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To evaluate the steady-state availability of heterogeneous edge computing-enabled wireless sensor networks (HECWSNs) with
malware infections, we first propose a Stackelberg attack-defence game to predict the optimal strategies of malware and
intrusion detection systems (IDSs) deployed in heterogeneous sensor nodes (HSNs). Next, we present a new malware infection
model—heterogeneous susceptible-threatened-active-recovered-dead (HSTARD) based on epidemic theory. Then, considering
the heterogeneity of sink sensor nodes and common sensor nodes and the malware attack correlation, we derive the state
transition probability matrix of an HSN based on a semi-Markov process (SMP), as well as the steady-state availability of an
HSN. Furthermore, based on a data flow analysis of HSNs, we deduce the steady-state availability of HECWSNs with various
topologies, including the star topology, cluster topology, and mesh topology. Finally, numerical analyses illustrate the influence
of the IDS parameters on the optimal infection probability of malware and reveal the effect of multiple factors on the steady-
state availability of HSNs, including the initial infection rate, the infection change rate, and the malware attack correlation. In
addition, we present data analyses of the steady-state availability of HECWSNs with various topologies, including the star
topology, cluster topology, and mesh topology, which provide a theoretical basis for the design, deployment, and maintenance
of high-availability HECWSNs.

1. Introduction

In recent years, edge computing has emerged to address
computation-intensive tasks in the 5G architecture [1], for
which it can deploy servers at the edges of the network and
provide services for the end users. This architecture is also
applicable to heterogeneous wireless sensor networks
(HWSNs), which enables heterogeneous sensor nodes
(HSNs) to offload computation tasks to the deployment
servers through the base stations [2]. In this manner, edge
computing systems have begun to provide services for
HWSNs to improve the performance of HSNs.

With the popularity of low-budget smart sensors, HWSNs
have attracted considerable attention from researchers in
many fields, including smart transportation, smart grids, the
military, and smart homes [3–9]. These applications make
our lives more comfortable. However, HWSNs have the same
deficiencies as WSNs: HSNs have limited energy, computa-

tional capacity, and storage capacity [10, 11]. The other con-
cern is that HWSNs are vulnerable to malware attacks, and
malware can damage HWSNs in many ways, which not only
affects the performance of HWSNs but also renders HWSNs
unable to provide normal services [12]. The steady-state avail-
ability of HECWSNs is one of the factor to evaluate its perfor-
mance, which indicates the probability that HECWSNs are
available or reliable when sensing data, transmitting data,
and aggregating data during the long-term operation. To
address these issues, we evaluate the steady-state availability
of heterogeneous edge computing-enabled wireless sensor
networks (HECWSNs) with malware infections.

Malware refers to any malicious program with intentional
attacks and serious destructive power [13–17], which causes
great damage to networks, computer systems, and data [18].
Due to the limited resource allocation of HSNs [19],
HECWSNs are vulnerable to malware attacks [20–22]. Once
a piece of malware has attacked an HECWSN successfully
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through the HSN system’s security vulnerabilities, it will
eavesdrop on information, block networks, wastefully spend
the HSN’s energy, or compromise it [23], which can seriously
corrupt and damage the HECWSN. This paper will study the
service availability of HECWSNs, and it aims to judge the
steady-state availability of HECWSNs by evaluating the per-
formance of HSNs. In other words, when HECWSNs are
infected by malware, we study whether the HECWSNs can
reach a steady state and provide data acquisition, data trans-
mission, and data processing services normally or not.

Because malware infection in HECWSNs is similar to that
of epidemic in people, the epidemic model is usually adopted
for reference when establishing a malware infection model
for HECWSNs [24]. The classical epidemic models include
SI, SIS, and SIR [14]. For example, the SIR model classifies
all nodes’ states into susceptible (S), infectious (I), and recov-
ered (R). When a heterogeneous sensor node (HSN) in
HECWSNs is attacked by malware, its state will undergo a
series of changes. Based on the classical SIR epidemic model,
considering the characteristics of malware hiding and acting,
this paper proposes a heterogeneous susceptible-threatened-
active-recovered-dead (HSTARD)model to describe the states
of HSNs, which includes the states susceptible (S), threatened
(T), active (A), recovered (R), and dead (D).

In recent years, an increasing number of researchers
have studied the problem of network security with game the-
ory [25–28]. During the process of malware infection in
HECWSNs, to defend against malware, HECWSNs use a
deployed intrusion detection system (IDS) in the system of
HSNs to detect malware with a certain probability [29].
The malware, to prevent detection by the IDS, will attack
with a certain probability. Clearly, the attack-defence process
between malware and the deployed IDS is a game problem.
In this attack-defence game, the attack and defence actions
initiated by the malware and IDS have priority, so it is
appropriate to solve the attack-defence problem based on a
Stackelberg game. Therefore, we propose a Stackelberg
attack-defence game (SADG) to predict the optimal infec-
tion probability of malware, where malware is the leader
and the IDS is the follower.

For an HSN, its current state determines the change in
the next state, independently of the previous state, which
means that the HSN state transition is random. Thus, it is
appropriate to describe the state transition of an HSN using
a semi-Markov process (SMP). We derive the state transi-
tion probability matrix of an HSN based on an SMP and
obtain the steady-state availability of an HSN.

The contributions of this paper are summarized as
follows:

First, considering that the deployed IDS and malware are
two agents, we establish an SADG to predict the optimal
infection probability of malware. The SADG can reflect the
influence of the real HECWSNs situation when players
choose their strategies.

Second, considering the characteristics of malware hid-
ing and acting, we propose an HSTARD model by adding
the states threatened, active, and dead to the classical epi-
demic model SIR. The HSTARD model can not only reflect
the latent characteristics of malware but also consider the

influence of the optimal defence strategy of the IDS on mal-
ware infection.

Third, considering the heterogeneity of HSNs and mal-
ware attack correlations, which will jointly affect the vulner-
ability of HSNs, we derive the state transition probability
matrix of an HSN based on an SMP. We also derive the
steady-state availability of an HSN, which not only reflects
the characteristics of sensor node heterogeneity but also
reflects the influence of the number of malware attacks on
the state of HSNs.

