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Wireless sensor network is a network that integrates sensor technology, computer technology, information processing technology,
and communication technology. �is paper aims to study how to analyze and study the routing optimization of wireless sensor
network based on deep learning and describe the neural network. �is paper puts forward the problem of routing optimization,
which is based on the dynamic programming of wireless sensor network, and then elaborates around its concept and related
algorithms and designs and analyzes the case of wireless sensor network optimization. �rough the comparative analysis of the
�ve algorithms in computer simulation, although the average network delay performance of DPER reached 0.47 s, it could
e�ectively prolong the life cycle of the network. �e DPER algorithm not only improves the network life but also improves the
network energy utilization rate, shortens the average path length of the network, and reduces the standard deviation of the
remaining energy of the node.

1. Introduction

Wireless sensor network has the advantages of low cost,
good fault tolerance, rapid deployment, stable network
support, and long-term monitoring work and has broad
prospects for implementation. However, due to the limi-
tations of energy, storage, and processing capabilities of
sensor nodes, wireless sensor networks have presented many
challenging research topics for scienti�c and technological
workers.

Extending the lifetime of wireless sensor networks has
always been a challenging and critical issue for wireless
sensor networks. In large-scale monitoring scenarios such as
deserts, forests, and canyons, the acquisition nodes in
wireless sensor networks are usually powered by batteries.
When the battery is depleted, the node will fail if the battery
is not replaced or recharged in time. Due to the complex
environment in which the wireless sensor network is
deployed, it is expensive to manually replace the battery in a
timely manner. �erefore, it is very necessary to propose a
strategy to optimize the nodes in the wireless sensor network

in a timely manner and establish a reasonable routing
scheme, reduce the overhead power cost in the network, and
solve the problem of limited power in the wireless sensor
network.

�rough computer simulation, the DPER algorithm is
compared with other two classical algorithms and two
improved algorithms, and the validity of the algorithm
transmission is veri�ed.�e innovations of this paper are (1)
this paper combines deep learning with wireless sensor
networks and introduces the theories and related methods of
both in detail. (2) In the face of route optimization, �ve
di�erent algorithms are used for comparison. By evaluating
the experimental results and comparing the performance of
the �ve methods, it is concluded that the research algorithm
of the wireless sensor network optimization method based
on dynamic programming is a feasible method.

2. Related Work

Technological advancements in processors, communications
and integrated low-power computing devices, and wireless
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sensor networks (WSNs) are emerging. ,e purpose of
Guleria and Verma was to propose an energy-efficient load-
balancing cluster routing protocol using Ant Colony Op-
timization, which ultimately improved the network lifetime
of WSNs [1]. Belkhira et al. primary methodology depended
on examining the issue of organization lifetime by pre-
senting another rule that carried out a mix between a hub’s
leftover energy and its reachability to decide the ideal
number of MPs [2]. Jain proposed a two-layer WSN ar-
chitecture for routing and coverage hole detection and re-
covery based on dynamic clustering [3]. Kumar proposed a
GA-based routing protocol for WBAN that was efficient in
terms of energy efficiency and network lifetime [4]. Ram-
akrishnan and Shyry proposed an improved intelligent ant
colony optimization algorithm that removed the concept of
stagnation when identifying the best path for a packet from
source to destination [5]. However, the research on the level
of routing optimization was relatively shallow.

Deep learning is a technology based on artificial neural
networks that is emerging in recent years. Kermany et al.
developed a deep learning diagnostic tool designed to
control patients with common treatable retinal blindness
diseases [6]. Combining deep learning with hyperspectral
data classification, Chen et al. proposed a new method for
classification using spatially dominant information [7]. Ravi
et al. given an exhaustive cutting-edge survey of exploration
on the utilization of profound learning in well-being in-
formatics, giving a basic examination of the innovation’s
general benefits and likely entanglements and its future
possibilities [8]. Young et al. studied important models and
methods related to deep learning used in many NLP tasks
and provided their evolution [9]. ,ese algorithms solve
some problems to a certain extent, but their accuracy and
timeliness need to be improved.

