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Loop closure detection is an important part of SLAM (simultaneous location and mapping), which can e�ectively reduce the
cumulative error of the system after long period of exploration. �e existing loop closure detection methods are mainly to evenly
distribute the accumulated error in the robot trajectory, but the motion error of the actual robot is also related to its motion speed
and rotation angle, while the corrected motion trajectory of the robot is di�cult to match the real trajectory. Based on the analysis
of the mechanism of robot motion error, this paper proposes a novel loop closure detection method based on di�erentiable
manifold, which mainly includes real-time pose based on manifold tangent space and smooth motion trajectory model of robot
based on di�erential geometry. Firstly, we introduce the Frenet framework structure and establish the corresponding manifold
tangent space theory for the keyframe pose nodes. �e real-time problem of robot motion is equivalent to the problem of �nding
the optimal angle tangent vector. Secondly, the motion speed between keyframes is used to determine the characteristics of the
robot motion trajectory. We calculate the curvature and torsion of the curve composed of several nodes based on the manifold
tangent space and then combine the curve interpolation and �tting of the keyframe nodes to achieve the approximation of the
robot motion trajectory, and the smooth curve of the robot trajectory is obtained. Finally, the experiment veri�es that the method
in this paper can e�ectively ensure the continuity and smoothness of the robot’s trajectory, thereby reducing the cumulative error
of the system and improving the accuracy of loop closure detection.

1. Introduction

�e mobile robot creates an environment map based on its
own position and sensor data in unfamiliar scenes, which is
used to guide the robot’s autonomous positioning and navi-
gation, i.e., simultaneous location and mapping (SLAM) is the
key to the realization of autonomous mobile robots [1, 2]. For
example, autonomous mobile robots, such as mobile robots,
outdoor robots, and autonomous vehicle, need to know where
they are and their surroundings and maps in order to know
how to get there. SLAM technology mainly solves the problem
of map construction and real-time positioning of robots. It can
e�ectively guide robot movement and build a map of the
surrounding environment, so it is very important for auton-
omous mobile robots. Loop closure detection is an important
module in the SLAM system, and adding this module can
e�ectively reduce the cumulative error in the entire SLAM
system and form a globally consistent trajectory andmap [3–5].

Most of the existing loop closure detection methods are
based on the appearance of the scene andmainly include image
pairs-based methods [6–12], image sequences-based methods
[13–17], and image matching methods integrating spatial in-
formation [18–23]. �e image pairs-based methods use ef-
fective image retrieval and matching methods to analyze the
similarity between the current view image and the previously
collected image. If the similarity is greater than the set threshold
value, it will be selected as a closed-loop candidate frame.
Finally thewrong candidatematching frameswill be eliminated
by the method based on geometric veri�cation. However, the
features are arti�cially designed and can only cope with limited
scene changes in those methods.�ey are hard to extract high-
level information of image and cannot express complex
structural information, so it is di�cult to deal with drastic
appearance changes. �e image sequences-based methods
consider the time continuity of the images in SLAM, using the
feature matching method to dynamically segment the image
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sequence to find the local optimal match for each query image
in all image sequence segments. -e image sequences-based
methods mainly consider the temporal continuity of images in
SLAM. Firstly, the image sequence is dynamically divided into
multiple small sequence segments by the feature matching
method, and then all possible image pairs are queried in each
small sequence segment. Secondly, calculate their sequence
similarity and create the similarity matrix and then select the
local template sequence with the highest statistical score in this
matrix as the loop closure candidate region. Finally, using the
RANCAS algorithm to determine the final loop closure, the
RANSAC algorithm is used to calculate the transformation
matrix between the candidate loop closure frame and other
frames. If the transformation matrix is close enough to the
identity matrix, the loop closure is determined to be successful;
otherwise, it fails. But thesemethods do not consider the spatial
geometric relationship of features in the image, so they are
difficult to use when facing the change of viewpoint.-e image
matching method integrating spatial information is to con-
struct each image into a graph structure composed of several
nodes and edges and then calculate the similarity to determine
the optimal target image from the candidate images according
to their matrix information or topology information.

In recent years, the research of deep learning technology
in computer vision has also achieved rapid development and
has achieved great success in image classification, image
segmentation, image detection, and other fields [24–28].
Among them, the loop closure detection problem based on
deep learning can be regarded as a classification task based on
a large number of scene images in essence [29]. It is a feasible
idea to apply the ability of deep learning to learn feature rules
in a hierarchical manner in massive data to loop closure
detection. -e main contents of visual odometry include
extracting and matching image feature points and then es-
timating the camera motion between adjacent cameras based
on the extracted image information. Konda and Memisevic
[30] first proposed an end-to-end convolutional neural net-
work and used it in visual odometry, which can effectively
predict changes in camera direction and speed in the actual
environment. Constante et al. [31] found that the use of
convolutional neural networks can effectively estimate the
position between frames when the image is subject to illu-
mination changes and motion blur. Xia et al. [32] performed
feature extraction based on the AlexNet model and then used
the SVM algorithm for secondary training loop detection
model, which is more robust than artificially designed feature
algorithms. After extracting image features through the self-
encoding algorithm in unsupervised learning, Gao and Zhang
[33] used the similarity matrix as a measurement method for
loop detection and achieved good results on the dataset.-ere
are also loop closure detection methods with the aid of some
auxiliary tools such as gyroscopes, inertial navigation, and
other equipment [34, 35], which improves the accuracy but
also increases expensive costs.

However, most of the above methods calculate the
similarity between the images based on the image matching

method, and the cumulative errors in the robot movement
process are equally distributed to each keyframe or use
optimized methods (such as the bundle adjustment method)
to reduce these cumulative errors so as to obtain more
accurate pose estimation. Although the existing method can
detect the loop region, it does not consider that the accuracy
of the loop closure detection is also closely related to the
motion trajectory of the robot. Because themotion trajectory
of the robot in the real scene is complicated and changeable
due to various noises, when the robot is running for a long
time, there are errors between the real-time pose and the real
pose of the robot calculated only by the image matching
method. -e gradual accumulation will eventually cause the
robot’s trajectory to shift, making it difficult to form a
globally consistent trajectory and map.

