
Research Article
A Node-Level Model for Service Grid

Yan Wang and Jifei Cai

College of Mechanical and Electrical Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China

Correspondence should be addressed to Yan Wang; wangyanzi@bigc.edu.cn

Received 24 October 2021; Revised 20 November 2021; Accepted 27 November 2021; Published 6 May 2022

Academic Editor: Hye-jin Kim

Copyright © 2022 Yan Wang and Jifei Cai. is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

is papers studies a high-performance node-level service grid model, which aims to solve the problem that the current pod-level
service grid model a�ects the service operation and consumes many computing resources. e main method of the node-level
service grid model is to improve pod-accompanied service grid sidecar with the node-accompanied service grid sidecar sharing of
multiple pods, combined with the cut-through of user mode protocol stack and scaling of node-level service grid sidecar. By the
performance comparison of pod-level service grid model and node-level service grid, we can conclude that node-level service grid
model can isolate pod services without a�ecting service operation, signi�cantly reduce memory consumption without multiplying
with the number of pods, and largely reduce end-to-end network delay about 30% but the overall CPU consumption as the same as
that of the pod service grid model. It indicates that the node service grid model can obtain better business bene�ts than the pod
service grid model in container cloud, cloud service providers can provide grid services for more tenants with less memory
resources and network latency, and adding grid services has no impact on the operation of user applications.

1. Introduction

Over the years, the concept of service-side architecture in the
industry has been continuously evolving, from single
modular architecture to SOA (service-oriented architec-
ture), then to micro services, and �nally to service grid [1].
e challenge of service grid is that the current grid model
a�ects business operation and much computing resources
with low performance [2–4].

1.1. Current Problems

(1) Impact on Application Operation. Sidecar of service
grid will share pod computing resources with the
application container. Because sidecar is not isolated
and bound with the core, it will share the application
CPU, resulting in 30%–50% performance degrada-
tion of the application.

(2) Low Memory Resource Utilization. Since sidecar of
service grid is deployed in pod and the number of
pod applications in the node is very large, there are
hundreds and thousands of sidecars, which leads to

the overall consumption of memory computing
resources in the node. For example, since a sidecar
takes 50m memory, the sidecars of grid with 500
microservices will occupy total of 25 g memory.

1.2. Research Progress. At present, some CPU and memory
resource optimization work for sidecar of service grid has
been carried out [5–9].

(1) CPU Performance Optimization of Sidecar in Service
Grid. CPU performance optimization of sidecar in
service grid mixer cache reduces the pressure of
check on the server. Delta encoding and compress
are optimized to reduce the network tra�c generated
by telemetry; web assembly bytecode format is used
to realize the function of the original mixer in
sidecar. ese measures are helpful to the perfor-
mance of the control plane, but they do not sig-
ni�cantly improve the performance of the data plane.
Sidecar inevitably encroaches on the CPU of the
application container.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 4720114, 9 pages
https://doi.org/10.1155/2022/4720114

mailto:wangyanzi@bigc.edu.cn
https://orcid.org/0000-0002-1229-3213
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4720114


(2) Memory Performance Optimization of Sidecar in
Service Grid. Isolating services by namespace and
defining the communication relationship between
services can reduce the number of listeners and
clusters of sidecar so as to reduce the memory
overhead of sidecar. Generally, the memory con-
sumption can be reduced by 50%–70%, but for users,
the service grid deployment is relatively complex. In
the environment with strict resource requirements
such as edge computing, the cumulative memory
overhead of grid services is still too large.

1.3. Purpose of ,is Paper. To sum up, the performance
optimization effect of the existing sidecar service relation-
ship model based on POD deployment is limited. We hope
to study a new sidecar relationship model between services
to solve the impact of sidecar on application CPU operation
and memory cumulative consumption and evaluate the
effect of existing and new sidecar relationship models be-
tween services.

.e rest of the paper is organized as follows.

.e research model part introduces the current and new
sidecar relationship models between services, the research
method part introduces how the newmodel meets the elastic
capacity expansion and interservice communication, the
verification process part introduces how to build the veri-
fication environment, and the research results part gives the
performance test results of CPU, memory, and delay under
different relationship models, Finally, the conclusion gives
the usability and benefit evaluation of the new model.

