1) 0.0551 0.021 0.0368 0.0154 0.0491 0.0215 0.0603 0.0252
P (s2) 0.0494 0.0154 0.0381 0.0148 0.0328 0.0133 0.0391 0.0141
P (s3) 0.0247 0.0208 0.0138 0.0171 0.0233 0.0215 0.0289 0.0294
P (s4) 0.0383 0.0123 0.0432 0.0145 0.0281 0.0112 0.0393 0.0147
P (s5) 0.0085 0.0092 0.0064 0.0074 0.0077 0.0083 0.0134 0.0141
P (s6) 0.0179 0.0061 0.0125 0.0049 0.0135 0.0054 0.0187 0.0084
P (s7) 0.0198 0.0511 0.0115 0.0286 0.0189 0.0446 0.0242 0.0606
P (s8) 0.0483 0.0185 0.0258 0.0100 0.0448 0.0195 0.0610 0.0250
P (s9) 0.0058 0.0172 0.0046 0.0118 0.0051 0.0128 0.0080 0.0180
P (s10) 0.0086 0.0081 0.0070 0.0060 0.0087 0.0082 0.0143 0.0139
P (s11) 0.0118 0.0370 0.0141 0.0420 0.0109 0.0276 0.0144 0.0388
P (s12) 0.0195 0.0242 0.0159 0.0134 0.0221 0.0245 0.0300 0.0301
P (s13) 0.0150 0.0488 0.0144 0.0377 0.0127 0.0315 0.0136 0.0379
P (s14) 0.0203 0.0548 0.0148 0.0365 0.0228 0.0521 0.0265 0.0632
P (s15) 0.1819 0.4724 0.1907 0.5476 0.1791 0.5175 0.1725 0.4329
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constellation points for “Lena” image and “Cameraman”
image, respectively. .e probability distribution figures for
the two images are similar. From Figures 4 and 5, we can see
that, compared with the case without bit XOR operation, the
probability of low energy symbols with bit-level XOR op-
eration is significantly increased; this will lead to a reduction
of the average signal power according to (21). .is means
that, under the same transmit power, the Euclidean distance
between constellation points will increase, and the effect of
noise on the whole constellation points will thus be reduced.
As a result, the BER performance of the compressed image
OFDM system with bit XOR can be improved compared
with that of the system without bit XOR.

Based on the probability distributions of 16-QAM
constellation points, the BER performance curves of the 16-
QAM transmission system for compressed “Lean” and
“Cameraman” with and without bit XOR are obtained
according to (16) and (20), as shown in Figure 6. .e
theoretical BER curve and the BER curve for random bits are
also given in Figure 6 for comparison.

From Figure 6, we can see that the compressed image
transmission with bit XOR provides a 2.3 dB SNR gain to
that without bit XOR at BER of 10− 3 level. In addition, the
BER of the 16-QAM system for random bits is the same as
the theoretical BER, as the probability distribution for
random bits is nearly equally likely. Most important, the
BER performance of the 16-QAM for compressed images
with bit-level XOR is better than the theoretical BER of the
16-QAM system.

.erefore, besides the improvement in security, the bit-
level XOR operation is also helpful to optimize the proba-
bility distribution of the 16-QAM system. .is will in turn
improve the BER performance and the reconstructed quality
of the proposed compressed image OFDM transmission
system, which will be confirmed by the following simulation
experiments.

4. Simulations and Results Analysis

In this section, BER and PSNR performances are studied for
the proposed OFDM system. For concise display of the
simulated curves, only “Lean” image and “Cameraman”
image with a size of 256 × 256 are used in the simulation;
nevertheless, similar results are obtained for other images,
such as “Couple” and “Mandrill.” .e main system pa-
rameters used in the simulation are given in Table 2. “Lean”
images and “Cameraman” image are first compressively
sampled and then transmitted over the Addition Gaussian
White Noise (AWGN) channel. .e size of each block image
is 16 × 16.

4.1. Comparison of BER and PSNR Performances. .e PSNR
is usually employed to evaluate the quality of the recon-
structed image in the CS framework and is defined as

PSNR � 10 · log10
M1 × N1 × 2552

MSE
 , (24)

where the mean square error (MSE) is defined as

MSE �
1

M1 × N1


M1− 1

i�0


N1− 1

j�0
(P(i, j) − Q(i, j))

2
, (25)

where M1 and N1 are the numbers of pixels of horizontal
and vertical coordinates of the image, respectively; P(i, j) and
Q(i, j) represent the gray matrices of the original image and
the reconstructed image, respectively.

