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Since industry 4.0 was put forward in 2013, industrial process around the world has been moving rapidly towards the age of
intelligent manufacturing. Industry 4.0 is known as the fourth industrial revolution dominated by intelligent manufacturing,
which has changed the production mode of global manufacturing and triggered far-reaching industrial changes. However, when
intelligent machines communicate with each other under industrial 4.0, a large amount of data adopting distributed control will be
generated. �e infographic in the data is mainly a visual design of industry 4.0 data. �erefore, this paper mainly studies the
distributed data optimization processing for industry 4.0. Considering that data leakage is one of the biggest challenges faced by
the data storage systems, this paper proposes a data storage method that considers the e�ciency and security of data access. �e
concept of security distance not only guarantees data security but also takes into account the emphasis of di�erent user groups on
data security. To minimize data access time, this paper proposes a data access node selection algorithm to minimize data access
time while ensuring data security. �e simulation proves that compared with baselines, the data access time of the proposed
algorithm in random topology and Internet2 topology is less than that of the current data storage algorithm while ensuring data
security. �e experimental results are simulated on Internet2 topology and random topology with Matlab and
Omnet + + simulation platform, showing that the proposed algorithm can select the optimal data storage node under the
condition of satisfying the security distance constraint, thus reducing the data access time.

1. Introduction

Industry 4.0 is proposed and applied at Hannover Messe in
2013, which is mainly aimed at the future manufacturing
industry [1]. After the three industrial revolutions, it inte-
grates network technology and digital technology to rep-
resent the fourth industrial revolution, which makes
industry 4.0 attract high attention in the global industrial
�eld [2, 3]. At present, industry 4.0 not only takes intelligent
development as the primary target but also extensively
applies advanced measures such as information technology,
information interaction, and process reengineering. Based
on meeting the personalized and di�erentiated needs of
di�erent consumers, �exible production is performed to
achieve maximum decision optimization [4–6].

Today is the era of big data. In the era of Industry 4.0, the
manufacturing industry will be built on an interactive
platform based on the Internet and information technology.
Industrial big data will become the core driving force of

intelligent manufacturing [7, 8].�emain thinking direction
of Industry 4.0 is to predict demand and production through
data analysis and then use data to integrate the industry
chain and value chain, so as to create greater value [9]. �e
production-related data are called the master data of the
enterprise, which includes a series of product-related data
such as design, process, modeling, test, maintenance,
product structure, component con�guration, and change
records. �ese data are recorded, transmitted, and processed
to enable the product to achieve life cycle management and
further satisfy customers’ personalized product needs
[10, 11].

�e huge amount of data in Industry 4.0 makes people
su�er from information overload. In recent years, data
analysis, data processing, and data presentation have become
a research hotspot, among which infographics presented to
users is a key link, which can enhance the readability and
attractiveness of data information and increase the accep-
tance and dissemination [12]. Infographics is an excellent
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way to present data and information concisely and clearly
[13]. In the era of data and information explosion, higher
requirements are put forward for the design of infographics,
but how to present more rich data content from multiple
perspectives more clearly and concisely has become a
problem. (e essence of infographic processing is a large
amount of industrial data. (e mass and diversity of in-
dustrial data make distributed systems become the best
choice for data storage and management. Currently, dis-
tributed data storage systems are divided into peer-to-peer
(P2P) storage technology and cloud storage system repre-
sented by cloud computing [14]. (e advent of the big data
era makes the research on the distributed storage system of
great significance. For mass data storage, distributed data
storage surpasses traditional centralized storage technology
with its good scalability, robustness, and high efficiency.

Distributed data storage uses a large number of low-cost
PC servers that are widely distributed in different geo-
graphical areas and connected to each other to store massive
data [15]. (is storage method can greatly save storage costs,
but the availability of nodes is low. Meanwhile, the ex-
pansion of data storage greatly increases the probability of
system failure. Based on cloud computing, cloud storage
technology can combine different devices and different types
of data to work together through application software,
distributed file system, cluster technology, and network
technology. However, storage nodes in different locations
have different storage capabilities and link bandwidths,
making it difficult to improve data access speed [16, 17]. In
terms of data access time, graph partitioning is widely used
at present [18]. (is method has sufficient mathematical
theory as support, but graph partitioning does not consider
the node performance and link performance comprehen-
sively, so it cannot solve the actual problem. How to reduce
data access time while ensuring certain data security is the
key point of distributed infographic design for industry 4.0.