2. Research Models

2.1. Current Model. Service grid is an infrastructure layer
used to handle interservice communication. Cloud native
applications have complex service topologies, and the service
grid guarantees that requests can travel reliably in these
topologies. In practical applications, the service grid is
usually composed of a series of lightweight network agents,
which are deployed together with the application, but the
application does not need to know their existence [10–18].

Currently, sidecar as a service grid agent is deployed in a
pod and accompanied by the container (Figure 1). .e CPU
and memory performance problems of service grid hinder
its large-scale applications.

.e materials and methods section should contain
sufficient detail so that all procedures can be repeated. It may
be divided into headed subsections if several methods are
described.

2.2. Our Model. To overcome the problems described in
Section 1 of the current model, the main idea of this paper is
to improve the service agent sidecar for the container in the
pod to be shared by multiple containers in the node
(Figure 2) [19–32].

(1) Application Performance Improvement Ideas. Be-
cause sidecar is independently deployed in a

namespace in a node and can be isolated from the
core, it will not affect the application CPU operation
and occupy the application memory. Because the
pod and sidecars are in different name spaces, we
need to use cut-through technology to reduce
communication delay. User mode protocol stack will
get better communication performance than the
kernel protocol stack.

(2) ,e Idea of Improving the Utilization of System Re-
sources. Because sidecar is independently deployed in
a namespace in node, the number of listeners and
clusters in sidecar will be 1 to n (pod number), and
the overall number of sidecar processes will be re-
duced and cores can be bound, so the memory
consumption of sidecar will not increase with the
increase in pod number, and the CPU efficiency will
also be improved.

Compared with the pod-level sidecar model, the node-
level sidecar model needs to solve two challenges caused by
the change of sidecar deployment mode:

(1) When applying pod capacity expansion, how the
shared deployed side car can synchronously expand
and shrink the capacity as required by the applica-
tion load is described in the elastic expansion section
below.

(2) .e sidecars applying pod and sharing deployment
belong to different namespaces. How to efficiently
communicate messages between sidecars and pod is
described in the communication section below.

3. Methods of Our Research

3.1. Elastic Expansion. Sidecar initially produces a worker
thread, which is a “nonblocking” event cycle, which mon-
itors each listener, accepts new connections, instantiates the
filter stack for each connection, and processes IO events in
all connection life cycles.

All worker threads will listen to all listeners, and the
protocol stack assigns the received socket to the worker
thread. .ese threads also listen to the same socket and do
not need to use spin locks for each connection. Once the
worker accepts the connection, the connection will never
leave that worker. All further processing is done within the
worker thread.

Because the number of pod applications will change
constantly, it needs the capacity of sidecar worker thread
processing and pod number matching in the node. .e
method is that the sidecar worker thread supports elastic
expansion as shown in Figure 3 [33].

(1) .e elastic expansion process of sidecar is as follows:

(1) With the increase in pod processing, the CPU
load of worker threads has been created and
gradually overloaded

(2) After grid mng and ctl monitor that the sidecar
worker exceeds the upper limit threshold, notify
sidecar to expand its capacity

2 Mobile Information Systems



SideCar

NODE1

POD1

Mesh Mng&Ctl

SRV A

POD2

SRV B

NS1 NS2

NS0

SideCar

NODE2

POD3

SRV C

POD4

SRV D

NS3 NS4

NS0

Figure 2: Node-level sharing relationship model of sidecar.

NODE1

POD1

Mesh Mng&Ctl

SRV A

POD2

SRV B

NS1 NS2

work1

workn
NS0

NODE2

POD3

SRV C

POD4

SRV D

NS3 NS4

scale

2

1

SideCar

3

work1

workn
NS0

scale

1

3

SideCar

Figure 3: Elastic expansion of node sidecar.