Fourth, considering the topological heterogeneity of
HECWSNs, we derive the steady-state availability of
HECWSNs with various topologies, including the star topol-
ogy, cluster topology, and mesh topology. The steady-state
availability evaluation of HECWSNs can provide a theoreti-
cal basis for the design, deployment, and maintenance of
high-availability HECWSNs.

The rest of the paper is organized as follows: Section 2
describes related work. Section 3 predicts the optimal infec-
tion probability of malware based on an SADG. Section 4
describes the dynamic state transition of an HSN and pro-
poses an HSTARD model. Section 5 derives the steady-
state availability of an HSN using an SMP. Section 6
describes the steady-state availability of HECWSNs with
various topologies, including the star topology, cluster topol-
ogy, and mesh topology. Section 7 describes the analysis of
the experimental data. Section 8 summarizes this paper.

To facilitate understanding of this paper, all symbols
used are listed in Table 1.

2. Related Work

Edge computing helps improve computing efficiency and
reduce the network transmission delay. Therefore, edge
computing is widely used in 5G architecture, Internet of
Things, and intelligent vehicle networking. Xiao et al. [30]
presented reinforcement learning for edge computing to
avoid jamming attacks and interference. Xu [31] used
mobile edge computing technology to manage digital com-
munities. Rimal et al. [32] discussed mobile edge comput-
ing’s potential service scenarios and designed scenarios for
mobile edge computing over Wi-Fi networks. Corcoran
and Soumya [33] discussed edge computing that was suit-
able for real-time operation and low latency requirements,
which extended computing capabilities and services to the
edge of the network.

At present, researchers have presented many extended
epidemic models for WSNs, some of which consider the
heterogeneity of WSNs. Examples include the SEIRSV
model, containing states S, E (exposed), I, R, and V (vaccina-
tion); the susceptible-infected-immunized (SII) model [34];
the worm infection model considering the spatial-temporal
perspective [35]; the susceptible-active-dormant-immune
(SADI) model considering the hierarchical structure [36];
and the susceptible-exposed-infected-recovered-susceptible
with vaccination and quarantine states (SEIRS-QV) model
considering user awareness and network delay [37].

To date, many researchers have studied malware infec-
tion in HWSNs through game theory. Lalropuia and Gupta
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[38] developed an availability model to resolve the problem
of the unavailability of a 5G WCN attacked by a denial of
service (DoS) attack using a Bayesian game. Jiang et al.
[39] established an attack-defence game based on a Stackel-

berg game to study the reliability of WSNs. Shen et al. [40]
set up a dependability assessment mechanism for HWSNs
using a noncooperative non-zero-sum game. Shen et al.
[41] formulated a malware-defence differential game to

Table 1: Symbols.

Symbol Description

H Number of HSNs in HECWSNs infected by malware.

G State set of an HSN in HECWSNs infected by malware.

px tð Þ Probability of an HSN being in state x at time t.

pxy tð Þ Probability of an HSN changing from state x to y at time t.

k Degree of an HSN.

β kð Þ Initial infection probability of an HSN with degree k.

n Number of neighbour nodes in active state of an HSN.

L Number of malware attacks on an HSN.

α Optimal infection probability of malware.

φ Death probability of an HSN.

θ Update probability of dead HSNs.

δ Probability of an HSN changing from state R to S.

ξ Detection rate of the IDS.

vx Probability of an HSN transitioning into state x.

πx Steady-state probability of an HSN staying in state x.

P State transition matrix of an HSN.

Ah
j kð Þ Steady-state availability of an HSN with degree k of type h with topology j.

Xs Total number of common sensor nodes connecting to a sink sensor node in HECWSNs with star topology.

ms Minimum number of common sensor nodes connecting to a sink sensor node in HECWSNs with star topology.

Ns Number of common working sensor nodes connecting to a sink sensor node in HECWSNs with star topology.

Ass kð Þ Steady-state availability of a sink sensor node with degree k in HECWSNs with star topology.

AStar Steady-state availability of HECWSNs with star topology.

Xcs Total number of common sensor nodes connecting to a cluster sensor node in HECWSNs with cluster topology.

Ac
c Steady-state availability of a cluster head node in HECWSNs with cluster topology.

Acs
c Steady-state availability of a common sensor node in a cluster in HECWSNs with cluster topology.

Asink
cluster Steady-state availability of a sink sensor node in HECWSNs with cluster topology.

Xc Total number of cluster head nodes connecting to a sink sensor node in HECWSNs with cluster topology.

mc Minimum number of cluster head nodes to which a sink sensor node needs to connect in HECWSNs with cluster topology.

Nc Number of cluster head working nodes connecting to a sink sensor node in HECWSNs with cluster topology.

ACluster Steady-state availability of HECWSNs with cluster topology.

Xc
mesh Total number of common sensor nodes connecting to a sink sensor node in HECWSNs with mesh topology.

mnc
mesh Minimum number of common sensor nodes to which a sink sensor node needs to connect in HECWSNs with mesh topology.

Nc
mesh Number of common sensor nodes connecting to a sink sensor node in HECWSNs with mesh topology.

Xs
mesh Total number of sink sensor nodes in HECWSNs with mesh topology.

mns
mesh Minimum number of sink sensor nodes that are required for normal work in HECWSNs with mesh topology.

Ns
mesh Number of sink working sensor nodes in HECWSNs with mesh topology.

Ac
mesh Steady-state availability of a common sensor node in HECWSNs with mesh topology.

As
mesh Steady-state availability of a sink sensor node in HECWSNs with mesh topology.

AMesh Steady-state availability of HECWSNs with mesh topology.
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study the decision-making problem between an IDS and
malware. Liu et al. [42] proposed a stochastic evolutionary
coalition game (SECG) to study the reliable service of
virtual-sensor-service nodes. Shen et al. [43] proposed a
malware detection strategy for the Internet of Things based
on a signalling game. Liu et al. [44] proposed a Bayesian
Q-learning game to study the problem of task offloading in
sensor edge clouds. Liu et al. [45] also proposed a Stackel-
berg game to study the problem of malware infection
defence in sensor edge clouds based on a deep neural
network.