In order to solve the above problems, in this paper, we
propose a loop closure detection method based on differ-
entiable manifold (Figure 1). Firstly, we obtain the relative
pose between the cameras according to the image feature
descriptor and use the image matching algorithm to de-
termine the keyframe pose nodes. Secondly, the Frenet
framework structure is introduced to establish the manifold
tangent space for each keyframe pose node. In this space, the
robot real-time motion problem is equivalent to solving the
optimal angle tangent vector problem to ensure the accuracy
and real-time performance of the robot motion. -irdly, the
robot motion trajectory is studied from coarse to fine. -e
simple robot motion trajectory is analogous to the first-order
differentiable manifold structure, while complex conditions
of trajectory can be composed of several simple segments.
We guaranteed the continuity and smoothness in each
trajectory segments to reduce the error of whole trajectory.
Finally, compared with the robot motion trajectory obtained
by only using the image matching method, the robot motion
trajectory obtained by this method is smoother and more
consistent with the real trajectory, which can effectively
reduce the cumulative error of the entire system. In general,
the contributions of this paper are as follows:

(1) -e trajectory model of the robot is established. -e
Frenet framework is introduced for each keyframe
pose node, and the manifold tangent space theory is
introduced on the basis of this framework. -e real-
timemotion problem of the robot is equivalent to the
problem of finding the optimal angle tangent vector
in the manifold tangent space to ensure the accuracy
and real time of robot movement.

(2) We propose a robot smooth motion trajectory model
based on differentiable manifold. We judge the
characteristics of the robot’s motion trajectory based
on the motion speed between adjacent frames and
use the continuity and smoothness in the differen-
tiable manifold according to its motion trajectory
characteristics. -en, the curvature and torsion of
the curve formed by several nodes are calculated.
Finally, the robot trajectory is approximated by the

2 Mobile Information Systems



curve interpolation and fitting method, and the
smooth curve of the robot trajectory is obtained.

-e rest of this paper is organized as follows. In the
second section, we summarize the related research on loop
closure detection. In the third section, we describe our
proposed method in detail. Our experimental design and
comparison results are presented in Section 4. Conclusions
and future work are discussed in Section 5.

2. Related Work

-is section discusses traditional loop closure detection
methods based on image matching, the topics of which
contain image pairs-based methods, image sequences-based
methods, and image matching methods integrating spatial
information.

2.1. Image Pairs-Based Methods. -e matching method
based on image pairs mainly use the bag of words (BoWs)
model [10] and its improved methods.-e purpose of bag of
words model is to describe an image with features on the
image. It mainly includes the following three steps. Firstly,
determining the words, which are the combination of a
certain type of features, and these words form a dictionary.
-en, describing the entire image with the occurrence of
words or histograms and converting an image into a vector
description. Finally, comparing the degree of similarity
described in the previous step. Its basic idea is to convert the

descriptors of local feature points of the image into words
and then form a dictionary from these words. Finally, word
bag vectors are counted for the words of the whole image.
-e distance between word bag vectors represents the dif-
ference between images. -ere are also manual keypoints
extracted from the image, and then the similarity between
feature descriptors is calculated. For example, SIFT (scale
invariant feature transform) algorithm [36] is used in FAB-
MAP [6] to extract features and generate corresponding
feature descriptors. Common image feature descriptors also
include SURF (speed up robot features) [37] and ORB
(oriented fast and rotating brief ) [38, 39]. In addition, there
have been many methods based on global image descriptors.
Protzel and Sunderhauf [40] applied GIST [41] to place
recognition, encoding the response of the image in different
directions and scales as a global description through Gabor
filters. Nourani-Vatani et al. [42] proposed the optical flow
information method (OFM) to detect and describe the
image; this is achieved by using the intensity values of
adjacent pixels. -ey used a Canny edge detector to sub-
divide the image into small patches of 20∗ 20 pixels,
extracted the robust flow direction based on the optical flow
signal, and then calculated optical flow based on the
Lucas–Kanade algorithm. Naseer et al. [43] modeled image
matching as a minimum cost flow problem in the data
association graph and matched image pairs using the hog
descriptor of the image. Negre Carrasco et al. [44] generated
a global signature for each image of video sequences by using
multiple orthogonal projections. Guclu and Can [45]
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Figure 1: (a) Schematic diagram of loop closure detection based on differentiable manifold. -e arrow indicates the direction of the robot.
-e blue trajectory represents the robot motion trajectory calculated only by the image matching algorithm, while the red trajectory
represents the robot motion trajectory in the real scene, and the black box marks the trajectory smoothness problem proposed in this paper.
(b) Black nodes represent keyframe pose nodes, C0 property means only connection, and C1 property means continuous and smooth.
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performed image histogram and autocorrelogram com-
parison between images separately to find a similar candi-
date group.