SideCar

NODE1

POD1

Mesh Mng&Ctl

SRV A

POD11
SideCar

POD2

SRV B

POD21

NS1 NS2

SideCar

NODE2

POD3

SRV C

POD31
SideCar

POD4

SRV D

POD41

NS3 NS4

Figure 1: Pod-level one-to-one relationship model of sidecar.

Mobile Information Systems 3



(3) Sidecar adds new worker threads, and the worker
thread with the lowest workload is preferred to
accept connection processing

(2) On the contrary, the process of sidecar elastic
shrinkage is as follows:

(1) With the decrease in pod load, the CPU load of
the created worker thread is gradually lightened

(2) When grid mng and ctl monitor that the sidecar
worker is less than the lower threshold, it notifies
the sidecar to shrink

(3) Sidecar will not be scheduled to accept con-
nection processing after processing the worker
thread with the lowest load and then delete the
shrink worker thread.

3.2.Communication. .e communication scheme of sidecar
intercepting themessage of pod sender and receiver is shown
in Figure 4.

To provide better performance when sidecar has a node-
independent namespace, the cut-through mode of host stack
in VPP user mode is adopted..is mode eliminates the copy
of messages from user mode to kernel mode without going
through the kernel stack and can also meet the zero copy of
the shared memory of message queues in different name-
space communication [34, 35].

3.2.1. Sender (Pod 1 Calls Pod 3). .emessage sent by pod 1
is aimed at pod 3 IP. .e simple method is that node 1 uses
the kernel IPTable NAT to intercept the message by redi-
rection. However, since the message is to be transmitted
from user state to kernel state to user state, there is low
efficiency of twice message replication. Node-level sidecar
adopts the efficient user state protocol stack cut-through
mode, and the short connection between name spaces is
completed in the protocol stack..erefore, the redirection of
the message sent out by the pod cannot be completed at L3
NAT level. .e message interception needs to be completed
at the protocol stack level..emethod adopted is to hold the
VCL connect initiated by the business pod of NS1 and
redirect the destination address to the sidecar of this node IP,
while VCL connect of NS0 sidecar does not intercept the
hook, which is applicable to both TCP connections and UDP
connections.

3.2.2. Receiver (Pod 1 Calls Pod 3). L3 forwarding of node 2
receives the message from node 1, sidecar 1 to pod 320.1.1.3 :
2 and then intercepts the message to 20.1.1.5 :15001 of
sidecar 2 of node 2 through L3 DNAT. For messages from
sidecar 2 to pod 3, because the host protocol stack of NS1
and the host protocol stack of NS0 share the routing table,
cut-through communication in different namespaces can be
completed directly without any need for packet interception
and redirection.

3.3. Verification Process. In this paper, we use a 2-node
server to build the service grid cluster and build pod-level
grid service software test environment and node grid service
access test environment [36]. .e software to be installed is
as follows:

(1) Operating system Ubuntu LTS
(2) Container environment Docker CE
(3) Container management mik8s
(4) .e energy of kernel protocol stack
(5) Enable VPP of user state protocol stack
(6) Fortio echo is applied to the client
(7) HTTP echo is applied to the server

.e pod-level sidecar uses the Istio open-source project,
the protocol stack is OS stack, and the host transceiver
adopts the kernel IPTable. Node-level sidecar uses the
sidecar VPP opensource project, the protocol stack is VPP
host stack, and the host receiving adopts the user VPP.

Using fortio, a testing tool deployed in the client pod, it
sends traffic to HTTP echo deployed in the service-side pod
for a simple response. When pressure is applied to the
application and service grid, the traffic running on it is
within a controllable range, and a constant demand rate
(RPS) is used to send the http request, which further in-
creases HTTP connection to measure the response delay. By
recording and comparing the throughput and delay of pod-
level sidecar and node-level sidecar service grid cluster, the
service impact and delay impact of different service grid
relationship models are evaluated.

For resource consumption, the test tool is Istio-bench,
which is deployed in the control node to measure CPU and
memory consumption in sidecar of a service grid. Mean-
while, the CPU andmemory consumption of the service grid
of pod-level sidecar and node-level sidecar service grid are
tested, respectively..e calculation resource consumption of
different service grid relationship models is evaluated by this
result.