To date, researchers have presented many models for
evaluating network stability or availability, which have pro-
vided a reference for evaluating the availability of HWSNs.
Famila et al. [46] proposed a cluster head selection technique
by semi-Markov prediction to enhance WSNs’ availability.
Kanchana and Ganesan [47] proposed an inspired self-
aware cooperative scheme using an SMP to prolong WSNs’
lifetimes. Shakya et al. [48] proposed a correlation-based
susceptible-infectious-recovered epidemic model to study
the stability of WSNs. Tang et al. [49] built an evaluation
approach for WSNs’ availability based on Markov chains.
Gour et al. [50] studied the availability of service function
chains in 5G transport networks by designing a slice. Pereira
et al. [51] proposed an availability analysis model to evaluate
the availability of edge and fog nodes based on Markov
chains.

From these references, it can be seen that there are some
problems regarding the availability of HECWSNs with
malware infections, which need to be resolved. The first
issue is how to determine the optimal infection probability
of malware. The second issue is how to accurately describe
the state of HSNs in HECWSNs with malware infections.
The third issue is how to describe the heterogeneity of HSNs
and the correlation of malware attacks on HSNs. The fourth
issue is how to obtain the steady-state availability of
HECWSNs. To address the first issue, we calculate the opti-
mal infection probability of malware through an SADG. To
address the second issue, we describe the state of HSNs by
adding the states threatened and active and propose a
malware infection HSTARD model. To address the third
issue, considering the heterogeneity of security defence
policies of HSNs and the malware attack correlation, we
deduce the steady-state availability of an HSN based on an
SMP. To address the fourth issue, considering the topology
heterogeneity of HECWSNs, we deduce the steady-state
availability of HECWSNs with various topologies, including
the star topology, cluster topology, and mesh topology.

3. HSTARD Model

We assume an HECWSN scenario, which is composed of
HWSNs, a base station (BS), and edge computing servers
(ECServers), where the HWSNs are based on various topol-
ogies, including the star topology, cluster topology, and
mesh topology (see Figure 1). To provide services for the
HWSNs, edge computing servers are deployed at the BS.
According to the computing tasks, the HWSNs determine

whether computation services are offloaded to ECServers
via wireless links.

To clearly describe the relationship among HSNs in an
HECWSNs with malware infection, the HECWSN is
described as an undirected network denoted by T = ðV , BÞ.
Here, V represents HSNs and B represents the connection
between any two HSNs, indicating “connected” by 1 and
“not connected” by 0. The total number of HSNs is set as
H, and the degree of a heterogeneous sensor node represents
the number of other heterogeneous sensor nodes connected
to it, which is denoted by k.

All HSNs can be roughly divided into two types by their
functions: sink sensor nodes and common sensor nodes.
Sink sensor nodes are responsible for pooling and processing
the data collected by common sensor nodes. Compared with
common sensor nodes, sink sensor nodes are configured
with much stronger computing resources, storage resources,
energy, and security defence policies. Considering that these
two sensor node types differ in their security defence poli-
cies, they have different initial infection probabilities. Sink
sensor nodes are configured with stronger security defence
policies, so they are not easily infected. The probability of
initial infection is related to their degree k. The higher the
degree is, the easier it is to infect the node, and the higher
the initial infection probability is. While common sensor
nodes have weaker security defense policies, therefore, they
are more likely to be infected. We set the initial infection
probability of all common sensor nodes to be the same.
Suppose the initial infection probability of an HSN with
degree k, denoted by βðkÞ, is set as

β kð Þ =
β0, common sensor nodes,
βs kð Þ, sink sensor nodes:

(
ð1Þ

In HECWSNs with malware infections, when an HSN is
infected by malware, its states will undergo a series of
changes. We propose an HSTARD model containing five
states: S, T, A, R, and D. The state set of HSNs is expressed
as G = fS, T , A, R,Dg. An HSN in state S is vulnerable to
malware due to its weak security defence policy. An HSN
in state T has been infected by malware, but the resident
malware is hidden, and the HSN cannot spread the malware
to other HSNs. An HSN in state A has been infected by mal-
ware, and the resident malware is active, so the HSN will
spread the malware to other HSNs. An HSN in state R is
immune to the known malware because the system has been
patched or the resident malware has been removed by the
IDS. An HSN in state D is unable to provide normal services
due to malware attacks or energy consumption.

The dynamic state transitions of an HSN are illustrated
in Figure 2, where the state transitions are caused by the
actions of the HSNs and malware. For an HSN in state S,
when it is infected by malware, its state will transition to T;
when it is patched by the IDS, its state will transition to R.
For an HSN in state T, when the resident malware is acti-
vated, its state will transition to A; when it is patched by
the IDS, its state will also transition to R. For an HSN in state
A, when the resident malware is detected and removed by
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the IDS, its state will transition to R. For an HSN in state R,
when it is scanned for security vulnerabilities by new mal-
ware, its state will transition to S. When an HSN is unable
to provide normal services due to malware attacks or energy
consumption, its state will transition to D. To ensure that
there are enough HSNs in the HECWSNs, the HSNs in state
D are updated regularly; at the same time, new HSNs in state
R are added.

For HSNs in all states, the death probability due to envi-
ronmental influence, malware infection, and physical dam-
age is set as φ. At time t, the probability that HSN i is in
state xðx ∈GÞ is denoted by pi

xðtÞ, and the probability that
HSN i transitions from state xðx ∈GÞ to y ðy ∈GÞ is denoted
by pi

xyðtÞ. Suppose the initial state of all HSNs is R; thus, for
any HSN i, we have pRi ð0Þ = 1 and pSi ð0Þ = pTi ð0Þ = pAi ð0Þ =
pDi ð0Þ = 0.

