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With image analysis as the core for multitarget detection and intelligent tracking, mostly applying the Faster R-CNN or YOLO
framework, the MOTA score for multitarget tracking is low in the face of complex working environments. �erefore, further
research into computer vision techniques is carried out to design new multitarget detection and intelligent tracking methods.
Based on the small-aperture imaging model, the principle of lens distortion was analyzed, and a camera calibration and image
calibration scheme was designed to obtain e�ective environmental images.�e attentionmechanism is introduced to optimise the
structure of deep learning networks, and a computer vision detection algorithm based on this is applied to complete regional
multitarget detection. �e distance between each target and the body is then measured in combination with binocular vision
principles. Finally, the spatiotemporal context algorithm is applied to perform simulation calculations to obtain the multitarget
intelligent tracking results. �e experimental results show that the mean MOTA score of the proposed technique is 0.87 in the
night environment, which is 24.14% and 28.374% better than the neural network-based and machine vision-based tracking
methods, respectively; in the daytime environment, the mean MOTA score of the multitarget tracking results of the technique is
0.94, which is 28.72%, and the mean MOTA score of 0.94 for the multitarget tracking results in the daytime environment was
28.72% and 22.34% higher than the other two methods.

1. Introduction

�e progress of modern technology has led the automotive
industry towards an intelligent trend [1], and it can be said
that the level of development of multitarget detection and
intelligent tracking technology directly determines the de-
gree of intelligence of the vehicle. As urban tra�c scenarios
become more and more complex [2], the technical re-
quirements for intelligent driving are becoming higher and
higher. To ensure the stability and safety of automated
vehicle driving, it is necessary to �rst detect targets in the
driving area and track their movement trends in order to
generate highly intelligent driving decisions [3]. At the same
time, a key aspect of smart driving vehicle operation is
environmental perception. Only a clear enough knowledge
of the road environment around the driving area can ensure

that smart driving vehicles are integrated into the tra�c
environment. However, existing multitarget detection and
intelligent tracking technologies can be a�ected by good or
bad lighting and weather conditions, resulting in target
detection and intelligent tracking e�ects that do not meet
intelligent driving requirements.

With the in-depth research of computer vision tech-
nology, computer vision technology with deep learning as
the core has started to be applied in various �elds. �e paper
takes this as the research direction and introduces an at-
tention mechanism to further optimise the current com-
puter vision technology by adding a subregion feature
library and an aspect ratio feature library to the original
detection model to improve the feature representation ca-
pability of the computer vision-based multitarget detection
model and obtain accurate localisation recognition results.
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On this basis, a new multitarget detection and intelligent
tracking technique is established to stably and quickly track
the movement trend of multitarget objects in the vehicle’s
surrounding environment. )e experimental validation
results show that the application of the proposed technique
for multitarget tracking results in more accurate tracking.

)is paper consists of four chapters. )e first chapter is
the introduction. )e second chapter introduces the design
of multitarget detection and intelligent tracking based on
computer vision. )e third chapter is the empirical analysis,
and the designed multi-target detection and intelligent
tracking algorithm is tested. )e fourth chapter is the
conclusion.

2. Multitarget Detection and Intelligent
Tracking Technology

2.1. Camera Calibration and Image Calibration Programme.
)e first step in tracking is identification. A binocular
camera with a wide-angle lens is mounted on the front of
the smart driving vehicle as the main device for sensing the
smart driving environment. Considering that radial and
tangential aberrations exist when the camera captures
images [4], a camera calibration and image calibration
scheme is established with the objective of reducing the
position errors caused by lens aberrations as a fundamental
part of computer vision-based multitarget detection
and intelligent tracking [5]. Most of the imaging of the
camera relies on the small-aperture imaging model, in
three-dimensional space and the camera imaging plane,
respectively, to determine a target point with a corre-
sponding relationship between the two can be expressed as
follows:

I a′ b′ 1􏼂 􏼃 � [a b c 1]
R

T
􏼢 􏼣, (1)

[g h 1] � a′ b′ 1􏼂 􏼃ψ. (2)

In the formula, (a, b, c) represents the coordinates of the
target point in the world coordinate system, (a′, b′) rep-
resents the coordinates of the target point in the camera
coordinate system, (g, h) represents the coordinates of the
target point in the image pixel coordinate system, I repre-
sents the scaling factor, R represents the rotation matrix, T
represents the translation matrix, and ψ represents the in-
ternal parameter matrix.
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In the formula, d1 and d2 represent the scale factor on the
x and u axes, respectively, (u0, v0) represents the coordinates
of the origin, and τ represents the axis inclination parameter.
With (1) and (2), the imaging principle of the camera
is described directly, but in practice, a nonlinear
aberration model needs to be added to describe the imaging
point shift.