In the simulation experiments, the original image is
processed by BCS based on DCT sparse matrix and chaotic
partial DHT measurement matrix. After BCS, the resulting
data is quantized and transformed into a bit stream. In the
signal transmission phase, the DHT precoding method is
used to reduce the PAPR of the OFDM signal. In the
simulation, a slight level of clipping is used, and the clipping
ratio λ, which is defined as (26), is set to be 12.

λ �
A
2

Pav

, (26)

where A2 represents the predefined peak power threshold
and Pav represents the average power of the signal before
clipping.
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Figure 6: BER performance of a 16-QAM system for different
probability distributions of constellation points.

Table 2: System parameters used in the simulation.

Modulation 16-QAM
Number of subcarriers 256
Length of cyclic prefix 32
Number of data subcarriers 192
Number of pilot symbols 8
Channel AWGN
Logistic map, x0 and μ 0.33 + 10− 15, 4
Chebyshev map, x0 and w 0.33 + 10− 15, 20
Subblock size 16 × 16
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Figure 7 shows the BER performance of the compressed
images over AWGN channels, where a 16-QAMmodulation
format is used. .e compressive ratio is fixed at 0.75. It can
be seen that bit-level XOR can improve the BER perfor-
mance of the proposed DHT precoded OFDM system in
AWGN channels. At BER� 10− 3 case, the bit-level XOR in
the proposed system can obtain approximately 3.5 dB gain
when compared to that without bit-level XOR. In addition,
the performance enhancement of the compressed “Lena”
image is more significant compared with that of the com-
pressed “Cameraman” image.

Figure 8 shows the PSNR performance of the com-
pressed images in the proposed system over the AWGN
channel. It can be seen that bit-level XOR can improve the
reconstructed quality of the image transmitted in the pro-
posed compressed image transmission system. When SNR is
smaller than 18 dB, using bit XOR in the proposed system
can obtain a 10 dB gain when compared to that of the case
without bit XOR for “Cameraman” image. When SNR is
higher than 18 dB, the gain obtained by using the bit XOR
becomes small. For “Lena” image, when SNR is higher than
12 dB, the PSNR performance with bit-level XOR is better
than that without bit XOR, and at SNR� 18 dB, the bit XOR
method can obtain a 5 dB PSNR gain. Similar to the
“Cameraman” test image, when SNR is higher than 18 dB,
the gains obtained by using bit-level XOR become small.

Figure 9 depicts the relationship between the PSNR and
the compression ratio in the proposed OFDM system with
an SNR of 18 dB. For “Lena” image, using bit XOR can
obtain about 3 dB gain at a compressive ratio of 0.5. For
“Cameraman” image, using bit XOR can obtain about 4 dB
gain at a compressive ratio of 0.7. .erefore, the bit XOR
used in the proposed precoded OFDM transmission system

can improve both the BER and PSNR performances over the
AWGN channel.

Figure 10 shows the reconstructed images of our pro-
posed system under SNR of 17 dB and a compressive ratio of
0.75..e reconstructed quality of both images when bit XOR
is used in the transmitter is much better than that without bit
XOR, which further confirms the performance enhancement
of using bit-level XOR operation in the compressed image
OFDM transmission system.
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Figure 7: BER performance of the compressed images in the
proposed system over the AWGN channel.
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Figure 8: PSNR performance of the compressed images in the
proposed system over the AWGN channel.
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in the proposed system over the AWGN channel.
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4.2. Influence of Block Size on System Performance. In this
section, we evaluate the effect of different block sizes on the
proposed system performance in terms of BER and PSNR
metrics. For image-based CS, to reduce the computational
complexity, the BCS scheme is usually used. .e idea of BCS
is that a whole image is divided into many small non-
overlapping image blocks, and each image block is sampled
column by column using a small measurement matrix. .e
results in the previous work [17] show that choosing a
proper block size is helpful to improve the reconstruction
performance of the image-based CS. In the following ex-
periments, image “Lean” with a size of 256 × 256 is used to
serve as the test image, and the compressive ratio is fixed at
0.75. .e BER and PSNR performance of BCS is evaluated
over the AWGN channel under four different block sizes,
128×128, 64× 64, 32× 32, and 16×16. All block images are
sampled using the same measurement matrix and recovered
using the same OMP algorithm.

Figure 11 shows the effect of block size on the BER
performance of the proposed compressed image transmis-
sion system using bit-level XOR. It can be seen that the BER

(a) (b)

(c) (d)

Figure 10: Reconstructed images at SNR of 17 dB. (a) Reconstructed “Lena” image without bit XOR. (b) Reconstructed “Lena” image with
bit XOR. (c) Reconstructed “Cameraman” image without bit XOR. (d) Reconstructed “Cameraman” image with bit XOR.
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Figure 11: BER performance of the compressed image in the
proposed system over the AWGN channel.
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performance of BCS with a block size of 64× 64 is the worst,
while the difference in BER performance for the other three
block sizes is very small, especially when SNR is less than
16 dB.

