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Odontocete clicks are a kind of short-time echolocation signal with high frequency. Research on the detection method of clicks is
helpful for the accurate detection of marine mammal vocalization, so as to better protection of marine mammals. A method based
on image processing is proposed to detect odontocete echolocation clicks. The collected data are divided into fixed-length frames
and generate spectrograms. The spectrograms are filtered to remove noise and enhance the line-shape clicks. Considering that the
echolocation signals are like lines in time-frequency domain, line detection is subsequently used to obtain the precise position of
the lines. Finally, a Long Short-Term Memory network was trained to obtain a detector to distinguish clicks. The performance of
the proposed method was evaluated using real audio recordings. The experimental results indicate that comparing with the
traditional energy detector method, the proposed algorithm shows higher recall and precise under low signal-to-noise ratio
(SNR). The proposed method can provide technical support in odontocete survey to accurately determine the species and
better for marine bioacoustics study.

1. Introduction

Cetaceans generally can transmit clicks, which is a short-
time pulse echolocation signal [1] and can be used for posi-
tioning and foraging activities [2]. Compared with commu-
nication signals, clicks have a higher frequency [3].
Accurate detection of clicks is conducive to determine the
existence and appearance of cetaceans and the study of its
population and biological ecology [4]. The research on click
detection methods is helpful to detect cetaceans and then
better protect marine mammals.

In this paper, a method of detecting clicks based on
image processing is proposed. Firstly, the collected signals
are divided into frames to obtain the spectrogram of each
frame, and then, the spectrograms are filtered to highlight
the line-shaped clicks. After filtering, the line detection is

applied and extract the features. Finally, a Long Short-
Term Memory network was trained to obtain a detector to
distinguish clicks of cetaceans.

2. Dataset

There are three species of marine mammals’ sound data used
to generate dataset which are Mesoplodon densirostris, Glo-
bicephala melas, and Eubalaena japonica. Acoustic data of
Mesoplodon densirostris, Globicephala melas, and Euba-
laena japonica came from MobySound [9]. The MobySound
is an open source marine mammal acoustics’ database that
provides sound data from a wide range of marine mammals
in different seas around the world.

The data files of the above three animals are 24-bit audio
files in WAV format. The data files of each animal only
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contain echolocation signals of a single species. The wave-
form of three animals’ clicks are shown in Figure 1. All clicks
have been annotated through manual processing. All data
information are shown in Table 1.

3. Method

3.1. Image Processing. Firstly, the acoustic data of three
marine mammals used in the experiment were divided into
several short frames with fixed frame length of 1 s. Then,
the spectrograms were made by using STFT and saved as
gray scale image. Then the Frangi filter is used to filter the
image [10]. Frangi filter has a good effect in detecting tubu-
lar signals and is mainly applied in medical aspects, such as
blood vessel detection in medical images [11]. In the exper-
iment, the eigenvalues λ1 and λ2 of Hessian matrix H of each
image are calculated by using this filter, and λ2>λ1 is agreed.
Finally, the output value of the filter V0ðσÞ is calculated
according to the eigenvalue which is the gray value of the fil-
tered image. The equation of getting V0ðσÞ is shown in
Equation (1):
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Pixels in spectrogram before filtering are displayed with
different gray values as shown in Figure 2(a). As shown in
Figure 2(b), pixels with gray value of 0 in the filtered spectro-
grams are displayed as black and nonzero pixels are dis-
played with different gray values. After filtering, the
isolated noise in the spectrograms is filtered out. However,
since the clicks and the impulse noise are approximately a

straight line in the spectrograms, the impulse noise is still
not removed in the spectrograms, which is necessary to fur-
ther distinguish the clicks and residual noise in the spectro-
grams. Therefore, the line detection is introduced to
accurately determine the starting position of the signal,
which is helpful to extract frequency-domain characteristics
[12]. The basic equation of line detection is shown in Equa-
tion (2):

r = xi cos θ + yi sin θ, ð2Þ

A point in the x − y plane is a curve in the r − θ plane,
and multiple points on a straight line in the x − y plane
map to multiple curves intersecting a point in the r − θ
plane. The intersection number of curves in the r − θ plane
at a point is set as threshold. When the intersection number
exceeds the threshold, a straight line in the x − y plane is
detected [13, 14]. If the threshold is too low, a large number
of noises will be judged as line, which increases the sample
size and the calculation cost of the model, increases time to
generate the model. However, some clicks with low SNR
are discontinuous in the spectrograms. If the threshold is
too high, this part of low SNR signals will be missed, leading
to the reduction of recall rate. Therefore, different thresholds
need to be tried to strike a balance between calculating cost
and recall rate. By fine tuning to find the optimal parameter,
the threshold is set to 50.