3. Wireless Sensor Network
Optimization Method

3.1. Wireless Sensor Networks

3.1.1. Development. ,e acquisition of data information is
the first step for the information technology industry and
products to be applied to the market. Without it, there
would be no information acquisition, transmission, stor-
age, processing, and application, and there would be no so-
called informatization. As the most basic means of
obtaining information, the function of the wireless sensor is
similar to the five senses of human beings. It can directly
perceive the state of external information and convert the
physical information (pressure, temperature, light, hu-
midity, and pressure) detected by the sensor into a power
output with a certain relationship to meet the transmission
of information and determine the output power of the
relationship to cover the transmission of information
[10–13]. ,e development of wireless sensor network has
successively gone through point-to-point direct connec-
tion, interface connection, bus connection, network con-
nection, and wireless network connection [14, 15], as
shown in Figure 1.

Sensor technology no longer works with a single node in
the early days, but develops from a higher network level,
which can make up for the limitations of a single node, such
as the heterogeneity of node functions, the expansion of the
spatial extent of information perception, the integration and
processing of the collected information network, the flexi-
bility of high user manipulation, and the reliability im-
provement of the network through redundant nodes
[12, 16, 17].

3.1.2. Composition. In wireless sensor networks, sensor
nodes can be deployed in the monitoring area by manual
positioning, aircraft sowing, rocket launching, and then
formed in a self-organizing manner. ,e sensor network
adopts a random deployment method, and the deployment
process is shown in Figure 2.

A large number of nodes develop randomly and densely
in the monitoring area, forming a network through self-
organization. After the node preprocesses the detected in-
formation, it transmits the data to the centralized node in a
multistep relay mode. ,en, through satellite communica-
tion, Internet, mobile phone and other channels, they finally
reach the management center where the user is located.
Users can also manage, configure, query, publish monitoring
tasks through the management center, and collect data and
return it to WSN [18]. ,e overall network structure dia-
gram is shown in Figure 3.

,e sensor node that constitutes the wireless sensor
network is a micro-embedded system, as shown in Figure 4.
,e detection unit is responsible for data collection; the
processing unit is responsible for data processing and
controls the operation of the entire node, including pro-
cessing locally collected data and data sent by other nodes;
the communication unit is responsible for wireless com-
munication with other nodes, exchanging control infor-
mation and sending and receiving data; the energy power
supply device provides the power required for the operation
of the node. How to reduce the energy consumption of the
node, especially how to reduce the energy consumption of
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Figure 1: Development of wireless sensor networks.
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the node communication to maximize the network lifetime
is still a major issue for wireless sensor networks.

Wireless sensor networks have the following charac-
teristics compared with existing wireless networks:

(1) ,e power, communication, computing, and storage
capabilities of sensor nodes are very limited; (2) the de-
ployment scale is large and the density is high; (3) the

dynamics are strong; (4) it is data-centric; (5) it is reliable;
and (6) it is application related.

3.1.3. Introduction of Typical Wireless Sensor Network
Routing Protocols. Wireless sensor network routing proto-
cols reflect the application characteristics of sensor networks

(a) (b)

(c) (d)

Figure 2: Deployment process of wireless sensor network. (a) Place sensor nodes. (b) Wake up and detect each other. (c) Automatically
connect to the network. (d) Route selection for data collection.
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Figure 3: General network structure of wireless sensor network.
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Figure 4: Sensor node composition.
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from different angles. Different applications require different
routing protocols, but the overall idea is to consider energy
saving [19–21]. ,e following will analyze and compare
typical routing protocols from the perspective of protocol
characteristics, as shown in Table 1. ,e content of the
comparison includes parameters such as plane, layering,
whether to save energy, and whether to find the optimal
route.

3.2. Deep Learning

3.2.1. Concept

(1) Deep Learning. Researchers in 1959 proposed enabling
computers to learn without being explicitly programmed.
From the early stages of pattern recognition, researchers
aimed to replace hand-designed features with trainable
multilayer networks. Multilayer architectures can compute
gradients using a backpropagation process. Training pro-
duces a large number of saddle points, where the gradient is
zero, curved upwards in most dimensions. Until early 2010,
DNN-based applications flourished, including Microsoft’s
speech recognition system in 2011 and the image recognition
AlexNet system in 2012.

(2) Deep Reinforcement Learning. RL agents aim to learn
from the environment and take actions to maximize long-
term cumulative rewards. ,e environment is modeled as
MDP. ,e goal of the RL algorithm is to find the optimal
policy. To find the optimal policy, the key is to determine the
value of each state-action function, also known as the Q
function [22, 23].