2.2. Image Sequences-Based Methods. Milford and Wyeth
[13] constructed short image sequences by using local
contrast enhancement processing method according to the
deviation matrix between image sequences and then found
local best matching for each query image in all short image
sequences. Based on the hidden Markov model, Hansen
and Browning [17] retrieved the dataset image sequence
matching the query image sequence by calculating the
image similarity probability value matrix. Bampis et al. [46]
segmented the image dataset into groups based on their
spatiotemporal proximity and then used sequence-visual-
word-vectors as a means to find matches between them.
Bampis et al. [15] dynamically segmented the robot’s
motion according to the picture content and created se-
quence-vision-word vectors combined with the visual
words in each sequence. Abdollahyan et al. [16] modeled
image sequences to form strings by using directed acyclic
graph and then used partial order kernel to compare
strings. Tsintotas et al. [18] dynamically divided the input
image stream and assigned with VWs by using an online
clustering algorithm. Arroyo et al. [47] used all possible
image pairs in the template to calculate the sequence
similarity, queried the sequence to create a similarity
matrix, and then selected the local template sequence with
the highest statistical score from the matrix as the loop
closure candidate. Rodrigues et al. [48] proposed a three-
layer sequence-based loop closure detection method. -e
first layer uses the recently visited place sequence as the
query to search for candidate sequences in the topological
map composed of previously visited places. In the second
layer, among all the candidate sequences, the candidate
sequences that are consistent with the previous response
time are selected for matching. Finally, the image sequence
belonging to the query sequence is matched with the
candidate sequence selected by the second layer.

2.3. Spatial-Based Methods. Finman et al. [21] performed a
convolution operation in the dataset to detect features and
connected these features to construct a sparse object map for
location recognition. Chen et al. [19] used the method of
scene segmentation to integrate the visual features of the
fusion spatial information into BoW and then set up a
k-means hierarchical association dictionary to associate
multiple visual words. Valigi et al. [20] proposed to observe
the underlying landmarks together, then connect the two
nodes, and model the image as a graph structure composed
of nodes and edges based on co-visibility graph. Gawel et al.
[49] utilized a graph structure to encode the spatial rela-
tionship of landmark regions, and their model had strong
robustness against viewpoint changes. An et al. [22] used the
convolutional neural network (CNN) and SURF [37] to
extract frame features and then constructed the graph vo-
cabulary based on the hierarchical navigable small world

(HNSW) graph to effectively detect loop areas. Wang et al.
[50] introduced semantic topological graphs to encode the
spatial information of landmarks and used random walk
descriptors to characterize topological graphs for graph
matching. Gao and Zhang [51] proposed a multi-order
graph matching method for loop closure detection in ad-
dition to vector-based descriptors.

How to effectively reduce the cumulative error in robot
motion has always been a problem studied by researchers.
Although the above methods can detect the area where the
loop occurs, they mostly use methods (such as bundle ad-
justment [52]) to spread the cumulative error of the robot to
each keyframe for optimizing the entire robot motion tra-
jectory and reducing the error of the entire system. However,
the actual motion trajectory of the robot is mainly affected by
its motion speed and rotation angle, while the existing
methods are difficult to ensure the continuous smoothness
of the robot motion trajectory. To solve the above-men-
tioned problems, this paper proposes a loop closure de-
tection method based on differentiable manifolds. -is
method mainly includes the following. Firstly, the accuracy
and real-time performance of the robot movement pose are
guaranteed in the manifold tangent space. Secondly, we
judge the characteristics of the robot’s motion trajectory
based on the motion velocity between adjacent frames and
reasonably use the continuity and smoothness in the dif-
ferentiable manifold according to its motion trajectory
characteristics. -en, the curvature and torsion of the curve
formed by several nodes are calculated, and the curve in-
terpolation and fitting method are combined to achieve the
approximation of the robot’s motion trajectory so as to make
it consistent with the real trajectory, thereby solving the
problem that the pose trajectory calculated by the image
matching algorithm is not smooth enough. Finally, in the
mobile robot visual loop closure detection experiment, the
method in this paper can be used effectively to ensure the
smoothness of the robot’s motion trajectory, thereby re-
ducing the cumulative error of the system and improving the
accuracy of loop closure detection.

3. Our Approach

-e existing loop closure detection methods mainly use a
method such as the bundle adjustment [53] to distribute
the cumulative error of the robot motion trajectory to the
keyframes for optimizing the entire robot trajectory.
However, the motion error of the robot in the real scene is
also related to its motion speed and rotation angle. It is
difficult to effectively reduce the cumulative error of the
system only by relying on simple keyframe amortization
strategies or optimization methods. -is paper proposes a
novel loop closure detection method based on differen-
tiable manifold through the analysis of the mechanism of
robot motion error, which mainly includes real-time pose
based on manifold tangent space and smooth motion
trajectory model of robot based on differential geometry.
-e method used in this paper will be described in detail
below.
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3.1. Robot Motion Trajectory Model. -e trajectory equation
of robot movement in space can be abstracted as

S � S(t) � S
1
(t), S

2
(t), . . . , S

n
(t)􏽮 􏽯(t ∈ I), (1)

where Si(t) represents the pose of the camera at i at time t
and I represents the temporal and spatial region. In the
process of robot motion, this paper introduces a new frame
of coordinate system for the robot motion trajectory
equation S, namely, the Frenet frame (Figure 2), and the
specific expression is as follows:

T �
dS

dt
,

B � T × N,

N � B × T.

(2)

Among them, T, N, and B, respectively, represent the
tangent vector, main normal vector, and binormal normal
vector of the robot motion trajectory curve. dS/dt represents
the first derivative of the trajectory equation S with respect to
time t.

Since the robot is doing a rigid body motion which is
constantly moving, when the robot moves along the curve,
the frame P; T, N, B{ } also moves as a rigid body, which is
more consistent with the robot’s motion state. Based on this
framework, we can accurately describe the robot motion
state (motion speed and rotation angle). Moreover, since the
motion state of the robot in a certain pose node will be
affected by the neighboring state, the introduction of this
framework is convenient for us to study the neighborhood
information of each pose node on the trajectory equation S.

3.2. Real-Time Motion Based on Manifold Tangent Space.
In the process of robot motion, compared with European
space, the characteristics of curve can be better described in
manifold tangent space; especially in describing the
smoothness of curve, manifold tangent space has more
advantages, and the actual motion of robot is also a curve
with different smoothness. In Section 3.1, we gave the
general form of the robot’s motion trajectory, but the robot
will encounter a basic and important problem in the actual
operation process, namely, how to ensure the accurate and
real-time movement of the robot. In order to solve this
problem, we introduce the manifold tangent space and seek
the optimal tangent vector in it, so that the robot can not
only ensure the accuracy of the motion when moving but
also help in accurately calculating the next pose and con-
sequently solving the offline issues.