For an HSN in state S, when its security vulnerabilities
are detected by the IDS, it will be patched, and its state
will transition to R with probability ξq. Here, ξq is the
probability of successful detection by the IDS, where ξ is
the detection probability of the IDS and q is the probabil-
ity of the IDS choosing the strategy detection, which is cal-
culated by the proposed SADG. When it communicates
with neighbouring nodes, if it is not infected by any
neighbouring node, its state will still be S with probabilityQk

j=1½1 − αpAj ðt − 1Þ�, where α is the optimal infection

probability of the malware, and it is calculated by the pro-
posed SADG. In addition, it has a death probability φ;
therefore, when it communicates with its neighbouring
nodes in state A, its state transitions to T with probability
1 −Qk

j=1½1 − αpAj ðt − 1Þ� − φ − ξq. Thus, at time t, for HSN

i with degree k in state S, its state transition probabilities
are expressed as

pi
SR tð Þ = ξq,

pi
SD tð Þ = φ,

pi
SS tð Þ =

Yk
j=1

1 − αpAj t − 1ð Þ
h i

,

pi
ST tð Þ = 1 − φ − ξq −

Yk
j=1

1 − αpAj t − 1ð Þ
h i

:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð2Þ

EC server

Common sensor node
Sink sensor node

Cluster head node

Figure 1: HECWSN model.

S T

A

R

D

Figure 2: State transition model of an HSN.
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For an HSN in state T, when its security vulnerabilities
are detected by the IDS, it will be patched, and its state
will transition to R with probability ξq. When it is contin-
uously attacked by malware, in view of the malware attack
correlation, the probability that it is successfully activated
is related to the number of malware attacks. For an HSN
with degree k, suppose the number of its neighbouring
nodes in state A is n ð0 ≤ n ≤ kÞ and the number of mal-
ware attacks is set as L ð0 ≤ L ≤ n ≤ kÞ. The greater L is,
the greater the probability that resident malware will be
activated is. Once the resident malware is activated, its
state will transition to A with probability βðkÞ + Δβ∑n

j=1L

ðCj
nα

jð1 − αÞn−j/piSTÞ, where j is a random variable that
follows a binomial distribution [52]. In addition, it has a
death probability φ. Thus, at time t, for HSN i with degree
k in state T, its state transition probabilities are expressed
as

pi
TR tð Þ = ξq,

pi
TD tð Þ = φ,

pi
TA tð Þ = β kð Þ + Δβ〠

n

j=1
L
Cj
nα

j 1 − αð Þn−j
pi

ST

" #
,

pi
TT tð Þ = 1 − ξq − φ − β kð Þ − Δβ〠

n

j=1
L
Cj
nα

j 1 − αð Þn−j
pi

ST

" #
,

8>>>>>>>>>>><>>>>>>>>>>>:
ð3Þ

where βðkÞ is the initial infection rate and Δβ is the infec-
tion change rate. These variables indicate the variation
characteristics of the probability of HSNs being infected
by malware. In addition, Δβ indicates the sensitivity of
the probability of HSN infection by malware to the num-
ber of malware attacks. As the number of malware attacks
increases, the larger Δβ is, the more sensitive the probabil-
ity of malware infection is to the number of malware
attacks; correspondingly, the greater the probability of
HSNs being infected by malware is.

For an HSN in state A, when it is detected by the IDS, the
resident malware will be removed, and the system will be
patched; its state will transition to R with probability ξq. In
addition, it has a death probability of φ, so it remains in state
A with a probability of 1 − ξq − φ − θ. Thus, at time t, for
HSN i in state A, its state transition probabilities are
expressed as

pi
AR tð Þ = ξq,

pi
AD tð Þ = φ,

pi
AA tð Þ = 1 − ξq − φ:

8>><>>: ð4Þ

For an HSN in state R, its state will transition to S after it
is scanned for security vulnerabilities by new malware, and
the probability of its state transitioning from R to S is
denoted by δ. In addition, it has a death probability of φ,
so it remains in state R with probability 1 − δ − φ. Thus, at

time t, for HSN i in state R, its state transition probabilities
are expressed as

pi
RD tð Þ = φ,

pi
RS tð Þ = δ,

pi
RR tð Þ = 1 − δ − φ:

8>><>>: ð5Þ

For an HSN in state D, when it is updated regularly, the
newly added HSNs are in state R, and the update probability
of dead HSNs is denoted by θ. Thus, at time t, for HSN i in
state D, its state transition probabilities are expressed as

pi
DD tð Þ = 1 − θ,

pi
DR tð Þ = θ:

(
ð6Þ

4. A Stackelberg Attack-Defence Game for
Predicting the Optimal Infection
Probability of Malware

4.1. Defining a Stackelberg Attack-Defence Game. The Stack-
elberg game is a noncooperative strategic game, and its strat-
egies have priority. We establish an SADG to predict the
optimal infection probability of malware in HECWSNs.
Note that the aim of the SADG is not to deduce the detection
probability of an IDS. In this SADG, the malware makes the
attack strategy first, and then, the IDS chooses the defence
strategy. In other words, the malware is the leader, and the
IDS is the follower.

Definition 1. The Stackelberg attack-defence game (SADG) is
expressed by a 3-tuple <B, E,U > , where

(i) B = fmalware ðMÞ, IDS ðZÞg denotes a set of players
(ii) E = EM × EZ , where EM = fInfectðIÞ, Noninfect

ðe∅Þg and EZ = fDetect ðDÞ, Nondetect ð∅Þg denote
the pure strategies sets that malware and IDS can
choose, respectively

(iii) U = ½Ub
eMeZ

�, for b ∈ B, eM ∈ EM , and eZ ∈ EZ , denotes

a payoff matrix, where Ub
eMeZ

: eM × eZ ↦ℝ denotes
the payoff that player b obtains when player M
selects the pure strategy eM and player Z selects
the pure strategy eZ

The parameters used in the SADG are listed in Table 1. ξ
(0 < ξ < 1) and ζ (0 < ζ < 1) denote the detection rate and the
false alarm rate of the IDS, respectively. CI (CI > 0) denotes
the infection cost of the malware, CD (CD > 0) denotes the
detection cost of the IDS, ωI (ωI > 0) denotes the utility of
the malware for successful infection, and ωD denotes the
utility of the IDS for successful detection.

Definition 1 shows that the SADG has two players:
malware ðMÞ and IDS ðZÞ. The two pure strategies for M
to choose are Infect ðIÞ and Noninfectðe∅Þ, and the two pure
strategies for S to choose are Detect ðDÞ and Nondetectð∅Þ.
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Therefore, these two players have four combinations of pure
strategies in the SADG, and the corresponding utilities form
the payoff matrix (see Table 2).