ε

o

⎡⎢⎣ ⎤⎥⎦ � 1 + φ1r
2

+ φ2r
4

+ φ3r
6

􏼐 􏼑
ε1

o1
⎡⎢⎣ ⎤⎥⎦

+
2k1ε1o1 + k2 r

2
+ 2ε1

2
􏼐 􏼑

2k2ε1o1 + k1 r
2

+ 2o1
2

􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(4)

In the equation, (ε, o) represents the ideal coordinate
value of the target point, (ε1, o1) represents the actual dis-
tortion coordinate value of the target point, φ1, φ2, and φ3
represents the radial distortion factor, r represents the ra-
dius, and k1 and k2 represents the tangential distortion
factor. Based on the exact and distorted coordinates, the
camera calibration process is completed and reasonable
parameter values are obtained.

In practice, it is necessary to combine the Zhang
Zhengyou calibration method with a calibration plate
composed of black and white squares to take images, build a
library of photos for calibration, apply the optimization
method to iteratively solve the camera parameters with the
minimum error as the goal [6], determine the optimal in-
ternal and external parameters and aberration parameters of
the camera, and after the camera calibration is completed,
calculate the aberration pixel coordinates of the actual
photos taken, as well as the ideal coordinates to complete the
image calibration.

2.2. Computer Vision Multitarget Detection Algorithms. A
calibrated camera is applied to capture images of the smart
driving surroundings, and then computer vision techniques
are applied for multitarget detection. Considering the
computer vision detection technology based on deep
learning, it can be influenced by external factors in practical
applications, making the detection results biased. )e paper
applies computer vision principles and introduces attention
mechanisms in conventional deep learning networks [7] to
establish the multitarget detection framework shown in
Figure 1 for feature extraction, feature pooling, and classi-
fication regression of camera acquisition images.

According to Figure 1, it can be seen that applying
convolutional neural network for computer vision multi-
target detection requires first acquiring image convolutional
features for classification and regression analysis. In the
paper, the subregion feature attention module and aspect
ratio feature attention module [8] are introduced into the
original multitarget detection model to obtain the computer
vision target detection block diagram shown in Figure 2.
Introducing subregion feature attention module and aspect
ratio feature attention module into the original multitarget
detection model can help distinguish single target in mul-
titarget better.)erefore, higher recognition accuracy can be
obtained for target recognition.

According to Figure 2, the updated computer vision
target detection model contains the attention module, which
mainly plays a role in the ROI feature extraction process,
extracting features for regular patterns for further processing
and combining them with the original ROI pooled features
to generate high-quality ROI classification features.
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ξBp � Bp∙ M1 + M2( 􏼁. (5)

In the formula, p represents ROI, Bp represents ROI
pooling features, ξ represents ROI classification features,
M1 represents subregion attention feature maps, and M2
represents aspect ratio attention feature maps.

)e new attention module contains two attention
feature bases, each of which holds the corresponding
attention feature activation relationships. Among them,
the features displayed within the subregion attention
feature library are associated with spatial location in-
formation [9], and based on the location of each feature
point in the ROI subregion, the formula for calculating
the subregion attention salience value is expressed as
follows:

μβ(i, j) � ϕUij. (6)

In the formula, (i, j) denotes a point in the convolutional
feature map, β denotes a subregion, μ denotes an attentional
salient, U denotes a feature vector, and ϕ denotes an at-
tentional feature extractor.

)e features saved within the aspect ratio attention
feature library describe actual feature attributes that directly
describe the observed viewpoint and pose morphology of the
target object, extracting horizontal and vertical scale dif-
ferences in the target detection framework and better de-
termining target class differences. A deep learning network
structure incorporating attention mechanisms is applied to
run computer vision techniques to obtain multitarget de-
tection results during intelligent driving.
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Figure 1: Block diagram of multitarget detection.
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Figure 2: Block diagram of computer vision target detection with the introduction of an attention module.
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2.3. Target Distance Measurement Programme. After the
target detection is over, the target distance measurement
method is designed based on the binocular vision principle
to locate the distance between each target point and the
vehicle body. Applying the pinhole model imaging principle
[10], image acquisition is carried out during intelligent
driving, and each coordinate system of the pinhole model is
shown in Figure 3.