Given the robot motion trajectory S, as shown in Fig-
ure 3, the corresponding tangent space will be found at each
pose node p of the trajectory as follows:

TpM �
dc(0)

dt
|c ∈ C

∞
R
1
, M􏼐 􏼑, c(0) � p ∈M􏼨 􏼩, (3)

where TpM represents the tangent space of the surfaceM at
the point p, TpM is the set of tangent vectors of all the

smooth curves passing through the point p on M, dc(0)/dt

represents the tangent vector of M at point p, and c is a
smooth curve on the surface M that passes through point P,
that is, c ∈ C∞(R1, M), c(0) � p. Essentially speaking, the
tangent space is the space generated by the infinite linear
expansion of the infinitesimal neighborhood of M at the
point p (it is a flat infinitesimal n-dimensional vector space).

When the robot is moving, the pose pt on the trajectory
at time t will be affected by other nodes in its neighborhood
(mainly adjacent moments). -e prediction of the pose is to
screen out the next motion state ψ from ψ1,ψ2, . . . ,ψi. When
selecting the optimal tangent vector ψ in this manifold
tangent space, not only can the robot face the correct ori-
entation to avoid offline problems but also the precise pose
of the robot at the next moment can be obtained.

3.3. Smooth Motion Trajectory of Robot Based on Differential
Geometry. After Section 3.2, we ensured the accuracy and
real time of the robot’s trajectory, but there is still a problem
to be solved, how to optimize the robot’s trajectory to match
the real trajectory as much as possible. As shown in Figure 2,
it can be found that in the real scene, the robot performs a
linear motion between the keyframe pose nodes 1 and 2,
while the trajectory calculated by the image matching al-
gorithm is a straight line. It is more obvious that in real
scenes the robot performs curve motions between nodes 2
and 3 and between nodes 3 and 4. Although the existing
calculation methods calculated are also curves, the error
between them and the actual trajectory is too large. As the
robot moves incrementally, the errors of every frame ac-
cumulate, and these accumulated errors will eventually lead
to the collapse of the entire SLAM system. -e reason is that
the traditional method simply connects the pose nodes
between the keyframes. -ey are composed of a segment of
broken lines, which makes it difficult to ensure the
smoothness of the robot’s trajectory. -e properties of the
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Figure 2: Schematic diagram of robot trajectory. -e solid line
represents the real motion trajectory of the robot, and the dotted
line represents the motion trajectory of the robot calculated only by
the image matching algorithm, while the arrow represents the
motion direction of the robot. -e Frenet framework is composed
of {T, (N) B}, where T, N, and B represent tangent vector, the main
normal vector, and the binormal vector, respectively.
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differentiable manifold used in this paper can be effectively
ensure the smoothness of robot movement.

In the Frenet framework, each node on the trajectory
represents the pose of keyframe. Since the shape of the
robot’s motion trajectory is closely related to the robot’s
motion speed and the rotation angle, we judge the char-
acteristics of the robot’s motion trajectory based on the
motion speed of the adjacent keyframe and the curvature of
the composition trajectory. -e specific methods are as
follows.

For any two adjacent pose nodes P(t) and P(t + Δt) on
the robot motion trajectory S (as shown in Figure 4), the
corresponding binormal vectors of the two are B(t) and
B(t + Δt) , respectively, and Δφ is the angle between them.
-e torsion rate is expressed as

τ � lim
Δt⟶0

1
|Δt|

|B(t + Δt) − B(t)|, (4)

thanks to |B(t + Δt) − B(t)| � 2|sinΔφ/2|, when Δt⟶ 0,
Δφ⟶ 0, so sin(Δφ/2)/(Δφ/2)⟶ 1, and the above
equation is equivalent to

|τ| � lim
Δt⟶0

Δφ
Δt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (5)

|τ| in (6) describes the degree of distortion of the robot
motion trajectory S, which is closely related to the robot
motion speed. -e robot moves at different speeds at dif-
ferent times. When the speed is faster, the value of τ is larger,
vice versa. Specifically, when the value of τ is smaller, the
robot moves at a slower speed, and the trajectory of the robot
composed of keyframe poses can only achieve the C0
property and cannot reach the degree of smoothness. When
the value of τ is larger, the robot moves faster, and the robot
motion trajectory composed of keyframe pose nodes can
ensure not only C0 property but also C1 property, which can
ensure the continuous smoothness of the robot’s motion.

However, since the motion of the robot in the real scene
is complex and changeable, the motion trajectory charac-
teristics of the robot cannot be well described only according
to the speed of the robot. For example, when the robot is

moving with a relatively large corner change, the keyframe
speed at this time is sometimes fast or slow, and it is hard to
accurately describe the keyframe pose at this moment
according to the speed. However, considering that the robot
motion trajectory is also related to the curvature composed
of the keyframe pose nodes, we can also add a standard
quantity describing the robot motion trajectory: curvature,
so as to make the analysis of the robot motion trajectory
characteristics more reasonable.