Our test goal is to understand a node based on the service
grid cluster environment..e performance of the service grid
of sidecar requires that when the client application generates
load pressure, the server application can meet the response
within a fixed time range. We apply enough computing re-
sources to the client and the server to avoid becoming a
performance bottleneck. Gradually the pressure on the system
is increased. .e client accesses the pages served by the
cluster. When the delay increases to a certain extent, the client
will visit the pages served by the cluster and it is necessary to
expand the node sidecar and reset the configuration pa-
rameters to complete the expansion in the test.

.e pod-level service grid topology and node-level
service grid topology are shown in Figures 5 and 6, re-
spectively, which are used to compare the service grid impact
on business and network delay and the CPU consumption
and memory consumption used for comparing and evalu-
ating the service grid.

4 Mobile Information Systems



NODE1

POD1 (NS1, 10U)

IPTABLE

OS STACK

SideCar1

Fortio

NODE2

POD1 (NS2, U)

IPTABLE

OS STACK

SideCar1

HTTP-ECHO

PODn (NS2, U)

SideCarn

HTTP-ECHO

Figure 5: Pod-level service grid topology.

NODE1

POD1 (NS1)

VPP

VPP HostStack

Fortio Fortio

NODE2

PODn (NS2)

VPP

VPP HostStack

HTTP-ECHO

POD1 (NS2)

HTTP-ECHO

POD0 (NS0) POD0 (NS0)

SideCar

Figure 6: Node-level service grid topology.

HostStack
cut-through by sharing fib

POD1

NODE1

NS1

VCL connect hook redirect to 
SideCar IP 

Service1
(http://service1)

10.1.1.1: 1

SideCar1

IP OutPut

POD3

NODE2

NS1

HostStack

Service2
(http://service2)

20.1.1.3: 2

SideCar2

DNAT redirect to SideCar IP

20.1.1.5:1500110.1.1.3:15001

HostStack

NS0 NS0

Session1

Session2

Session3

Figure 4: Sidecar intercepts the pod sender and receiver messages.

Mobile Information Systems 5



(1) Comparative Evaluation Method of Memory Con-
sumption in Service Grid. First, the number of server
pods is increased gradually, and the total memory
consumption of sidecar in the server node of two
topologies is observed and collected.

(2) Service Grid CPU Consumption Comparative Eval-
uationMethod. Further, the fortio RPS of the client is
increased gradually, and the total CPU utilization of
sidecar in nodes of the server of the two topologies is
observed and collected.

(3) Service Grid Business Impact Comparative Evalua-
tion Method. Adding fortio RPS is continuted, and
the maximum QPS throughput of HTTP echo in the
node of the server end collecting the two topologies is
observed.

(4) Service Grid Network Delay Comparative Evaluation
Method. .en, fortio connections are added grad-
ually under a certain RPS to observe and collect the
network delay of the two topologies.

4. Research Results

4.1.MemoryConsumptionComparison. .e comparison test
results of different grid topology memory consumption
accessed between multiple pods are shown in Figure 7. Node
grid service accesses more than pod grid service, and the
service grid memory consumption is significantly reduced,
and it no longer increases with the number of pods. Because
there is only one client service and one server service, the
node-level service grid only needs to consume listeners and
cluster for these two services, and with the increase in the
number of pods services, the cluster memory will increase, so
the node-level service grid memory will increase a little, and
no need to consume listeners and cluster memory for these
two services as per pod-level service grid.

4.2. CPU Consumption Comparison. .e comparison test
results of CPU consumption of different grid topologies are
shown in Figure 8. Node-level grid service is more accessible
than pod-level grid service, and the total CPU consumption
decreases slightly with RPS. .is is mainly due to the in-
dependent deployment of node level, grid service, core
isolation and reduction of grid service process number, and
improvement of CPU scheduling performance. However, in
general, the business process of grid service has not changed;
therefore, the CPU performance improvement is limited,
which is equivalent to the pod-level service grid model.