3.2.2. Development. Many core concepts in deep learning,
such as distributed representation, back propagation (BP),
and CNN, have appeared decades ago. However, DL has
only achieved explosive development in recent years, thanks
to the breakthrough of the threshold of its three core
elements:

(1) Technological progress: both experiments and theory
have proved that the widely used sigmoid function
will cause the gradient to disappear during model

training, and this phenomenon is more serious in
deeper models. ,e Retified Linear Unit (ReLU)
greatly alleviates this problem, and the ReLU
mathematical expression is simpler, and the calcu-
lation speed is faster to speed up the training [24]. In
addition, some simple but extremely effective tech-
niques or algorithms in DL, such as mini-batch
gradient descent, batch normalization, adaptive
optimization algorithms, and so on, have also greatly
improved DL.

(2) Data explosion: the era of information explosion has
brought big data, and the emergence of massive data
has laid a data foundation for the development of
DL.When the data set is small, some shallowmodels,
especially SVM, may get better performance; the
deep model may have too many training parameters
and the training sample size is too small, resulting in
serious overfitting. DL is data driven: as shown in
Figure 5, DL can significantly outperform other
methods only when the training sample size is very
large. On the other hand, DL relies less on manual
intervention, and a high degree of automation is
more in line with the processing and application of
large-scale data.

(3) Breakthrough in computing power: compared
with a few decades ago, the computing power of
computing hardware, especially GPU with mas-
sively parallel computing capability, has been
greatly improved. Specialized hardware such as
GPU can greatly accelerate the computation of
models with highly parallel structures. Fast cal-
culation is very helpful for accelerating the re-
gression feedback of experimental results,
shortening the research cycle of researchers, and
promoting the progress of algorithms. ,e de-
velopment of GPU and other hardware has also
made the deployment and execution of DL energy
efficient, reducing the commercial cost of DL [25].

3.2.3. Artificial Neural Network. First, a 3-layer neural
network model looks like this. It is assumed the input
vector of the neural network is x ∈ Rm, the hidden layer

Table 1: Wireless sensor network routing protocol comparison.

Feature
agreement

Whether or not
plane routing

Energy saving
effect

Support
QoS

Find the best
path

Based on geographic
location

Support data
aggregation

Single/
multipath

PALR Yes Middle No Possible Yes No One
Gossiping Yes Difference No No No No Many
SPEED Yes It is good Make Possible Yes No One
LEACH No It is good No Yes No Yes One
DD Yes Middle Yes Yes No No Many
GEAR Yes It is good No Possible Yes No —
SPIN Yes Middle No — No No —
Flooding Yes Difference No Possible No No Many
HREEMR Yes It is good No Yes No No Many
EQSR Yes It is good Yes No Yes No One
EAR Yes It is good No Yes Yes No Many
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contains a neuron, and the output layer contains b neurons.
,en there are

z
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Here, i(3) is the output of the neural network, f(·) is the
activation function, and the Sigmoid function is commonly
used, namely

f(x) �
1

1 + exp(x)
. (2)

Neural networks can fit very complex functions, but the
solution is more difficult. ,e structure of the neural net-
work is shown in Figure 6.

3.2.4. Convolutional Neural Network. CNN were first pro-
posed in the 1980s. ,e idea of CNN was inspired by human
research on the cat visual system, but due to the limitations
of computer resources at the time and other resource-limited
problems, it could only stop there. One of the three deep
learning giants proposed a standard LeNet-5 network
structure, which was trained by gradient descent, and
achieved good experimental results, making it possible to
train deep neural networks. ,e essence of convolutional
neural network is to construct multiple interconnected
kernel convolution kernels, which can output data features
and topological features. By performing layer merging
functions on the data input side, the structure between data
is hidden [26, 27]. As shown in Figure 7:

As the number of layers continues to increase, the de-
rived features become more and more abstract, and these
abstract features are finally merged through a fully con-
nected hierarchy and classification problem. Feedback is
addressed by Softmax or Sigmoid activation functions [28].
,e detail of the Softmax classifier is

x(a|b) �
exp Za · b( 


D
d�1 exp Zd · b( 

. (3)

,e prediction function can be split into two steps,
taking row 1 of Z and multiplying that row with b:

Za·b � 
d

i�1
Zaixi � fb. (4)