Pixel points with nonzero gray value in the filtered spec-
trograms Figure 2(b) were mapped to r − θ plane for line
detection, and the results were shown in Figure 2(c). In this
experiment, the duration of four animals’ clicks is less than
0.002 seconds, so each click in the spectrogram is less than
2 pixels width. If two vertical lines are detected during the
line detection, we took the mean value of two lines.

3.2. Long Short-Term Memory Network. In this paper, a Long
Short-Term Memory (LSTM) network [12] is used to adap-
tively distinguish the clicks from other line-shape pulse noise
from spectrograms. Recurrent Neural Networks (RNNs) are
a deep learning model for learning sequential data [15]. LSTM
is an improved RNN network. For a conventional RNN, the
hidden state of each layer is achieved by transformation and
activation of the former layer. So, the derivative used for back
propagation contains the continued product of every step,
which could cause gradient vanishing or gradient explosion
gradient. So, it is difficult for a conventional RNN to tackle
the problem of “long-range dependence” to learn the informa-
tion contained in long sequence. A diagram of a basic LSTM
unit is shown in Figure 3.

From the perspective of external structure, the input and
output of LSTM and RNN are exactly the same. They also
accept external input Xt and the hidden state ht−1 of the pre-
vious stage at each step and output a value. However, differ-
ent from ordinary RNN, LSTM’s hidden state has two parts,
one is ht and the other is Ct . The Ct is the main message that
passes between the steps. By addition, it is possible to pass Ct
over the cell without trouble, so a gradient can travel over
long distances. In an LSTM unit, there are mainly three
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Figure 1: Waveform examples of echolocation signals from
different animals.

Table 1: Data used in the experiment.

Species
Sampling rate/

Hz
Duration/

s
Number of

clicks

Mesoplodon
densirostris

96 000 1 800 779

Globicephala melas 96 000 900 559

Eubalaena japonica 192 000 394 225
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different “gates” to control the transmission of information
which are forget gate, memory gate, and output gate [16].

Forget gate controls which part from Ct−1 should be for-
gotten by the current LSTM unit. The output f t of forget
gate is shown in Equation (3):

f t = σ Wf · ht−1, xt½ � + bf
� �

: ð3Þ

The σ is the sigmoid activation function, its output falls
between 0 and 1. The output of a forget gate is a matrix
which has same shape of Ct−1, this matrix will multiply
Ct−1 to decide which part to forget. The input of a forget gate
is the external input Xt and the hidden state ht−1 of the pre-
vious stage.

Memory gate controls which part from Ct−1 should be
memorized by the current LSTM unit. The output it of

(a) (b)

(c)

Figure 2: Example of image process procedure.
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Figure 3: Diagram of a LSTM unit.
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forget gate is shown in Equation (4):

it = σ Wi · ht−1, xt½ � + bið Þkt = tan h WC · ht−1, xt½ � + bCð Þ:
ð4Þ

Output Ct is the combined effect of forget gate and
memory gate as shown in Equation (5).

Ct = f t × Ct−1 + it × kt: ð5Þ

The final output of a LSTM unit ht is shown in Equation
(6).

Ot = σ Wo ht−1, xt½ � + boð Þ,
ht =Ot × tan h Ctð Þ:

ð6Þ

In the experiment, the lines in spectrograms obtained in
2.1 were fed to the LSTM network. Every line was considered
as a sequential data and every point in the sequence corre-
sponding to a pixel of the line in spectrogram. All the lines
were fed to the network from the pixel corresponding to
the lowest frequency to the pixel corresponding to highest
frequency. The amplitude of ever point is the STFT result.
According to the annotation of data, the clicks are labeled
as 1 and the nonclicks are labeled as 0. The obtained line-
shape input and label form the dataset to train the LSTM
network. In this way, the network could learn the advance
feature of the clicks. 90% of the dataset are the training sets
and the other 10% of the dataset are the testing sets. The
detection models of these three animals are trained sepa-
rately. After the training, the testing sets are sent to the
trained model to get the output as the result of the proposed
model.