Given two adjacent pose nodesP(t) and P(t + Δt) on the
trajectory curve S of the robot, their corresponding unit
tangent vectors are T(t) and T(t + Δt), respectively, Δθ is
the angle between them, and the curvature expression is

τ � lim
Δt⟶0

1
|Δt|

|T(t + Δt) − T(t)|, (6)

owing to |T(t + Δt) − T(t)| � 2|sinΔθ/2|; when Δt⟶ 0,
Δθ⟶ 0, sin(Δθ/2)/(Δθ/2)⟶ 1, and the above equation
is equivalent to

τ � lim
Δt⟶0

Δθ
Δt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (7)

κ in formula (8) describes the degree of curvature of the
robot’s motion trajectory S. When it is difficult to judge the
motion characteristics of the keyframe pose nodes at the
corners based on the speed, we reasonably classify them
according to the curvature value of their constituent
curves. More specifically, the robot motion trajectory is
analyzed according to the robot motion speed τ and the
curvature κ composed of the keyframe pose nodes. -en,
according to the analysis results, it is analyzed to select the
appropriate trajectory shape between keyframes.
According to their different characteristics, the common
trajectories of robot can be roughly divided into parabola,
hyperbola, sine-cosine curve, etc. How to choose the
optimal robot motion trajectory is also the problem that
we need to discuss below.

-e shape of the robot’s trajectory in space can be seen as
the intersection of two curved surfaces, namely:

F1(x, y, z) � 0

F2(x, y, z) � 0
􏼨 , (8)

where Fi(x, y, z) represents the i-th surface equation. -is
paper uses simple to complex ideas to solve this problem.
First, we project it to the xoy plane, the intersection line of
the two plane F1(x, y, z) � 0 and the plane F2(x, y, 0) � 0
constitute the trajectory of the robot. In this plane, we study
the shape of the robot’s trajectory and give its implicit ex-
pression, namely,

F(x, y) � α(n,0)x
n

+ α(0,n)y
n

+ · · · α(i,j)x
i
y

j
+ · · · + α(0,0),

(9)

where F(x, y) is the trajectory of the robot in the xoy plane,
α(n,0) is a binary representation, and it represents the co-
efficient before the polynomial. -e coefficients
α(n,0), α(0,n), . . . , α(i,j) can be used to calculate the corre-
sponding trajectory shape of the robot, which can be

S
M

pt+1

pt–1

pt

ψi

γ

ψ3 ψ2
ψ1

TpM

Figure 3: Schematic diagram of manifold tangent space. S rep-
resents the motion trajectory of the robot, p represents a certain
pose node on the trajectory, and ψ1,ψ2, . . . ,ψi, respectively, cor-
respond to different tangent vectors in the manifold tangent space,
indicating different robot motion directions.
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similarly projected on the yoz plane and xoz plane, and the
trajectory equation of the movement in other planes can be
obtained.

When the robot moves in the xyz plane, its trajectory
form can also be given, namely,

F(x, y, z) � β(n,0,0)x
n

+ β(0,n,0)y
n

+ β(0,0,n)z
n

+ . . . · · · β(i,j,k)x
i
y

j
z

k
+ · · · + β(0,0,0), (10)

where F(x, y, z) is the implicit expression of the robot’s
trajectory in the xyz plane. A(i,j,k) is the triplet repre-
sentation, representing the coefficient before the poly-
nomial. -e coefficients β(n,0,0), β(0,n,0), β(0,0,n), . . . , β(i,j,k)

can be used to calculate the trajectory shape of the robot.
At the same time, different trajectory structures are se-
lected and their fitting coefficients are calculated to de-
termine the best trajectory of the robot, so that the fitted
trajectory of the robot matches the real trajectory as much
as possible.

Since the cubic B-spline curve is a smooth curve and has
continuous second-order derivative, it is accepted by various
disciplines because of its good smoothness. -erefore, this
method is also used in this paper tomake the robot trajectory
obtained through keyframe pose nodes as smooth as pos-
sible. -e detailed process is as follows.

Given n + 1 control points Fi(i � 0, 1, . . . , n), the corre-
sponding expression of the B-spline curve is as follows:

C(u) � 􏽘
n

t�0
PtNt,k(u). (11)

In formula (12), Nt,k(u) is the harmonic function; be-
cause it exists as the basis of the function, it is also called the
basis function, and according to the recursive formula, it can
be equivalent to

Nt,k(u) �
u − mt

mt+k−1 − mt

Nt,k−1(u) +
mt+k

mt+k − mt+1
Nt+1,k−1(u).

(12)

When u ∈ [ti, ti + 1), Ni,1 � 1; otherwise, Ni,1 � 0.
Among them, ti represents the node value, and the node
used is a nondecreasing sequence, which constitutes the
node vector of the K-order B-spline function.

It should be noted that in our keyframe-based robot
motion trajectory processing, it may not support us to
perform interpolation or fitting processing due to insuffi-
cient numbers. At this time, we need to manually select some

frames and insert them. We put these artificially selected
ones which are called quasi-keyframes, and the selection
principles of quasi-keyframes are as follows:

(1) Analyze it in the time domain. Since the frame rate of
the camera is 30, if the system runs for a long time
and there is no keyframe for a long time, we arti-
ficially select several frames as quasi-keyframes.

(2) Analyze it from the spatial domain. If there is no
common viewing area between two keyframes, it
indicates that there may be tracking loss or violent
motion at this time, and several frames need to be
selected as quasi-keyframes.

Finally, this paper needs to consider the smoothness of
the joints of the trajectory segments after fitting. For this
reason, we obtain the first-order and second-order deriva-
tives at the joints of each trajectory segment, so that the
second-order derivatives are equal to ensure the smoothness
and stability of the joints of each trajectory curve.

4. Experiment

In order to evaluate the performance of the loop closure
detection based on the differentiable manifold proposed in
this paper, we conducted a series of experiments and
compared it with the most popular methods. In order to
make the measurement result more accurate, we define five
error indicators to evaluate the difference between the robot
motion trajectory and the real trajectory obtained by the
method in this paper: maximum error, minimum error,
average error, absolute trajectory error, and relative tra-
jectory error, and give qualitative analysis and quantitative
analysis results to prove the robustness of our method.