For the combination of pure strategies fInfect, Detectg,
which means that malware selects the pure strategy Infect,
and IDS selects the pure strategy Detect, the detection rate
and the false alarm rate of the IDS are ξ and ζ, so it gains
ξωD and loses ζωD, while malware loses ξωI and gains ζωI .
In response, the rate of malware infection is 1 − ξ, so mal-
ware gains ð1 − ξÞωI and IDS loses ð1 − ξÞωD. In addition,
the infection cost of malware is CI , so malware loses CI .
The detection cost of IDS is CD, so it loses CD. Therefore,
the utilities of malware UM

ID and IDS UZ
ID are, respectively,

UM
ID = ζ − 2ξ + 1ð ÞωI − CI ,

UZ
ID = 2ξ − 1 − ζð ÞωD − CD:

ð7Þ

For the combination of pure strategies fInfect,
Nondetectg, which means that malware selects the pure
strategy Infect and IDS selects the pure strategy Nondetect.
Under this case, malware gains ωI and IDS loses ωD. In addi-
tion, the infection cost of malware is CI , so malware loses CI .
Therefore, the utilities of malware UM

I∅ and IDS UZ
I∅ are,

respectively,

UM
I∅ = ωI − CI ,

UZ
I∅ = −ωD:

ð8Þ

For the combination of pure strategies fNoninfect,
Detectg, which means that malware selects the pure strategy
Noninfect and IDS selects the pure strategy Detect, the false
alarm rate of the IDS is ζ, so IDS loses ζωD. In addition, the
detection cost of the IDS is CD, so IDS loses CD. Therefore,
the utilities of malware UM

~∅D
and IDS UZ

~∅D
are, respectively,

UM
~∅D

= 0,

UZ
~∅D

= −ζωD − CD:
ð9Þ

For the combination of pure strategies fNoninfect,
Nondetectg, which means that malware selects the pure
strategy Noninfect and IDS selects the pure strategy Nonde-
tect, the utilities of malware UM

~∅∅ and IDS UZ
~∅∅ are both

equal to 0.
Let q denote the probability that the follower IDS

selects the pure strategy Detect. Correspondingly, the
probability that it selects the pure strategy Nondetect is
denoted by 1 − q. Let α denote the probability that the
leader malware selects the pure strategy Infect. Corre-
spondingly, the probability that it selects the pure strategy
Noninfect is denoted by 1 − α.

For IDS, the greater the probability q is, the greater the
energy consumed by detection. That is, the detection cost
CD becomes greater as q increases, so we set the detection
cost CD as a linear function of the detection probability q.

We obtain the expected payoff of IDS as

UZ = 2qαωDξ − αωD − qζωD − qCD, ð10Þ

and the detection cost CD is

CD = qσD, ð11Þ

where σD expresses the basic cost of detection of IDS.
Then, using (11) to replace CD in (10), we can obtain UZ

as

UZ = 2qαωDξ − αωD − qζωD − q2σD: ð12Þ

For malware, the greater the probability α is, the greater
the attack needs to consume the resources is. That is, the
infection cost CI becomes greater as α increases, so we set
the infection cost CI as a linear function of the infection
probability α. We obtain the expected payoff of malware as

UM = ζ − 2ξð ÞqαωI + αωI − αCI , ð13Þ

and the infection cost CI is

CI = ασI , ð14Þ

where σI expresses the basic cost of infection by malware.
Then, using (14) to replace CI in (13), we can obtain UM

as

UM = ζ − 2ξð ÞqαωI + αωI − α2σI : ð15Þ

4.2. Predicting the Optimal Infection Probability of Malware.
In this section, we predict the optimal infection probability
of malware by calculating the Stackelberg equilibrium of
the SADG.

Theorem 1. In the SADG, the optimal infection probability α
of malware choosing the pure strategy Infect is

α = ζ2ωIωD − 2ξζωIωD − ωI

2ζξωIωD − 4ξ2ωIωD − σI
: ð16Þ

Proof. According to the equilibrium solution of the Stackel-
berg game, we first calculate the reaction of the follower
IDS and obtain the optimal detection probability q that max-
imizes US. Then, based on the known optimal detection
probability q, we can calculate the reaction of the leader mal-
ware and obtain the optimal infection probability α.

Table 2: The payoff matrix of the SADG.

Detect Nondetect

Infect ζ − 2ξ + 1ð ÞωI − CI , 2ξ − 1 − ζð ÞωD − CD ωI − CI ,−ωD

Noninfect 0,−ζωD − CD 0,0
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First, we calculate the first-order partial derivative of UZ

with respect to q as

∂UZ

∂q
= 2αωDξ − ζωD − qσD: ð17Þ

The second-order partial derivative of UZ with respect to
q is

∂2UZ

∂2q
= −σD: ð18Þ

Since the basic cost of detection σD is greater than 0, −σD
is less than 0. Therefore, UZ has the maximum value. Setting
(17) equal to zero, we can obtain

q = 2αωDξ − ζωD

σD
: ð19Þ

Then, we calculate the reaction of the leader malware by
introducing the parameter q, and we obtain the optimal
infection probability α.

The first-order partial derivative of UM with respect to α
is

∂UM

∂α
= ζ − 2ξð ÞqωI + ωI − ασI : ð20Þ

The second-order partial derivative of UM with respect
to α is

∂2UM

∂2α
= −σI : ð21Þ

Since the basic cost of infection σI is greater than 0, −σI
is less than 0. Therefore, UM has the maximum value. Set-
ting (20) equal to zero for maximization, we substitute (19)
with the optimal detection probability q and obtain the opti-
mal infection probability α as

α = ζ2ωIωD − 2ξζωIωD − ωI

2ζξωIωD − 4ξ2ωIωD − σI
: ð22Þ

It can be seen from the proof and derivation that α is the
optimal infection probability of malware. The proof is
complete.

5. Steady-State Availability of a Heterogeneous
Sensor Node

The steady state of an HSN is an important factor determin-
ing whether it can work normally. It is random, which
means that the current state of an HSN determines the
change in the next state independently of the previous state.
Thus, it is appropriate to describe the state transition of an
HSN using an SMP. Comparing the Markov process (MP)
and SMP, the MP has strict requirements for the state resi-

dence time, which must follow an exponential distribution,
while the SMP does not limit the state residence time, which
can follow any distribution form. Therefore, modelling the
dynamic state transition process of an HSN based on an
SMP appears more objective, and it is more in line with
practical conditions.