3.3. TK Algorithm. TK algorithm is the most widely used
click detection algorithm. This algorithm is usually used
for the detection of sperm whale clicks [7], and its average

precise rate on the sperm whale clicks can reach 94.05%,
which has been proved to be highly effective.

According to the background noise of different data, dif-
ferent SNR thresholds are set by manually checking the data.
After frame processing, the signal-to-noise ratio (SNR) of
each frame is calculated. The frame with higher SNR than
the threshold is selected as the candidate frame. The TK
algorithm uses three continuous sampling points to calculate
instantaneous energy and detect clicks [7]. The TK energy
operator Ψ is defined as follows:

Ψ x nð Þ½ � = x2 nð Þ − x n + 1ð Þ × x n − 1ð Þ: ð7Þ

In each selected candidate frame, Equation (7) can be
used to calculate the TK operator output value. The maxi-
mum value of TK operator in each candidate frame is
recorded as clicks, and its specific position is located; then,
the detection performance are counted, which are the precise
rate and recall rate.

3.4. Experiment Platform. The experiment was carried out
on a laptop operating Windows 10, with 16GB RAM avail-
able and an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
processor. The data used in the experiment is normalized
first, and Gaussian white noise is added to the original data
by controlling the amplitude coefficient to obtain the test
data with different SNR. The experiment was then carried
out through the steps described in Sections 2.1 and 2.2.

4. Result and Discussion

Comparing the precise rate and recall rate of the proposed
method with TK algorithm as shown in Figure 4, the recall
rates of the two algorithms are positively correlated with
the SNR. However, the proposed method had higher recall
rate than TK algorithm, this is because the TK algorithm
used the threshold detection. When the SNR is lower than
a certain threshold, the recall rate falls to zero and no click
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Figure 4: Performance of two methods in different SNR.
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can be detected. For example, when the SNR of the data of
Mesoplodon densirostris is 0 dB or lower, and the SNR of
the data of Globicephala melas and Eubalaena japonica is
6 dB or lower, and the TK algorithm cannot detect any
clicks. On the contrary, the proposed method can still detect
signals with high precise rate under the above condition of
low SNR.

For the data of Mesoplodon densirostris and Globice-
phala melas, the precise rate of TK algorithm will decrease
when the SNR is high and decrease to 78% and 65%, respec-
tively, when the SNR is 18 dB. However, the precise rate of
the proposed method changes little with SNR (not less than
98%).

The clicks of cetaceans resemble a straight line in the
spectrograms. Frangi filter can filter out isolated noise points
in the image and highlight linear signals. However, linear
detection can detect more linear segment noise in the spec-
trograms under the condition of low SNR, so the proposed
method in this paper has a high recall rate under the condi-
tion of low SNR. Linear detection can accurately determine
the starting and ending positions of linear signals in the
image and calculate the corresponding eigenvalues accord-
ing to the definition of signal characteristics. We trained a
LSTM network to distinguish clicks and nonclicks like pulse
noise. Comparing with other method like random forest,
LSTM network can adaptively learn the characteristics of
clicks, without manually extracting features. This further
improved the precise rate of the proposed method.

Although the proposed method has certain advantages
in the precise and recall rate, the clicks with a certain length
of time are treated as a straight line segment in the spectro-
grams during linear detection which means the information
of time dimension is lost characteristics such as the duration
of clicks cannot be further utilized. How to add time dimen-
sional features such as the duration of clicks into the algo-
rithm will be the future optimization direction of the
proposed method.

5. Conclusion

This paper firstly introduce Frangi filter and LSTM network to
the cetacean clicks' detection. Acoustic data of Mesoplodon
densirostris, Globicephala melas, and Eubalaena japonica are
used to generate the dataset. By adding noise to generate
different SNR conditions, experiment was carried out by
comparing the proposed method with traditional algorithms
of TK. The results show that the Frangi filter can effectively filter
out randomnoise, and the line detection can precisely detect the
line-shape clicks. Combining with the LSTM networks, the
detectionmodel can distinguish clicks and remained pulse noise
accurately. The proposed method has higher recall rate and
maintains higher precise rate at low SNR, which verifies its
effectiveness and robustness. Under the condition of low SNR,
the rate of the proposed method shows better detection effect,
which can provide certain technical support for the research
of cetacean acoustic signals. Whether can adding timedimen-
sional information such as clicks pulse interval to achieve
classification will be the next research step.
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