In Figure 3, (Oabc) represents the 3D world coordinate
system, (Oabc) represents the camera coordinate system,
(O’a’b’) represents the image plane coordinate system,
ϕ(u, v) represents the plane coordinate points, and
ϕ(a, b, c)ϕ(a, b, c) represents the 3D coordinate points.

Setting up the existence of a target point in space and the
known coordinates of the image point of the target point in
the two calibrated camera coordinate systems, combined
with the projection matrix, the perspective projection matrix
transformation relationship can be expressed as follows:
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In the formula, L denotes the left camera, A denotes the
right camera, χ1 denotes the projection matrix of the left
camera, and χ2 denotes the projection matrix of the right
camera. Based on the left and right camera perspective

projection matrix transformation relationships shown in
(7) and (8), the spatial coordinates of the target can be
deduced from the known image point coordinates and the
distance measurement results can be obtained by com-
paring the coordinate information. It is important to note
that camera images in complex environments can contain a
lot of noise, which can affect the accuracy of the distance
measurement results. In this case, the least squares method
can be combined with further solutions to obtain more
accurate spatial coordinates of the measured point.

2.4. Multiobjective Intelligent Tracking. Relying on
computer vision technology, the correlation between the
target object and the local scene needs to be analysed for
intelligent tracking of multiple targets for detection and
localisation [11], and the spatiotemporal context algorithm
based on Bayesian framework is applied in the paper for
simulation and calculation to clarify the intensity and lo-
cation correlation of the target region in the image of the
local context, and then the maximisation confidence func-
tion [12] is applied to achieve the target location of real-time
tracking. In which, the confidence function can be expressed
as follows:

e(X) � Γ × Ε
−

X − X″
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

z
􏼠 􏼡

Θ

.
(9)

In the formula, X is the target position, X″ is the target
region centre position, e is the confidence level, Γ is the
normalisation factor, Ε is the bias function, z is the scale
parameter, and Θ is the shape parameter.

Faced with a multiframe image acquired in real time, the
local contextual feature set of the target region it contains
can be represented as follows:
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Image plane
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Figure 3: Diagram of each coordinate system of the pinhole model.
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D � e(Υ) − G(Υ),Υ ∈ Ω{ }. (10)

In the formula,D represents the local context feature set,
Υ represents the selected location, G represents the image
intensity, and Ω represents the local context region around
the selected location. Based on the concept of local context
analysis [13], the multiobjective intelligent tracking model
can be described as Figure 4.

According to Figure 4, the STC algorithm-based mul-
titarget intelligent tracking model is essentially a multitarget
intelligent tracking task through a maximum confidence
function search.)e target image frame is analysed to obtain
its corresponding spatial context model, and the spatio-
temporal context model of the next image frame is repre-
sented as follows:

Hf+1(X) � (1 − α)Hf(X) + αδf(X). (11)

In the formula, f denotes the number of image frames,
H denotes the spatiotemporal context model, α denotes the
learning rate factor, and δ denotes the spatial context model.
According to (11), it can be seen that the spatiotemporal
context model of the next frame can be derived by weighting
the spatiotemporal context model for the current frame of
the photo and the spatial context model [14]. )erefore, the
confidence function calculation formula can be updated as
follows:

ef+1(X) � Q
−1

Q Hf+1(X)􏼐 􏼑⊗Q Gf+1(Y)wz X − X″( 􏼁􏼐 􏼑􏼐 􏼑. (12)

In the formula, Q denotes the Fourier transform, Q− 1

denotes the Fourier inverse transform, ⊗ denotes the
convolution operation, and w denotes the weighted
Gaussian function. Based on the results of the maximum
confidence calculation, the position of the target point
within each frame is determined. Considering the applica-
tion of the STC algorithm, it is only possible to describe the
change in the target position of a single pixel and obtain the
actual displacement of the pixel. To obtain more intuitive
target tracking results, it is also necessary to fuse optical flow

algorithms [15] to specify the subpixel displacement in
consecutive image frames and obtain multitarget intelligent
tracking results.