To meet security requirements and support distributed
infographic design of Industry 4.0, the concept of a
K-distance topological subgraph is proposed in this paper;
that is, in an undirected graph, if there is a subgraph whose
distance between any two nodes is greater than K, then this
subgraph is called the K-distance topological subgraph of the
original graph. Based on the above definition, this paper uses
K-distance topological subgraph in the original topology to
place data so as tomeet the security requirements. Moreover,
to minimize data access time, this paper proposes a node
selection algorithm based on a priority of nodes. (e nodes
are arranged in ascending order according to the access time
of data, and then the data storage nodes are selected in turn
under the constraints of security distance to form the op-
timal K-distance topological subgraph. (en, the data are
placed on the K-distance topological subgraph.

Accordingly, the main contributions of this paper are
summarized as follows:

(i) (e concept of K-distance topological subgraph is
proposed

(ii) A low complexity data placement algorithm is
proposed

(iii) By comparing the effectiveness of the proposed
algorithm on different network scales, the superi-
ority of the proposed algorithm is proved

(e rest of this paper is organized as follows. Section 2
reviews related work. In Section 3, we study the distributed
data storage algorithms.(e simulation results are presented
in Section 4 and Section 5 concludes this paper.

2. Related Work

2.1.DataAnalysis for Industry 4.0. Since industry 4.0 was put
forward in 2013, the industrial process around the world has
been moving rapidly towards the age of intelligent
manufacturing. (e development of data perception tech-
nology further helps to collect massive industrial data, and
the innovation of industrial informatization is an oppor-
tunity. However, industrial data have the characteristics of
large-scale, high-dimension, variable structure, and complex
content, so it is a severe challenge to analyze industrial data.
Diez et al. [19] conducted a comprehensive survey of the
latest developments in data fusion and machine learning for
industrial forecasting, focusing on identifying research
trends, opportunities, and unexplored challenges. Peres et al.
[20] proposed intelligent data analysis and real-time mon-
itoring framework, which provided the basis for realizing
scalable and flexible data analysis and real-time monitoring
systems for the manufacturing environment. Raptis et al.
[21] investigated the latest literature on the application of
data management in a networked industrial environment
and identified several open research challenges in the future.
Costa et al. [22] aimed to find out the relationship or as-
sociation between emerging technologies in industry 4.0 and
applied data mining technology to a new bibliometric
method to help identify association networks. Villalobos
et al. [23] proposed a three-level hierarchical architecture for
industrial 4.0 data storage in a cloud environment, which
helped to manage and reduce the costs. Jiang et al. [24]
proposed an analysis framework based on big data to analyze
and extract the network behavior of cellular networks in
industry 4.0 applications by using Hadoop and other
technologies from the perspective of big data. Soltysik et al.
[25] determined the trend and keywords for promoting the
use of open data in industry 4.0. Li et al. [26] proposed a
system framework based on the concept of industry 4.0,
including the fault analysis and treatment process of ma-
chine center predictive maintenance.

2.2. Study forDistributedData Storage. (e large-scale use of
the Internet has radically changed the data storage mode.
With the increasing popularity of data sharing, local file
systems cannot meet the needs of data sharing. More and
more data are stored in distributed structures through the
network. (e distributed storage technology for file sharing
emerges as the times require. (rough the distributed data
storage technology, people can easily and quickly exchange
data and work together.Wu et al. [27] proposed a robust and
auditable distributed data storage scheme to support safe
and reliable edge storage in edge computing and ensure the
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reliability and integrity of data in the distributed edge
storage servers. Cangir et al. [28] preliminarily classified the
blockchain-based distributed storage technology. Shi et al.
[29] proposed a data placement algorithm based on fault-
domain, which provided a new idea for the design of the
distributed storage system. Yao et al. [30] introduced a
remote image design of a dual node storage cluster, which
could protect data in case of system failure. Liao et al. [31]
considered a more practical data center network with fat-
tree topology and used deep learning technology K-means to
help store data blocks, so as to improve the read-write delay
of data center networks. Jin et al. [32] introduced how to use
distributed database HBase maintained by Apache to
manage power data.

3. Distributed Data Storage Algorithm

3.1. K-Distance Topological Subgraph. Due to the limitation
of security distance in data storage, it is necessary to find a
list of storage node sets that meet the requirement of security
distance before data chunks are placed [33]. To find such
node sets, the concept of a K-distance topological subgraph
is proposed in this paper.

Let G(V, E) represent the network topology of a dis-
tributed storage system and be also an undirected connected
simple graph, where V represents the set of storage nodes
and E represents the link between the nodes. If there is a
node set V′⊆V and for ∀v1, v2 ∈ V′, v1 ≠ v2, and we have
dis min≥K, where dis min represents the shortest hop
number between two points, then V′ is called the K-distance
topological subgraph of graph G(V, E).