4.3. Service Impact Comparison. .e test results of business
impact comparison of different grid topologies are shown
in Figure 9. Compared with pod-level grid service, node-
level grid service does not occupy the CPU of the pod where
the business is located and has no impact on the business
operation. .erefore, the business can handle higher QPS
throughput. .is is mainly due to the fact that the node-
level sidecar is independently deployed in a namespace and
can be isolated from the core, so it will not affect the
operation of the application CPU and occupy the appli-
cation memory.

4.4. Network Delay Comparison. .e comparison test re-
sults of different grid topology delays between two pods
are shown in Figure 10. Compared with pod-level grid
service, node-level grid service reduces the network delay
between pods by about 30%. .is is mainly due to the cut-
through of user mode protocol stack and the receiving and
sending of user mode host, which avoids the message
replication from user mode to kernel mode and low-
performance receiving and sending of kernel host of pod-
level grid service.

Sidecars Memory Usage Per Node

46

451

976

1385

47.1 48.3 49.5

Series1
Series2

0

200

400

600

800

1000

1200

1400

1600

M
em

or
y U

sa
ge

 (M
B)

5 10 15 20 30250
Pods Num

Figure 7: Memory consumption of different grid test topologies.

6 Mobile Information Systems



Sidecars CPU Usage Per Node ,30 POD and 30 Connections

Series1
Series2

1000 2000 3000 40000
RPS

0

5

10

15

20

25

30

35

40

45

Cp
u 

U
sa

ge
 (v

Cp
us

 N
um

)

Figure 8: CPU consumption of different grid test topologies.

Service Throughout Per Node ,30 POD and 30 Connections

pod sidecar
node sidecar

0

2000

4000

6000

8000

10000

12000

14000

16000

Q
PS

2000 4000 6000 8000 10000 12000 14000 16000 180000
RPS

Figure 9: Service impact of different grid test topologies.

la
te

nc
y, 

m
ill

ise
co

nd
s

Istio p90, 1000 RPS, 240 Seconds

pod sidecar
node sidecar

-1.5

1

3.5

6

8.5

11

13.5

16

8 16 24 32 40 48 56 640
connections

Figure 10: Network delay of different grid test topologies.

Mobile Information Systems 7



5. Conclusions

Service grid commercial scale needs to meet the require-
ments that the sidecar does not affect business operation and
has lower consumption of computing resources to reduce
user cost. Especially in the scenario of mixed cloud edge
resource constraints, it is more necessary to ensure the
lightweight of sidecar deployment. On the other hand, the
end-to-end delay of the service grid is closely related to the
performance of the underlying network. Compared with the
kernel mode host, the user mode host has more advantages
in the delay performance of message sending and receiving
because it avoids the copy of messages between the user
mode and the kernel mode. Service grid adopts a node-level
sidecar model. Compared with the pod-level sidecar model
because each node has only one sidecar, the number of
listeners and clusters of the sidecar is reduced from n to 1, so
the accumulated memory of the sidecar is significantly re-
duced, and the centralized processing of the sidecar also
improves the CPU performance. On the other hand,
compared with pod-level sidecar model, the node-level
sidecar model also introduces some complexity, including
that the node-level sidecar needs to be expanded with the
load, and it is in a different name space from the service pod,
so it needs to meet the lower delay of message sending and
receiving through the interception and short circuit tech-
nology of user mode protocol stack.

From the previous research, it can be concluded that the
node grid agent can isolate pod services without affecting
business operation, significantly reduce the memory con-
sumption to one, no longermultiply with the number of pods,
and reduce end-to-end network delay by about 30%, and the
overall CPU consumption is the same as the pod service grid,
with a slight decrease of about 3%. It shows that the node-level
sidecar model can get better application benefits than the
pod-level sidecar model in container cloud service grid.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by the Key Basic Research Project
of Beijing Institute of Graphic Communication (EA202003)
and General Project of Beijing Municipal Education
Commission (KM201910015005).

References

[1] See https://www.nextplatform.com/2018/08/15/istio-aims-to-
be-the-mesh-plumbing-for-containerized-microservices.

[2] See https://preliminary.istio.io/latest/docs/ops/deployment/
performance-and-scalability/.