3. Experiment

)e design of a multitarget detection and tracking technique
is based on computer vision technology, and an experi-
mental analysis is carried out to verify the effectiveness of the
technique in practice. A binocular camera is mounted on an
ordinary car to perform multitarget detection and tracking
in night and day scenes. Based on the detection and tracking
results, the validity of the research content in the paper is
reflected.

3.1. Camera Calibration. )e implementation of computer
vision technology needs to be image-based. During the
experiments, a camera calibration process is carried out
before the camera is fixed to the car in order to capture a
more realistic image. First, create a 13∗14 black and white
checkerboard visual calibration grid, each measuring
20mm∗ 20mm, as shown in Figure 5. Print out the cali-
bration grid and paste it onto a flat horizontal board to form
a visual calibration board.

When applying the binocular camera to capture images,
it is necessary to constantly adjust the angle of the visual
calibration plate to obtain multiple calibration plate images,
as shown in Figure 6.

)e calibration plate images captured by the cameras
shown in Figure 6 were loaded simultaneously into the
MATLAB software and manually processed through the
Calibration Toolbox to extract the corner points contained
within each calibration plate image, and the optimum in-
ternal and external parameters for the left and right cameras
were calculated based on the image corner point informa-
tion, as shown in Tables 1 and 2.

Among them, ηx, ηy indicates the camera focal length
parameter, (u0,v0) indicates the camera principal point
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Figure 4: Multitarget intelligent tracking model.
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position, (l1, l2) indicates the radial aberration, and (s1, s2)
indicates the tangential aberration. )rough the camera
calibration process, in addition to the intracamera param-
eters shown in Table 1, the external parameters of the right

camera relative to the left camera were also obtained, as
shown in Table 2.

After the parameters inside and outside the camera have
been adjusted, it is fixed to the vehicle and continuous image
acquisition is carried out while the vehicle is in motion as the
data required for multitarget detection and intelligent
tracking.

Figure 5: Schematic diagram of the visual calibration grid plate.

Figure 6: Image information of the calibration plate captured by the camera.

Table 1: Statistics of in-camera parameters.

Internal
parameter

Left camera
calibration result

Right camera
calibration result

ηx 5523.45 5528.86
ηy 5523.57 5512.53
u0 775.98 774.43
v0 631.52 543.78
l1 −0.137 −0.162
l2 3.454 0.338
s1 0.006 −0.001
s2 −0.001 0.008

Table 2: Statistics of off-camera parameters.

External parameter Calibration result
x-Axis rotation matrix (Rx) [0.98 0.07 0.03]T

y-Axis rotation matrix (Ry) [−0.07 0.98 −0.02]T

z-Axis rotation matrix (Rz) [−0.03 0.02 0.98]T

Translational variables (T) [−303.02 −0.54 6.63]
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3.2. Evaluation Indicators. In order to demonstrate the re-
liability of the design technique in the paper, the Multi-
Objective Tracking Accuracy (MOTA) should be selected
during this experiment to assess the consistency between the
intelligent tracking results and the actual trajectory of the
target. )e intelligent tracking result output from the ap-
plication of the techniques in the text is first obtained to form
a tracking path containing multiple nodes, and then the true
position of each target is investigated to generate an actual
running path containing multiple nodes. Comparing the
degree of matching between the two paths and analysing the
false detections, misclassifications, and incorrect matches
that occur during the tracking process, the MOTA score is
calculated by expressing the formula as follows:

MOTA � 1 −
(m + n + c)

N
. (13)

In the formula, m represents the number of false targets
detected during tracking, n represents the number of false
targets, c represents the number of false match targets, andN
represents the number of all targets that appear in the image
frame.

3.3. Visual Analysis of Tracking Results. Firstly, a complex
scene with high footfall was selected as the experimental
scene. )e experimental vehicle is controlled to drive
through the scene and take video in a night environment,
and several images are captured within the video sequence to
form a multitarget tracking dataset. Using the multitarget
detection and intelligent tracking techniques proposed in the
paper, the dataset was analysed to obtain the multitarget
tracking results shown in Figure 7.