In addition, the effect of block size on PSNR perfor-
mance is also evaluated under four different block sizes, as
shown in Figure 12. We can see that the PSNR performance
of the image BCS scheme with a block size of 64× 64 is also
the worst among the four block sizes when the SNR value is
less than 20 dB, while the PSNR performance with a block
size of 16×16 is the best.

4.3. Computational Complexity Analysis of BCS Scheme.
To evaluate the computational complexity of image-based
CS, both CS encoder and CS decoder need to be considered.

For the whole image CS, the original image is com-
pressively sampled according to y � ΦΨs. .e size of the
sparse basis matrix Ψ is N × N, and the size of the mea-
surement matrix Φ is M × N (M<N). To obtain the
sampled signal y, the required number of additions and
multiplications is given by

Tadd � N
2
(N − 1) + M ×(N − 1)

� N
2

+ M (N − 1),
(27)

Tmul � N
3

+ M × N. (28)

On the other hand, for the BCS scheme, the original
image is divided into a number of nonoverlapping block
images with a size of NB × NB, and the number of block
images is (N/NB) × (N/NB). .e size of the measurement
matrix in BCS is MB × NB (MB <NB). To finish one block
image CS, the required number of additions and multipli-
cations is given by

TB,add � N
2
B NB − 1(  + MB × NB − 1( 

� N
2
B + MB  NB − 1( ,

TB,mul � N
3
B + MB × NB.

(29)

.erefore, for the whole image, the required total
number of additions and multiplications using BCS is given
by

Tall,B,add �
N

2

N
2
B N

2
B + MB  NB − 1(  

� N
2 1 + MB

N
2
B

  NB − 1( ,

(30)

Tall,B,mul �
N

2

N
2
B N

3
B + MB × NB 

� N
2 NB + MB

NB

 .

(31)

Based on the above analysis, the computational com-
plexity for the whole image CS and block image CS can be

evaluated, respectively. Take a test image with a size of
256× 256 as an example; if we assume N� 256, M� 192,
NB � 16, and MB � 12, the computational complexity of the
whole image CS needs 16760640 additions and 16826368
multiplications according to (27) and (28). Similarly, the
BCS scheme with a block size of 16 × 16 requires 1029120
additions and 1097728 multiplications according to (30) and
(31). Moreover, the BCS requires less storage space than that
of the whole image CS due to the small size of the sparse
basis matrix and measurement matrix in the BCS scheme.

On the other hand, the BCS scheme can also significantly
reduce the computational complexity of the CS decoder. In
this work, we use the same OMP reconstruction algorithms
for different block sizes of image for a fair comparison. .e
computational complexity of the CS decoder mainly de-
pends on the complexity of OMP strategies. .e standard
OMP always runs through K iterations to finish the re-
covery. For the whole image CS scheme, the complexity of
OMP is roughlyO(KMN) [41,42]..us, for the BCS scheme,
the complexity of OMP is roughly (N2/N2

B) · O(KBMBNB),
where KB<<NB. Hence, the complexity of the decoder in the
BCS scheme can be reduced compared with the whole image
CS.

.erefore, to achieve high performance of BCS with low
computational complexity, the block size needs to be
properly selected. In our simulation case, we find that the
BCS with a block size of 16×16 can obtain both good BER
and good PSNR performance with low computational
complexity. .ese experiment results are consistent with the
previous work in [17].

5. Conclusions

In our work, the BER formula of a 16-QAM system under a
nonequally likely condition is derived and analyzed, from
which we can see that the BER performance of the 16-QAM
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Figure 12: PSNR performance of the compressed image in the
proposed system over the AWGN channel.
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system can be improved by optimizing the probability
distribution of the constellation points. Based on the the-
oretical results, bit-level XOR operation is employed to
encrypt the image data and optimize the probability dis-
tribution of the 16-QAM constellation points. .e simula-
tion shows that the bit-level XOR is helpful to obtain better
probability distribution of the 16-QAM system compared
with that without bit XOR and hence can improve the BER
performance of the proposed OFDM transmission system.
Simulations of BER and PSNR performance for test images
over the AWGN channel further confirms the former the-
oretical analysis. In this paper, we mainly focus on the effect
of bit-level XOR on the BER performance and the recon-
structed quality of the compressed image in the OFDM
transmission system. In the near future, we would consider
how to combine bit-level XOR with other types of physical
layer security to further enhance the security and reliability
of compressed image transmission systems.
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