All fd, d � 1, 2, . . . , C are computed, and the Softmax
function is applied to obtain normalized probabilities:

x(a|b) �
exp fb( 


D
d�1 exp fd( 

� softmax(f)b. (5)

Softmax regression is an extension on the basis of lo-
gistic regression to solve the multiclassification problem. In
logistic regression, the training sample set consists of e
labeled samples: (m(1), n(1)), (m(2), n(2)), . . . , (m(x), n(x)) ,
where feature m(i) ∈ ϕy+1 is entered. ,e dimension of
the feature vector m is y+ 1, m0 � 1. ,e function is
supposed as

hα(m) �
1

1 + exp −αT
m 

. (6)

,e model parameters ϕ will be trained to minimize the
cost function:

S(φ) � −
1
x



x

i�1
n

(i)loghφ m(i)
  + 1− n

(i)
 log 1− hφ m

(i)
  ⎡⎣ ⎤⎦.

(7)

In a convolutional network, the process of convolution
includes two parameters, the first parameter is the input, and
the second parameter is the kernel function (the convolution
kernel).

,e unit output of the convolutional operation is called a
feature map. Taking a two-dimensional image Z as input,
and the two-dimensional convolution kernel is P, the
convolution of z and P is

S(i, j) � (Z∗P)(i, j) � 
a


b

Z(a, b)P(i − a, j − b). (8)

Mathematically, convolution is interactive because the
convolution kernel is flipped relative to the input. However,
in most of the existing neural network libraries, the
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Figure 5: Performance change graph for deep learning and shallow learning data volume.
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convolution operation is based on a cross-correlation
function that does not flip the kernel, and both methods are
called convolution. ,e cross-correlation function is
expressed as

S � (i, j) � (Z∗P)(i, j) � 
a


b

Z(i + a, j + b)P(a, b). (9)

For training sets containing samples, the loss function
can be expressed using cross entropy as

P � −
1
z



z

i�1
log P B � b

(i)
|a

(i)
, w, b  . (10)

At test time, the predicted value of the convolutional
neural network is

bpred � argmaxP(B � i|a, w, b). (11)

,e gradient of the convolution layer is calculated as
follows: it is assumed that there is a subsample 1 behind
each convolutional layer μ, the neuron has sensitivity to
the μ layer (the sensitivity is the change of the deviation b,
the deviation b is the derivative). ,e sensitivities of the

elements necessary for all neurons in the next layer are
added up, the effect is multiplied by the activation
function, and it is extracted to calculate the activation
input for the current layer μ. ,e “weight” sampling re-
ductions for this layer are all defined as α (constant), so it
simply needs to extend the result to the previous step μ + 1
to compute ρμ. ,e same calculation should be done for
each map j in the convolutional layer, and subsequently,
this result should correspond to the feature map of the
down-mining layer:

ρμj � βμ+1
j (f′ u

μ
j ∘ up ρμ+1

j  . (12)

An efficient algorithm for computing the above function
is to use the Kronecker product:

up(x) ≡ x⊗ 1t×t. (13)

With the known sensitivity characteristic map, it is
possible to calculate the gradient value of the deviation for all
elements in ρμj :

ωE

ωbj

� 
u,v

ρμj 
uv

. (14)
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Finally, weight gradients are calculated using back-
propagation, unless the same weights are shared among a
large number of connections, the sum of the slopes of all
relevant weight data should be calculated, and the bias value
is calculated using the formula (15):

ωE

ωk
μ
ij

� 
u,v

ρμj 
uv

P
μ−1
i 

uv
. (15)

P
μ−1
i uv is a block above the area of x

μ−1
i , which is obtained by

multiplying by k
μ
ij during the convolution process. ,e

convolution process is used to compute the elements of the
convolutional feature map x

μ
j on (u, v). Formula (16) is used

in MATLAB to calculate (ωE/ωk
μ
ij):

rot180 conv2 x
μ−1
i , rot180 ρμj , ′valid′  . (16)

A downsampling layer performs downsampling on the
input map. If there are H input graphs, there must be H
output graphs, although the output graphs may be slightly
smaller. It can be expressed as formula (17):

x
μ
j � f βμjdown x

μ−1
j  + b

μ
j . (17)

As mentioned earlier, the activation function is the
feature map obtained after computing the top-level map
through the core, which can be trained and learned. ,e
output feature map may include a combination of multiple
inbound feature cards: the relationship between the con-
volutional layer feature map and the activation function
should generally be expressed using the formula (18):

e
l
j � f 

i∈S
e

l−1
i ∗ k

l
ij + y

l
i

⎛⎝ ⎞⎠. (18)

In the above types, el
i is the jmapping and total level in l.