4.1. Datasets. -e evaluation dataset in this paper is from
TUM benchmark tool [48], which contains two public image
sets rgbd_dataset_freiburg1_room and rgbd_dataset_-
freiburg3_long_office_household. -ese two datasets can

B (t)

P (t)

B (t + ∆t)

B (t + ∆t)
O

P (t + ∆t) ∆φ

B (t)

Figure 4: Schematic diagram of torsion rate. P(t) and P(t + Δt) represent adjacent keyframe pose nodes on the robot motion trajectory S,
the corresponding binormal vectors of the two are B(t) and B(t + Δt), respectively, and Δφ is the angle between them.
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objectively evaluate the performance of the method pro-
posed in this paper. -e details are as follows:

(a) rgbd_dataset_freiburg1_room: this dataset is
taken along the trajectory of the office. It starts
with four tables and then moves around the outer
wall of the room until the loop is closed. -is
dataset is very suitable for evaluating the ability of
the SLAM system to process loop closure detec-
tion. -e dataset consists of 1362 pictures with
resolution of 640∗ 480, and the real track length
is 15.989m.

(b) rgbd_dataset_freiburg3_long_office_household: this
dataset is moved by ASUSXtion sensors along a large
circle, passing through home and office scenes with
many textures and structures. -e end point of the
trajectory overlaps with the start point, so there is a
large loop. -e dataset consists of 2585 pictures with
resolution of 640∗ 480, and the true track length is
21.455m.

4.2. Experimental Results and Analysis. (a) In the given
dataset freiburg1_room, we first use the image matching
algorithm to filter out 180 keyframe pose nodes from 1362
images and then analyze the motion trajectory character-
istics of the robot according to the robot motion speed τ. By
calculating the motion velocity of adjacent frame, robot
movement speed τ is concentrated between 0.0593m/s and
1.3648m/s, and then we classify the movement speed
between keyframes without much change into one cate-
gory; in other words, the movement speed between key-
frames is within 0.33. Next step is to calculate the curvature
κ between the keyframe nodes of the track segment with the
same trajectory characteristics, where the curvature value
threshold is set to 0.75. If the calculated curvature of a
keyframe node is greater than this threshold, it is con-
sidered that this corresponds to the critical point with a
relatively large corner amplitude, and the pose nodes at this
time are merged into the next type of trajectory segment,
and so on, until all the keyframe pose nodes with the same
motion trajectory characteristics are found and the division
is finished. In the processed keyframe segment, finding the
optimal orientation ψ, the real-time motion of the robot
here is affected by multiple frames, so we analyze the in-
fluence of several frames to filter out the optimal orien-
tation. After the above steps, we study the y-axis error and
z-axis error with the same trajectory characteristics in each
segment.

For the robot motion trajectory in the xoy plane, we
select N keyframe pose nodes in each segment of the robot
motion trajectory for processing. -e details are as follows.
-e cubic B-spline interpolation method is firstly used to
make the robot motion trajectory pass the keyframe pose
node, combining the fitting method to get the expression
that best fits the robot motion shape. In order to make the
obtained trajectory consistent with the real situation as
much as possible, we consider using N keyframe pose nodes
(N� 3, 4, 5) to fit the trajectory and use the fitted trajectory
equation to find the corresponding y value. -is paper

qualitatively and quantitatively analyze the fitted robot
trajectory, and the result output by our method is compared
with the ORB SLAM2 and the ground truth. -e following
shows the trajectory visualization diagram after the local
optimization and the trajectory visualization diagram after
the global optimization.

Since this paper classifies the robot’s motion trajectory
into one category according to the similar motion charac-
teristics, there will be several trajectory segments, and only a
few are given randomly here. From Figures 5(a), 5(c), and
5(e), it can be concluded that when the robot movement
speed τ is between 0.3845m/s and 0.7014m/s and the
curvature value κ is between 0.002 and 0.04, the parabolic
trajectory fitted by the three keyframe pose nodes is the most
consistent with the real robot trajectory, that is,
F(x, y) � α(2,0)x

2 + α(1,0)x
1 + α(0,1)y

1 + α(0,0), where the
corresponding α(i,j) are 1.238, 0.07842, 1, and −0.5163, re-
spectively. From Figures 5(b), 5(d), and 5(f ), it can be
concluded that when the robot movement speed τ is between
0.2214m/s and 0.4508m/s and the curvature value κ is
between 0.005 and 0.018, the one-dimensional cubic
equation trajectory fitted by the four keyframe pose nodes is
the most consistent with the real robot trajectory, that is,
F(x, y) � α(3,0)x

3 + α(2,0)x
2 + α(1,0)x

1 + α(0,1)y
1 + α(0,0),

where the corresponding α(i,j) are −1.779, 0.4036, 0.7173, 1,
and −17.71, respectively. -is paper also uses N keyframe
pose nodes (N� 3, 4, 5) to process the robot’s global motion
trajectory and uses the obtained trajectory equation to draw
the robot’s global motion trajectory. -e experimental re-
sults are shown in Figure 6; it can be seen from Figures 6(a),
6(c), and 6(e) that when the robot movement speed τ is
between 0.1331m/s and 0.4580m/s and the curvature value κ
is between 0.0071 and 0.0265, the parabolic trajectory fitted
by the four keyframe pose nodes is most consistent with
the real trajectory, that is, F(x, y) � α(2,0)x

2 + α(1,0)x
1+

α(0,1)y
1 + α(0,0), the corresponding α(i,j) are 1.336, −0.2775,

1, and −0.7645, respectively.-rough experiments, we found
that in more special cases when the robot movement
speed τ is between 0.1006 and 0.1770 and the curvature
value k is between 0.0548 and 0.0586, simple parabola and
one-dimensional cubic equations are difficult to match
the real trajectory, but a simple sine function is used,
F(x, y) � a∗ sin(b∗ x + c), corresponding to a � 2.007,
b � 104.6, and c � −32.08.