The transition from one state to another based on an
SMP can be considered as two logical steps, which are the
residence time of an HSN in state x and the transition pro-
cess from state x to y.

Definition 3. Suppose the residence time of an HSN in state x
is expressed as tx; then, the tx distribution is expressed as
TðtxÞ = ½tS, tT , tA, tR, tD�.

Definition 4. Let νx represent the probability that an HSN
translates to state x, and let the νx distribution be expressed
as VðvxÞ = ½vS, vT , vA, vR, vD�.

Definition 5. The steady-state probability is the share of the
residence time of an HSN in each state in the total resi-
dence time of all states. Let πx represent the steady-state
probability vector of an HSN; the πx distribution is
expressed as XðπxÞ = ½πS, πT , πQ, πI , πR, πD�, where

πx =
vxtx

∑y∈Gvyty
, x, y ∈G: ð23Þ

According to the proposed HSTARD model, the state
transition matrix P of an HSN is constructed as

P =

pSS pST 0 pSR pSD

0 pTT pTA pTR pTD

0 0 pAA pAR pAD

pRS 0 0 pRR pRD

0 0 0 pDR pDD

2666666664

3777777775
: ð24Þ

Here, pSS = pi
SSðtÞ, pST = pi

STðtÞ, pSR = pi
SRðtÞ, pSD =

pi
SDðtÞ, pTT = pi

TTðtÞ,pTA = pi
TAðtÞ, pTR = pi

TRðtÞ, pTD =
pi

TDðtÞ, pAA = pi
AAðtÞ, pAR = pi

ARðtÞ, pAD = pi
ADðtÞ, pRS =

pi
RSðtÞ, pRR = pi

RRðtÞ, pRD = pi
RDðtÞ, pDR = pi

DRðtÞ, and
pDD = pi

DDðtÞ.
According to the discrete Markov properties, we obtain

V =VP,
〠
x∈G

vx = 1:

8<: ð25Þ
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Combining and solving (24) and (25), we can obtain

vS =
pRSp~Tp~AZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� � ,

vT = pRSpSTp~AZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� � ,

vA = pRSpSTpTAZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� � ,

vR =
p~Sp~Tp~AZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� � ,

vD = 1 − Z:

ð26Þ

Substituting vS, vT , vA, vR, and vD into (25), we can
obtain

πS =
pRSp~Tp~AtSZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� �� �

πsum
,

πT = pRSpSTp~AtTZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� �� �

πsum
,

πA =
pRSpSTpTAtAZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� �� �

πsum
,

πR =
p~Sp~Tp~AtRZ

p~Tp~A pRS + p~S
� �

+ pSTpRS p~A + pTA
� �� �

πsum
,

πD = 1 − Zð ÞtD
πsum

,

ð27Þ

where πsum = πsts + πTtT + πAtA + πRtR + πDtD, Z = 1 − ðφ/
1 + φ + PDDÞ, p~S = 1 − pSS, p~T = 1 − pTT , and p~A = 1 − pAA.

Since the steady-state availability of an HSN describes its
ability to continue working after being damaged or attacked
by malware, an HSN in state A or D cannot work normally.
Therefore, the steady-state availability of an HSN of type h
in HECWSNs with topology j, denoted by Ah

j , is

Ah
j = 1 − πA − πD: ð28Þ

6. Steady-State Availability of HECWSNs

6.1. Steady-State Availability of HECWSNs with a Star
Topology. HECWSNs with a star topology are composed of
a single sink sensor node and some common sensor nodes
(see Figure 3). The common sensor nodes are responsible
for collecting data and forwarding them to the sink sensor
node, which is responsible for processing data and transfer-

ring them to the base station. Common sensor nodes work
in parallel without affecting each other and are classified into
a parallel system. Thus, to enable HECWSNs to work nor-
mally, two conditions should be met: (1) the sink sensor
node is able to work normally, and (2) a certain number of
common sensor nodes can work normally.

Assuming that the HECWSNs with a star topology
contain Xs common sensor nodes, the steady-state avail-
ability of each common sensor node is denoted by Ac

star.
It is required that there be at least ms common sensor
nodes working normally in the HECWSNs. When the
HECWSNs can work normally, the number of common
working sensor nodes is denoted by Ns. In the HECWSNs,
the steady-state availability of the sink sensor node is
denoted by Asink

star ðXsÞ, which is expressed as ∑Xs
Ns=ms

CNs
Xs

ðAc
starÞNsð1 − Ac

starÞXs−Ns . The steady-state availability of the
HECWSNs with a star topology, denoted by AStar, is

AStar = Asink
star Xsð Þ 〠

Xs

Ns=ms

CNs
Xs

Ac
starð ÞNs 1 − Ac

starð ÞXs−Ns : ð29Þ

6.2. Steady-State Availability of HECWSNs with a Cluster
Topology. HECWSNs with a cluster topology are composed
of three node types: sink sensor nodes, cluster head nodes
[53], and common sensor nodes (see Figure 4). Cluster head
nodes are selected from common sensor nodes [54], so the
availability of cluster head nodes is equal to that of common
sensor nodes. A cluster is composed of a cluster head node
and some common sensor nodes. When the HECWSNs
work, the common sensor nodes first communicate with
the cluster head node, and then, the cluster head node com-
municates with the sink sensor node. As long as there is
one common working sensor node in a cluster, the cluster
is available.