Given the above, the K-distance topology subgraph V′ of
graph G(V, E) is the set of nodes meeting the security
distance limitation [34, 35]. Based on this, we propose a K-
distance topology subgraph generation algorithm. (e
pseudo-code of Algorithm 1 is as follows.

According to Algorithm 1, given an undirected graph
G(V, E), select a node v arbitrarily at the beginning, then
find the node vj whose distance from this node isK, and then
continue to find the point whose distance from vj is K.

Repeat this step until the graph G is traversed. (e set K-dis-
min-graph found is the topological subgraph of the
K-distance.

According to the description of Algorithm 1, it is easy to
get that the K-distance topology subgraph V′ of graph
G(V, E) is not unique, as shown in Figure 1. Considering a
10-vertex topology graphG(V, E), different initial nodes and
intermediate nodes will be selected to obtain different K-
distance topology subgraphs. Figure 1(b) is the schematic
diagram of a 2-distance topology subgraph, and the node-set
is {2, 4, 6, 9}. Figure 1(c) is also a 2-distance topological
subgraph of graph G(V, E) with a node-set of {1, 3, 5, 7, 8,
10}.

3.2. StorageNode SelectionAlgorithm. In this paper, the data
placement problem satisfying certain security can be
transformed into another problem; that is, given the security
distance K, the problem of finding the K-distance topology
subgraph satisfying the minimum data access time can be
found in the network topology. As a result of the undirected
graph, GK-distance topology subgraph is not unique, and
this paper proposes an algorithm based on node priority,
which arranges the nodes in order of unit data access speed.
If the two nodes have the same access speed, they are
arranged according to the node’s self-protection capability
(SPC). When selecting the storage node, the node with the
highest priority should be selected as far as possible to ensure
a high data access speed [36, 37]. Considering that the
complexity of finding the K-distance topological subgraph is
O(n2), a node selection algorithm is proposed in this paper,
which minimizes the speed of data access and reduces the
complexity of the algorithm based on satisfying the safe
distance K.

SPC is the aggregate value of intrusion detection system
capability value, anti-virus capability value, firewall capa-
bility value, and authentication mechanism capability value
[38]. (is paper assumes that all data center nodes have the
above four security measures. Assuming that the data access
point is node A in an undirected graph G, the unit data
access speed from node v to data access point A is defined as
for all nodes v in the graph. (e pseudo-code of the data
storage node selection algorithm (Algorithm 2) is as follows.

4. Simulation and Analysis

4.1. Simulation Environment. In this paper, Omnet + + [39]
simulation platform and Matlab R2020a were used to verify
the effectiveness of the storage node selection algorithm
proposed in this paper. (e network topology is divided into
two types: random topology and Internet2 network con-
nections [40], as shown in Figure 2. In Figure 2, the number
on the line is the weight of the connection. In Figure 3, the
larger the weight of the connection is, the thicker the
connection line is. (e former can measure the performance
of data storage algorithms in various scenarios, and the latter
can measure the performance of data storage algorithms in
real scenarios. As shown in Table 1, we give the specific

(i) Input: G(V, E), and security distance K
(ii) Output: Nodes set K-dis-min-graph
(1) Select any node v

(2) Connect nodes with distance less than K
(3) L1: for i� 1 ⟶ |adj(v)|

(4) for j� 1 ⟶ |adj(vi)|

(5) if vj ∉ adj(v)

(6) K-dis-min-graph ←vj

(7) delete v

(8) v � vj

(9) continue L1
(10) end-if
(11) end-for
(12) end-for
(13) return K-dis-min-graph

ALGORITHM 1: K-distance topology subgraph generation.
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parameter and Table 2 shows settings of the simulation
environment.

We compare the data access time of Algorithm 1 and
Algorithm 2 proposed in this paper with that of CDPVDA
[41], ACO-DPDGW [42], and UnifyDR [43].

(i) Cloudmodel-based Data Placement Algorithmwith
Virtual Data Agent (CDPVDA)

(ii) Ant colony optimization-based data placement of
data-intensive geospatial workflow (ACO-
DPDGW)

(iii) UnifyDR :A generic framework for unifying data
and replica placement

4.2. Simulation results

4.2.1. Random topology. In this paper, we first compare the
data access time results of various algorithms in random
topological networks with different data volumes and net-
work nodes, as shown in Figure 4. Figure 4 shows that with
the increase of data volume, the data access time of the
proposed algorithm is the smallest, which is about 50%

4

6

5 7

1 8

2 9

3 10

(a)

4

6

5 7

1 8

2 9

3 10

(b)

4

6

5 7

1 8

2 9

3 10

(c)

Figure 1: Schematic diagram of 2-distance topological subgraph. (a) Original network topology. (b) 2-distance topological subgraph 1. (c)
2-distance topological subgraph 2.