Figure 7 shows frames 3, 10, 15, and 25, from which it
can be seen that the scene contains a large number of
pedestrians and that the pedestrian trajectories are not
identical, while the tracking technique proposed in the

text, when applied, detects essentially all the pedestrians,
except in cases where the occlusion is too severe. )e
comparison of the four frames shows that the position of
the pedestrian changes within each frame, but the colour
of the detection frame does not change, which indicates a
better result for multitarget tracking. )e above experi-
ments show that the tracking technique designed in the
paper can detect and track multiple targets accurately in
complex scenarios.

Afterwards, a weather day with good lighting conditions
was selected to conduct a multitarget detection and intel-
ligent tracking experiment on a relatively secluded street.
)e vehicle is set to drive through the street at an even speed
and the binocular camera captures images of the sur-
rounding scene as it moves to form a second experimental
dataset. )is dataset is processed by applying the techniques
in this paper to obtain the multitarget tracking results shown
in Figure 8.

As can be seen from Figure 8, there are only a small
number of vehicles moving in the area and no pedestrians
passing by. )erefore, the car can be considered as a de-
tection target, and the illustration captures frames 18, 26, 32,
and 40 to visualise the tracking results of a moving vehicle.
Overall, the proposed technique can be applied to quickly
detect other vehicles from the moment they come into the
camera’s range and mark them with different coloured
detection boxes and then keep track of the vehicle’s
movement until it leaves the camera’s range. In addition,
although the experiment was conducted during daylight
hours with few targets, the lighting conditions were complex,
containing both shaded and brightly lit areas. However, the
detection and tracking results of the techniques designed in
the paper were not affected by the light and showed that the
application of computer vision techniques based on deep
learning networks with the introduction of attention
mechanisms ensures the reliability of multitarget detection
and tracking.

Frame 3 Frame 10

Frame 15 Frame 25

Figure 7: Night multitarget tracking results.
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3.4. Tracking Performance Comparison. To enhance the
visualisation of the experimental results, simultaneous ex-
perimental analyses were carried out in different experi-
mental scenarios by applying the techniques mentioned in
the text, a neural network-based approach, and a binocular
vision-based approach, respectively. )e targets to be de-
tected and tracked were set to keep increasing, and the
detection and tracking results of the different methods were
recorded. )e variation of MOTA scores for different
methods in the night environment is shown in Figure 9.

According to Figure 9, the MOTA scores of the tracking
results of the designed methods in the paper do not fluctuate
much after the number of targets increases, with an average
value of 0.87. )e MOTA scores of the other two methods,
however, keep decreasing as the number of targets increases.
)e neural network-based approach reduced the MOTA
score from 0.76 to 0.52, with an averageMOTA score of 0.66,
while the binocular vision-based approach for multitarget

detection and tracking in different environments achieved a
maximumMOTA score of 0.78 and aminimum of 0.43, with
an average MOTA score of 0.62. In summary, the MOTA
scores of the intelligent tracking results of the proposed
technique improved by 24.14% and 28.374% compared to
the other two methods.

)e change in MOTA scores for the different methods in
the daytime environment was then analysed to form the
comparative results of MOTA scores shown in Figure 10.

According to Figure 10, the mean MOTA score for the
multitarget tracking results of the proposed technique in the
daytime environment is 0.94, while the mean MOTA scores
of the other twomethods are 0.67 and 0.73, respectively. As a
result, the proposed technique improves MOTA scores by
28.72% and 22.34% compared to neural network-based and
binocular vision-based methods, respectively.

Frame 18

Frame 40

Frame 26

Frame 32

Figure 8: Daytime multitarget tracking results.
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Figure 9: Comparison of MOTA scores for different methods in
the night environment.
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4. Conclusion

Intelligent driving is the development trend of the future
automobile industry.)e application of intelligent driving in
urban scene depends on the development level of dynamic
object tracking technology.

In this paper, the traditional computer vision technology
based on deep learning is optimized. By adding attention
mechanism, this paper constructs a new multiobject de-
tection algorithm in computer vision to achieve more ac-
curate and fast multiobject detection. Moreover, using the
STC model, the results of the intelligent target tracking
algorithm established in this paper are also more accurate.

)e intelligent tracking method designed in this paper
can maintain accurate detection and tracking of multiple
targets in complex traffic environment. It performs better
than the traditional intelligent tracking method in the en-
vironment of multitarget and changing illumination con-
ditions. )e intelligent tracking method constructed in this
paper is applied to the field of intelligent driving, which is
beneficial to enhance the stability of vehicle driving.
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