In the same way, for the more complex robot motion
trajectory in three-dimensional space, considering the error
in the z-axis direction, we select M keyframe pose nodes
(M� 6, 7, 8) in each segment of the robot motion trajectory.
We first use the spline interpolation method to make the
robot’s motion trajectory pass the keyframe pose nodes
and then combine the fitting method to obtain the ex-
pression that best matches the robot’s motion shape. In
order to make the obtained trajectory consistent with the
real situation as much as possible, we use different motion
shapes for processing. -e global trajectory result can also
be seen from Figures 6(b), 6(d), and 6(f ). From the global
trajectory error evaluation, it can be concluded that M� 8
keyframe poses is relatively small. -e specific trajectory shape
is F(x, y, z) � β(2,0,0) x2 + β(0,2,0)y

2 + β(0,0,1)z
1 + β(1,1,0)
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x1y1 + β(0,1,0)y
1 + β(1,0,0)x

1 + β(0,0,0), where the corre-
sponding β(i,j,k) are −0.06873, −0.07766, 1, 0.02006,
0.1498,-0.03972, and 1.421. -e quantitative analysis
results of the robot’s global motion trajectory error are
given in Tables 1 and 2. It can be found that our method
can achieve the same level as the ORB_SLAM2 method as
a whole and is better than ORB_SLAM2 in some areas.
Compared with the robot motion trajectory obtained by
using the image matching algorithm, the error between
the robot motion trajectory and the real trajectory after
we use the differentiable manifold is smaller.

(b) In the given dataset freiburg3_long_office_house-
hold, we first use an image matching algorithm to filter out

204 keyframe pose nodes from 2585 images and then analyze
its motion trajectory characteristics according to the robot
motion speed τ. By calculating the motion velocity of ad-
jacent frame, robot movement speed τ is concentrated be-
tween 0.0372m/s and 0.4292m/s, and then we attribute the
close motion speed between keyframes to one category,
where little change means that the motion speed error be-
tween keyframes is within 0.25. Next step is to calculate the
curvature κ between the keyframe nodes of the track seg-
ment with the same trajectory characteristics, where the
curvature value threshold is set to 0.42. If the calculated
curvature of a keyframe node is greater than this threshold, it
is considered that this corresponds to the critical point with a
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Figure 5: A partial experimental comparison diagram of the robot motion trajectory after using the obtained motion trajectory equation
and the real trajectory. Among them, the red curve represents the true trajectory value of the robot, the blue curve represents the trajectory
value of the robot obtained by the method in this paper, and the green curve represents the trajectory value of the robot in the ORB_SLAM2
method. (a) N1� 3. (b) N2� 3. (c) N3� 4. (d) N4� 4. (e) N5� 5. (f ) N6� 5.
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relatively large corner amplitude, and the pose nodes at this
time are merged into the next type of trajectory segment, and
so on, until all the keyframe pose nodes with the same
motion trajectory characteristics are found and the division
is finished. We find the optimal orientation ψ in the pro-
cessed keyframe segment, while the real-time motion of the
robot here is affected by multiple frames, so we analyze the
influence of several frames to filter out the optimal orien-
tation. After the above steps, we also study from the two
directions of y-axis error and z-axis error in each segment
with the same trajectory characteristics.

For the robot motion trajectory in the xoy plane, we
select N keyframe pose nodes in each segment of the robot
motion trajectory for processing, and the specific steps are
described in 4.2.(a). -e following shows the trajectory vi-
sualization diagram after the local optimization and the
trajectory visualization diagram after the global
optimization.

From Figures 7(a), 7(c), and 7(e), it can be concluded
that when the robot movement speed τ is between 0.2017m/
s and 0.3832m/s and the curvature value κ is between 0.0357
and 0.0512, the parabolic trajectory fitted by the four key-
frame pose nodes is most consistent with the real robot
trajectory, that is, F(x, y) � α(2,0)x

2 + α(1,0)x
1+

α(0,1)y
1 + α(0,0), and the corresponding α(i,j) are −1.695,

3.683, 1, and −0.8821, respectively. From Figures 6(b), 6(d),
and 6(f ), it can be concluded that when the robot movement
speed τ is between 0.2670m/s and 0.2774m/s and the
curvature value κ is between 0.0011 and 0.0032, the one-
dimensional cubic equation trajectory fitted by the five
keyframe pose nodes and the real robot trajectory is the most
consistent with the real trajectory, that is,
F(x, y) � α(3,0)x

3 + α(2,0)x
2 + α(1,0)x

1 + α(0,1)y
1 + α(0,0),

and the corresponding α(i,j) are 1.966, 8.281, 15.32, 1, and
5.843, respectively. -is paper also uses N� 3,4,5 keyframe
pose nodes to process the robot’s global motion trajectory
and uses the obtained trajectory equation to draw the robot’s
global motion trajectory.-e experimental results are shown
in Figure 8; it can be seen from the left of Figure 8 that when
the robot movement speed τ is between 0.1998m/s and
0.3035m/s and the curvature value κ is between 0.0071 and
0.0265, the parabolic trajectory fitted by the four keyframe
pose nodes is most consistent with the real trajectory,
F(x, y) � α(2,0)x

2 + α(1,0)x
1 + α(0,1)y

1 + α(0,0), and corre-
sponding α(i,j) are −2.943, −19.3, 1, and −31.76, respectively.
-rough experiments, we found that in more special cases
when the robot movement speed τ is between 0.1006m/s
and 0.1770m/s and the curvature value k is between 0.1271
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Figure 6: -e left image shows the global comparison diagram of the robot motion trajectory and the real trajectory in the xoy plane after
using the obtained motion trajectory equation.-e figure on the right shows the global comparison of the robot’s motion trajectory and the
real trajectory in the xyz plane after using the obtained motion trajectory equation. Among them, the red curve represents the true trajectory
value of the robot, the blue curve represents the trajectory value of the robot obtained by the method in this paper, and the green curve
represents the trajectory value of the robot in the ORB_SLAM2 method. (a) N1� 3. (b)M1� 6. (c) N2� 4. (d)M2� 7. (e)N3� 5. (f )M3� 7.
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Table 1: rgbd_dataset_freiburg1_room dataset y-axis direction error.