[3] R. Hentschel, C. Leyh, and A. Petznick, “Current cloud
challenges in Germany: the perspective of cloud service
providers,” Journal of Cloud Computing, vol. 7, no. 1, pp. 1–12,
2018.

[4] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. Shuaib
Qureshi, H. Hussain, and I. Rentifis, “Survey on grid resource
allocation mechanisms,” Grid Computing, vol. 12, no. 1,
pp. 399–441, 2014.

[5] Y. B. Yang, “Research on Key Technologies of service grid
performance optimization,” Computer applications and soft-
ware, vol. 38, no. 11, pp. 24–30, 2021.

[6] I. Kumara, J. Han, A. Colman, and M. Kapuruge, “Software-
defined service networking: performance differentiation in
sharedmulti-tenant cloud applications,” IEEE Transactions on
Services Computing, vol. 10, no. 1, pp. 9–22, 2017.

[7] B. Krašovec and A. Filipčič, “Enhancing the grid with cloud
computing,” Grid Comput, vol. 17, no. 1, pp. 119–135, 2019.

[8] Q. Ma, J. Y. Sun, and H. F. Li, “Research on data service
optimization in high performance grid workflow,” Journal of
Huazhong University of Science and Technology (Nature Sci-
ence Edition), vol. 39, no. 1, pp. 15–18, 2011.

[9] Z.-G. Chen and B. Yang, “Task scheduling based on multi-
dimensional performance clustering of grid service re-
sources,” Journal of Software, vol. 20, no. 10, pp. 2766–2775,
2009.

[10] See https://preliminary.istio.io/latest/about/service-mesh.
[11] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices

architecture enables DevOps: migration to a cloud-native
architecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[12] J. A. Valdivia, A. Lora-González, X. Limón, K. Cortes-Verdin,
and J. O. Ocharán-Hernández, “Patterns related to micro-
service architecture: a multivocal literature review,” Pro-
gramming and Computer Software, vol. 46, no. 8, pp. 594–608,
2020.

[13] D. Salomoni, I. Campos, L. Gaido et al., “INDIGO-Data-
Cloud: a platform to facilitate seamless access to E-infra-
structures,” Journal of Grid Computing, vol. 16, no. 3,
pp. 381–408, 2018.

[14] A. M. Abdullah, S. M. Shamsuddin, F. E. Eassa, F. Saeed, and
M. O. Alassafi, “Towards an intelligent framework for cloud
service discovery,” International Journal of Cloud Applications
and Computing, vol. 11, no. 3, pp. 33–57, 2021.

[15] F. L. Zhang, “An intelligent contract micro service frame-
work,” Journal of Software, vol. 32, no. 11, pp. 3423–3439,
2021.

[16] J. T. Zhou and M. Wang, “Enterprise information integration
framework for peer-to-peer semantic grid services,”Computer
integrated manufacturing system, vol. 16, no. 12, pp. 2697–
2707, 2010.

[17] Z. Tao and Z. Q. Xiang, “Design and application of micro
service architecture service mesh,” Automation technology
and application, vol. 39, no. 1, pp. 49–53, 2020.

[18] B. Wood, B. Watling, Z. Winn, D. Messiha, and
Q. H. Mahmoud, “Remote method delegation: a platform for
grid computing,” Grid Computing, vol. 18, no. 1, pp. 711–725,
2020.

[19] J. S. Shi, J. B. Yuan, and F. S. Yuan, “Hierarchical grid trust
model based on nearest service,” Journal of Nanjing University
of Aeronautics & Astronautics, vol. 43, no. 2, pp. 273–278,
2011.

[20] A. Haque, S. M. Alhashmi, and R. Parthiban, “Identifying and
modeling the strengths and weaknesses of major economic
models in grid resource management,” Grid Computing,
vol. 12, no. 1, pp. 285–302, 2014.