In HECWSNs with a cluster topology, suppose that the
steady-state availability of a common sensor node in a clus-
ter is denoted by Acs

c and that the number of common sensor
nodes in a cluster is expressed by Xcs. The steady-state avail-
ability of a cluster in the HECWSNs, denoted by Ac

c, is

Ac
c = 1 − 1 − Acs

cð ÞXcs : ð30Þ

Sink sensor node

Common sensor node

Figure 3: HECWSNs with a star topology.
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For HECWSNs with a cluster topology, if a cluster is
regarded as one unit, it can be regarded as having a star
structure. Suppose that there are Xc clusters and that the
steady-state availability of the sink sensor nodes is denoted
by Asink

clusterðXcÞ. Suppose that there are at least mc clusters
required to work normally in the HECWSNs and that the
number of working clusters is denoted by Nc. The steady-
state availability of the HECWSNs with a cluster topology,
denoted by ACluster, is

ACluster = Asink
cluster Xcð Þ 〠

Xc

Nc=mc

CNc
Xc

⋅ Ac
cð ÞNc ⋅ 1 − Ac

cð ÞXc−Nc

h i
:

ð31Þ

6.3. Steady-State Availability of HECWSNs with a Mesh
Topology. HECWSNs with a mesh topology usually contain
several sink sensor nodes, and each sink sensor node man-
ages some common sensor nodes (see Figure 5). The com-
mon sensor nodes are responsible for translating the
collected data to the corresponding sink sensor node, and
then, the sink sensor node sends data to the base station [55].

In HECWSNs with a mesh topology, communication
between a sink sensor node and its common sensor nodes
occurs in a parallel system (see Figure 5), so the HECWSNs
can be regarded as a combination of multiple HECWSNs
with star topologies. Assume that the total number of com-
mon sensor nodes connecting to the sink sensor node is
Xc
mesh, the minimum number of common sensor nodes

required to work normally is mc
mesh, the steady-state avail-

ability of a common sensor node is denoted by Ac
mesh, and

the number of common working sensor nodes connecting
to the sink sensor node is denoted by Nc

mesh. Then, the
steady-state availability of the sink sensor node, denoted by
As
mesh, is

As
mesh = Asink

m Xmð Þ 〠
Xc
mesh

Nc
mesh=mc

mesh

Ckm
Xc
mesh

Ac
meshð ÞNc

mesh 1 − Ac
meshð ÞXc

mesh−N
c
mesh :

ð32Þ

To enable HECWSNs with a mesh topology to work
normally, at least a certain number of sink sensor nodes
are required to work normally. Assume that the total num-
ber of sink sensor nodes is Xs

mesh, the minimum number of
sink sensor nodes required to work normally is ms

mesh, and
the number of working sink sensor nodes is denoted by
Ns

mesh. Then, the steady-state availability of the HECWSNs
with a mesh topology is denoted by AMesh, which can be
expressed as

AMesh = 〠
Xs
mesh

Ns
mesh=ms

mesh

C
Xc
mesh

Xs
mesh

As
meshð ÞXc

mesh 1 − As
meshð ÞXs

mesh−X
c
mesh :

ð33Þ

7. Experimental Simulations and Data Analysis

In this paper, simulation experiments to verify the steady-
state availability of HECWSNs are completed based on
MATLAB 2015. The steady-state availability of HECWSNs
with malware infections is affected by many factors, includ-
ing the initial infection probability βðkÞ, the infection
change rate Δβ, and the infection probability of malware.
First, we analyse the influence of the detection rate ξ and
false alarm rate ζ of the IDS on the optimal infection prob-
ability of malware. Second, we analyse the impact of the ini-
tial infection probability βðkÞ and infection change rate Δβ
on the steady-state availability of HSNs. Third, we evaluate
the steady-state availability of HECWSNs with various
topologies, including the star topology, cluster topology,
and mesh topology.

7.1. Optimal Infection Probability of Malware under the
Influence of IDS Parameters. In this section, the experimen-
tal data show the influence of the detection rate ξ and false
alarm rate ζ of the IDS on the optimal infection probability
of malware. In the experiment, the relevant parameters are
set as σI = 20, σD = 10, ωI = 50, and ωD = 40.

With the increase of the detection rate ξ of the IDS, the
optimal infection probability of malware will decrease (see

Sink sensor node
Cluster head node
Common sensor node

Figure 4: HECWSNs with a cluster topology.

Sink sensor node

Common sensor node

Figure 5: HECWSNs with a mesh topology.
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Figure 6), but with the increase of the false alarm rate ζ of
the IDS, the optimal infection probability of malware will
also increase. For example, when the detection rate ξ of the
IDS increases from 0.5 to 0.95, the optimal infection proba-
bility of malware decreases from 0.06 to 0.01 when ζ = 0:06.
When the false alarm rate ζ of the IDS increases from 0.04 to
0.12, the optimal infection probability of malware increases
from 0.04 to 0.14 when ξ = 0:6.

According to the analysis of the experimental data, to
decrease the optimal infection probability of malware, we
should prioritize reducing the false alarm rate to improve
the detection rate.

7.2. Effect of the Initial Infection Rate and the Infection
Change Rate on the Steady-State Availability of an HSN.
The steady-state availability of an HSN is related to the ini-
tial infection rate and the infection change rate (see
Figure 7). It can be seen from the experimental data curves
that with the increase of the initial infection rate and the
infection change rate, the steady-state availability of an
HSN decreases gradually.

For example, when the initial infection rate increases
from 0.1 to 0.6, the steady-state availability of the HSN
decreases from 0.8596, 0.8543, and 0.8483 to 0.8021,
0.7953, and 0.7886, corresponding to three values of the
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Figure 6: Influence of the IDS parameters on the optimal infection probability of malware.
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Figure 7: Influence of the initial infection rate and the infection change rate on the steady-state availability of an HSN.
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infection change rate, Δβ = 0:05, Δβ = 0:1, and Δβ = 0:15,
respectively. The data analysis indicates that the higher the
initial infection rate is, the greater the probability of HSNs
being infected by malware is, and the lower the steady-
state availability of the HSNs is. The higher the infection
change rate is, the more difficult it is for HSNs to suppress
malware infection. Therefore, to improve the steady-state
availability of HSNs, we should reduce the initial infection
rate and the infection change rate.