Methods Maximum error (m) Minimum error (m) Average error (m) ATE (m) RPE (m) Keyframe (N)

ORB_SLAM2 0.0900 0.0008 0.0670 0.0557 0.0125 180
0.0888 0.0003 0.0296 0.0365 0.1045 3

our_method 0.1417 0.0001 0.0329 0.0410 0.0089 4
0.1332 0.0001 0.0335 0.0423 0.1184 5

-e units in the table are meters.

Table 2: rgbd_dataset_freiburg1_room dataset z-axis direction error.

Methods Maximum error (m) Minimum error (m) Average error (m) ATE (m) RPE (m) Keyframe (M)

ORB_SLAM2 0.0773 0.0001 0.0144 0.0193 0.0135 180
0.0720 0.0001 0.0130 0.0173 0.0106 6

our_method 0.2073 0.0002 0.0198 0.0341 0.0232 7
0.0697 0.0001 0.0153 0.0215 0.0113 8

-e units in the table are meters.
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Figure 7: A partial experimental comparison diagram of the robot motion trajectory after using the obtained motion trajectory equation
and the real trajectory. Among them, the red curve represents the true trajectory value of the robot, the blue curve represents the trajectory
value of the robot obtained by the method in this paper, and the green curve represents the trajectory value of the robot in the ORB_SLAM2
method. (a) N1� 3. (b) N2� 3. (c) N3� 4. (d) N4� 4. (e) N5� 5. (f ) N6� 5.
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and 0.2248, simple parabola and one-dimensional cubic
equations are difficult to match the real trajectory, but use
y � p/(x2 + q1x + q2), and the shape trajectory is more
consistent, corresponding to p � 1.253, q1 � 6.981, and
q2 � −8.05.

In the same way, for the more complex robot motion
trajectory in three-dimensional space, considering the error
in the z-axis direction, we select M keyframe pose nodes
(M� 6, 7, 8) in each segment of the robot motion trajectory.
We first use the spline interpolation method which makes
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Figure 8: -e global comparison of the robot motion trajectory and the real trajectory in the xoy plane after using the obtained motion
trajectory equation. -e figure on the right shows the global comparison of the robot’s motion trajectory and the real trajectory in the xyz
plane after using the obtained motion trajectory equation. Among them, the red curve represents the true trajectory value of the robot, the
blue curve represents the trajectory value of the robot obtained by the method in this paper, and the green curve represents the trajectory
value of the robot in the ORB_SLAM2 method. (a) N1� 3. (b) M1� 6. (c) N2� 4. (d) M2� 7. (e) N3� 5. (f ) M3� 8.

Table 3: freiburg3_long_office_household dataset y-axis direction error.

Methods Maximum error (m) Minimum error (m) Average error (m) ATE (m) RPE (m) Keyframe (N)

ORB_SLAM2 0.1466 0.0001 0.0203 0.0234 0.0183 204
0.1401 0.0002 0.0178 0.0231 0.0196 3

our_method 0.1063 0.0001 0.0174 0.0238 0.0185 4
0.1675 0.0005 0.0272 0.03997 0.0186 5

-e units in the table are meters.

Table 4: freiburg3_long_office_household dataset z-axis direction error.

Methods Maximum error (m) Minimum error (m) Average error (m) ATE (m) RPE (m) Keyframe (M)

ORB_SLAM2 0.1466 0.0001 0.0622 0.0780 0.1068 204
0.1727 0.0001 0.0364 0.0262 0.1691 6

our_method 0.1490 0.0001 0.0154 0.0332 0.0141 7
0.1564 0.0002 0.0146 0.0314 0.0133 8

-e units in the table are meters.
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the robot’s motion trajectory pass the keyframe pose node
and then combine the fitting method to obtain the ex-
pression that best matches the robot’s motion shape. In
order to make the obtained trajectory consistent with the
real situation as much as possible, we use different motion
shapes for processing. -e experimental results are shown
on the right side of Figure 8. From the global trajectory error
evaluation, it can be concluded thatM� 7 keyframe poses is
relatively small. -e specific trajectory shape is F(x, y, z) �

β(2,0,0)x
2 + β0,2,0y

2 + β(0,0,1)z
1 + β(1,1,0)x

1y1 + β(0,1,0)y
1

+β(1,0,0)x
1 + β(0,0,0), where the corresponding β(i,j,k) are

−4.73, 0.482, 1, 1.685, −1.523, 10.77, and −4.589, respec-
tively. -e quantitative analysis results of the robot’s global
motion trajectory error are given in Tables 3 and 4. It can be
found that ourmethod can achieve the same level as the ORB
SLAM2 method as a whole and is better than ORB_SLAM2
in some areas. Compared with the robot motion trajectory
obtained by using the image matching algorithm, the error
between the robot motion trajectory and the real trajectory
after we use the differentiable manifold is smaller.

5. Conclusion

In this paper, we propose a loop closure detection method
based on differentiable manifold. -e motion trajectory is
divided according to the motion characteristics of the robot,
the curvature and torsion of the curve composed of several
nodes are calculated based on the manifold tangent space,
curve interpolation and fitting methods are used to achieve
the approximation of the real-time motion trajectory of the
robot, and finally the smooth curve of the robot’s motion
trajectory is obtained, thereby reducing the cumulative error
and system error and improving the calculation accuracy of
the robot’s real-time pose and trajectory. Compared with the
robot trajectory obtained by only using the image matching
algorithm, the robot trajectory obtained in this paper is more
stable and smooth, which effectively reduces the cumulative
error of the entire SLAM system and improves the accuracy
of loop closure detection.
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