8 Mobile Information Systems

https://www.nextplatform.com/2018/08/15/istio-aims-to-be-the-mesh-plumbing-for-containerized-microservices
https://www.nextplatform.com/2018/08/15/istio-aims-to-be-the-mesh-plumbing-for-containerized-microservices
https://preliminary.istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://preliminary.istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://preliminary.istio.io/latest/about/service-mesh


[21] M. Qian, Z. Liu, J. Wang, L. Yao, and W. Zhang, “Coordi-
nation-theoretic approach to modelling grid service com-
position process,” Journal of Systems Engineering and
Electronics, vol. 21, no. 4, pp. 713–720, 2010.

[22] G. P. Dai, “Cooperative game model for grid service com-
position task scheduling,” Journal of Beijing University of
Technology, vol. 38, no. 3, pp. 380–384, 2012.

[23] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag,
and L. Veiga, “Practical service placement approach for
microservices architecture,” in Proceedings of the 17th IEEE/
ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’17, pp. 401–410, Madrid, Spain, May
2017.

[24] K.-C. Wu, W.-Y. Liu, and S.-Y. Wu, “Dynamic deployment
and cost-sensitive provisioning for elastic mobile cloud ser-
vices,” IEEE Transactions on Mobile Computing, vol. 17, no. 6,
pp. 1326–1338, 2018.

[25] Y. R. Cui, M. C. Li, and J. He, “A grid node reputation
evaluation algorithm and its application in the construction of
service grid virtual organization,” Acta Electronica Sinica,
vol. 38, no. 7, pp. 1557–1562, 2010.

[26] Z. H. Wu and H. J. Chen, “From semantic grid to knowledge
service cloud,” Journal of Zhejiang University - Science, vol. 13,
no. 44, pp. 253–256, 2012.

[27] C. Serven, J. Ejarque, D. Lezzi, and R. M. Badia, “Transparent
orchestration of task-based parallel applications in containers
platforms,” Journal of Grid Computing, vol. 16, no. 1,
pp. 137–160, 2018.

[28] Y. C. Yuan, X. P. Li, Q. Wang, and X. D. Zhang, “Grid
workflow scheduling based on priority rules,”Acta Electronica
Sinica, vol. 37, no. 7, pp. 1457–1464, 2009.

[29] A. F. Qiu, “Design and implementation of disaster reduction
service system combining micro service and middle platform
concept,” Journal of Wuhan University (Natural Science
Edition), vol. 45, no. 8, pp. 1288–1295, 2020.

[30] H. F. Li and Z. J. Xu, “Cascading fault prediction method in
service grid,” Computer application and software, vol. 38,
no. 11, pp. 121–130, 2021.

[31] Y. Tian, H. Haitian, X. Xiaojian, and L. Bing, “Research on
enterprise service governance based on service mesh,” Journal
of Physics: Conference Series, vol. 1673, no. 1, Article ID
012003, 2020.

[32] U. Paščinski, “QoS-aware orchestration of network intensive
software utilities within software defined data centers,”
Journal of Grid Computing, vol. 16, no. 1, pp. 85–112, 2018.

[33] S. Draxler, H. Karl, and Z. A. Mann, “Joint optimization of
scaling and placement of virtual network services,” in Pro-
ceedings of the 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 365–
370, Madrid, Spain, May 2017.

[34] J. Y. Kun Meng, J. Cao, Z. Chen, L. Gao, and C. Lin,
“Electricity services based dependability model of power grid
communication networking,” Tsinghua Science and Tech-
nology, vol. 19, no. 2, pp. 121–132, 2014.

[35] M. Selimi, L. Cerdà-Alabern, F. Freitag, L. Veiga,
A. Sathiaseelan, and J. Crowcroft, “A lightweight service
placement approach for community network micro-clouds,”
Journal of Grid Computing, vol. 17, no. 1, pp. 169–189, 2019.

[36] M. O. Keefe, J. Howard, and M. Jog, “Best Practices:
Benchmarking Service Mesh Performance,” Istio form,
pp. 1–3, 2019, https://preliminary.istio.io/latest/blog/2019/
performance-best-practices/.

Mobile Information Systems 9

https://preliminary.istio.io/latest/blog/2019/performance-best-practices/
https://preliminary.istio.io/latest/blog/2019/performance-best-practices/