The initial infection rate and the infection change rate
influence the steady-state availability of a sink sensor node
(see Figure 8). It can be seen from the experimental data

curves that with the increase of the sink sensor node’s degree
k, the steady-state availability of the sink sensor node
decreases gradually. Three functions of the initial infection
rate are considered in the experiment: βðkÞ = ck, βðkÞ =
c log k, and βðkÞ = cek. Figure 7 shows that when the
degree k of the sink sensor node increases from 10 to 60,
the steady-state availability of the sink sensor node decreases
from 0.8673 to 0.7535. When the initial infection rate of the
sink sensor node satisfies the power function, the steady-
state availability of the sink sensor node is least affected by
its degree k, followed by the linear function and then the
exponential function.
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Figure 8: Influence of the degree of sink sensor nodes on the steady-state availability of the sink sensor nodes.
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For example, when the degree k of the sink sensor node
is set as 35, the steady-state availability of the sink sensor
node is 0.8565, 0.8214, and 0.7946, corresponding to three
functions of the initial infection rate βSðkÞ = cek, βSðkÞ = ck,
and βSðkÞ = c log k, respectively. Experimental data analysis
indicates that the function of the initial infection βSðkÞ =
cek is the most appropriate for HECWSNs.

7.3. Steady-State Availability of HECWSNs with a Star
Topology. Figure 9 shows the evaluation results of the
steady-state availability of HECWSNs with a star topology.
The x-axis shows the number of common working sensor
nodes connecting to the sink sensor node, which ranges
from 15 to 30. The y-axis shows the total number of com-
mon sensor nodes connecting to the sink sensor node, which
ranges from 20 to 30. The z-axis shows the steady-state
availability of HECWSNs with a star topology, which ranges
from 0 to 1.

With the increase in the total number of common sensor
nodes connecting to the sink sensor node, the steady-state
availability of the HECWSNs will increase (see Figure 9).
However, with the increase in the number of common work-
ing sensor nodes connecting to the sink sensor node, the
steady-state availability of the HECWSNs will decrease. For
example, when the number of common working sensor
nodes connecting to the sink sensor node is 20, the steady-
state availability of HECWSNs with a star topology will
gradually increase from 0 to 0.75 as the total number of
common sensor nodes connecting to the sink sensor node
increases from 20 to 30. When the total number of common
sensor nodes connecting to the sink sensor node is 30, the
steady-state availability of HECWSNs with a star topology
will gradually decrease from 0.75 to 0 as the number of com-
mon working sensor nodes connecting to the sink sensor
node increases from 15 to 30. Therefore, when constructing

HECWSNs with a star topology, it is necessary to increase
the number of redundant common sensor nodes according
to the actual situation, which helps to increase the steady-
state availability of HECWSNs with a star topology.

7.4. Steady-State Availability of HECWSNs with a Cluster
Topology. Figure 10 shows the evaluation results for the
steady-state availability of HECWSNs with a cluster topol-
ogy. The x-axis shows the number of working clusters,
which ranges from 15 to 30. The y-axis shows the total num-
ber of clusters, which ranges from 20 to 30. The z-axis shows
the steady-state availability of HECWSNs with a cluster
topology, which ranges from 0 to 1.

With the increase in the total number of clusters, the
steady-state availability of HECWSNs with a cluster topology
will increase (see Figure 10). However, with the increase in
the number of working clusters, the steady-state availability
of HECWSNs with a cluster topology will decrease. For
example, when the number of working clusters is 25, the
steady-state availability of HECWSNs with a cluster topology
will gradually increase from 0 to 0.75 as the total number of
clusters increases from 24 to 30. When the total number of
clusters is 26, the steady-state availability of HECWSNs with
a cluster topology will gradually decrease from 0.75 to 0 as
the number of working clusters increases from 15 to 27.
Therefore, when constructing HECWSNs with a cluster
topology, it is necessary to increase the number of redundant
clusters according to the actual situation, which helps to
increase the steady-state availability of HECWSNs with a
cluster topology.

7.5. Steady-State Availability of HECWSNs with a Mesh
Topology. Figure 11 shows the evaluation results of the
steady-state availability of HECWSNs with a mesh topology.
The x-axis shows the number of common working sensor
nodes in a subnet, which ranges from 2 to 6. The y-axis
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Figure 10: Steady-state availability of HECWSNs with a cluster topology.
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shows the total number of common sensor nodes in a sub-
net, which ranges from 20 to 30. The z-axis shows the
steady-state availability of HECWSNs with a mesh topology,
which ranges from 0 to 1.

With the increase in the number of common sensor
nodes in a subnet, the steady-state availability of HECWSNs
with a mesh topology will increase (see Figure 11). However,
with the increase in the number of common working sensor
nodes in a subnet, the steady-state availability of HECWSNs
with a mesh topology will decrease. For example, when the
number of common working sensor nodes in a subnet is 2,
the steady-state availability of HECWSNs with a mesh topol-
ogy will increase from 0 to 1 as the total number of common
sensor nodes in a subnet increases from 20 to 30. When the
total number of common sensor nodes in a subnet is 30, the
steady-state availability of HECWSNs with a mesh topology
will decrease from 1 to 0.18 as the number of common
working sensor nodes in a subnet increases from 2 to 6.
Therefore, when constructing HECWSNs with a mesh
topology, it is necessary to increase the number of redundant
common sensor nodes in a subnet and the number of sink
sensor nodes, which helps to increase the steady-state avail-
ability of HECWSNs with a mesh topology.

8. Conclusions

To suppress the spread of malware and improve the
steady-state availability of HECWSNs, considering the het-
erogeneity of common sensor nodes and sink sensor nodes
in HECWSNs with malware infections, we evaluated the
steady-state availability of HECWSNs with malware infec-
tions based on an SMP and a Stackelberg game. First, we
established the SADG to predict the optimal infection probabil-
ity of malware. Second, extending the classical epidemic SIR
model by adding states T, A, and D, we proposed an HSTARD
model to describe the states of HSNs. Third, considering the
influence of the malware attack correlation on the steady-

state availability of HECWSNs, we obtained the steady-state
availability of HECWSNs with various topologies, including
the star topology, cluster topology, and mesh topology. The
steady-state availability evaluation of HECWSNs provides a
theoretical basis for the design, deployment, and mainte-
nance of high-availability HECWSNs.

In future work, an even more interesting direction to
consider is the heterogeneity of infection change rate of
HSNs. When the influences of neighbour sensor nodes are
considered, the infection change rate of HSNs is effect by
their degree. In addition, another consideration is to evaluate
the steady-state availability of HECWSNs with multiple
topologies, in which HSNs are deployed in a variety of topol-
ogies, including star topology, cluster topology, and mesh
topology.
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