(i) Input: G(V, E), K, Link bandwidth matrix, node A

(ii) Output: Optimal nodes set (Opt-nodes set)
(1) for i� 1 ⟶ |V|

(2) Unit data access speed� 
 unit data/link bandwidthmatrix

(3) end-for
(4) Rank the nodes according to step 2 from largest to smallest, and the ranked set is UDAS_D
(5) Opt_nodes set ← UDAS_D1
(6) delete UDAS_D1 from UDAS_D
(7) for i� 1 ⟶ |UDAS D|

(8) dis�Dijkstra(A, UDAS_Di)
(9) if dis ≥K
(10) Opt_nodes set ← UDAS_Di
(11) delete UDAS_Di from UDAS_D
(12) end-if
(13) end-for
(14) return Opt_nodes set

ALGORITHM 2: Data storage node selection.
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shorter than that of baselines, and the data access time
increases slowly. (is is because the proposed algorithm
adequately selects the nodes with good link condition to
minimize the data access time. Figure 5 shows that with the
increasing number of nodes, the data access time of the
proposed algorithm is still the smallest compared with
baselines, and the data access time is reduced by about 60%–

70% compared with baselines. (is means that the proposed
algorithm can select the best-performing nodes to store data
under the condition of satisfying the security distance limit,
thus minimizing the data access time.

4.2.2. Internet2 topology. As can be seen from Figure 6, as
the volume of data in the Internet2 topology continues to
increase, the data access time of all algorithms increases. As
can be seen from Figure 6, data access speed on the Internet 2
topology is increasing with the increase of data volume, but
the data access time of the algorithm proposed in this paper
is still the smallest, and the data access time is reduced by
about 50% compared with other baselines. Since the
bandwidth in the Internet2 topology is 1 GBps, UnifyDR and

Random Topology

Figure 2: Topology of random network.

Figure 3: Topology of Internet2 network advanced layer 2 service.

Table 1: Simulation environment parameter settings of random
network topology.

Parameter Setting
Topological connection Full connection
Number of nodes 20
Edge weight Random
Edge style Dotted line
Number of iterations 1000

Table 2: Simulation environment parameter settings of Internet2
network connections.

Parameter Setting
Size of simulation area 4500 ∗ 2700
Number of nodes 34
Capability of node storage (GB) 500–1000
Bandwidth (Mbps) 200–400
Data volume (GB) 2000–6000
Number of iterations 1000
Size of data chunks (MB) 100–500
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Figure 4: Data access time in random topology (different data
volume).
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Figure 5: Data access time in random topology (different network
size).
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the algorithm proposed in this paper select the nearest nodes
when the data volume is small, which makes that the data
access time is the same. However, with the increasing of the
data amount, when some nearest nodes are full of storage,
the algorithm proposed in this paper is better than baselines
in finding suboptimal nodes, so the performance of the
algorithm proposed in this paper becomes better with the
increase of data volume. As indicated in Figure 7, the data
access time in the proposal is still reduced by about 50%
compared with baselines with the increasing security
distance.

5. Conclusions

As for the large amount of data generated by Industry 4.0,
this paper proposes a data storage method considering the
efficiency and security of data storage. Considering data
security and user experience, to meet the needs of different
user groups, the concept of security distance is proposed,
which enables different users’ requirements for data security
to be used in the same data storage method. Considering the
efficiency of data storage, a storage node selection algorithm
is proposed to minimize data access time while ensuring
certain data security, thus improving the user experience.
Finally, simulation results show that compared with other
existing data storage algorithms, the proposed algorithm can
reduce data access time while ensuring certain data security.

In a distributed data storage system, a cloud storage
system has a long distance between storage nodes and is
generally distributed all over the world. However, a struc-
tured P2P network is highly volatile, which makes it difficult
to ensure user experience in the networking strategy of the
distributed data storage system. At present, the trend of
distributed data storage system research is security, reli-
ability, speed, and low energy consumption. Many existing
works only optimize some of the above four conditions but
do not achieve comprehensive optimization. (erefore, it is
necessary to design distributed data storage methods and
consistent maintenance policies that can meet the above
requirements in the follow-up work to improve user
experience.
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