Common mathematical expressions of activation func-
tions are given in Table 2.

4. Network Optimization Experiment of
Wireless Sensor Network Based on
Dynamic Programming

4.1. Construction of Simulation Environment. ,is paper
chooses Matlab7.0 as the experimental simulation platform.
In addition to its excellent numerical computing capabilities,
the platform also provides professional text processing,
symbolic computing, implementation control, and visual
modeling and simulation. ,e performance can also be
evaluated through experimental simulation and simulation
of the network algorithm.

In the simulation of this experiment, the nodes were
distributed on the experimental platform through a random
function. ,e transmission radius of the sensor node was
determined according to the transmission radius of the
actual network.,e energy consumption of each node in the
network could be selected randomly or the initial energy
could be given a fixed value; the source node and sink node
were designated in advance and were recorded as the node
with the smallest number and the node with the largest

number; when the node data is transmitted, it is ignored as 0
without considering the node congestion and data queue.

,e wireless sensor network simulation transmission
area is 100m× 100m rectangular area with 50–130 sensor
nodes randomly scattered. ,e sink node was located in the
upper right corner of the area, and the receiving and sending
range and energy were not limited. ,e transmission radius
of sensor nodes was R, and the nodes could detect and know
their geographic location information. ,e source node was
a node in the trigger area, which could change with the
experimental needs. ,e specific delay simulation parameter
settings are shown in Table 3:

In the wireless sensor network scenario, the generation
of random distribution simulated the random seeding of
sensors to design the location of sensor nodes. ,e geo-
graphical coordinates of the sink node were randomly
generated at the upper right corner of the network topology,
within the communication range, to connect the neighbor
nodes in the network. ,e network topology generation
diagram and the network neighbor node generation diagram
are shown in Figure 8:

For wireless sensor networks, a good routing topology will
have a very obvious impact on the performance of wireless
sensor networks. In the research generation graph of the
wireless sensor network optimization method based on dy-
namic programming, the network state is divided by finding the
minimum number of hops from each node to the sink node,
and a global decision is made for the network in each state. As
shown in Figure 9, the graphs are generated for the minimum
number of hops when the network topology is 100m× 100m,
the number of network nodes is 100 and the number of network
nodes is 80, and the transmission radius is R� 30 meters:

Table 2: Common activation function mathematical expressions.

Name Mathematical expression (input vector x, elements are
xi)

Linear xi

ReLU max (0, xi)

Sigmoid (1/1 + exp(x))

tanh (exp(xi) − exp(−xi)/exp(xi) + exp(−xi))

Softmax (exp(xi)/iexp(xi))

Table 3: Simulation experiment parameter setting table.

Experimental parameters Parameter value
Sink energy Unlimited

Sink position Top right corner of the
web

Communicate radius (communication
radius) 0–50m

Nodes distribution Random
Sensor number (number of nodes) 50–130 pieces
Sensor energy (node energy) 5–10 J
Scene (simulation area) 100×100m2

Packet size 3000 (bit)
Sink number (sink number) 1
Simulation times 100 times

Mobile Information Systems 7



,eupper left corner of each node in the figure is marked
with the minimum number of hops from the node to the
sink node. In Figure 9(a), the minimum number of hops
from source to sink is 7, and in Figure 9(b), the minimum
number of hops from source to sink is 8. It can be seen from
the figure that when the number of nodes in the network
topology is larger, the average number of hops in the net-
work is smaller, and on the contrary, and vice versa, the
average number of hops in the network is larger.

4.2. Simulation Results and Experimental Data. ,e energy
utilization balance in the organization alludes to estimating
the energy utilization of every hub at a particular time, which
mirrors the point of view of the whole organization and the
overall beginning energy changes of every hub in the or-
ganization and the equilibrium of energy utilization, and

furthermore reflects whether the calculation can drag out the
organization life.

,e smaller the energy consumption balance of nodes in
the network is, the more uniform the overall network
consumption is, and the network life will not be reduced due
to the exhaustion of the energy of each edge node. If not, it
means that it is poor for extending the network life.

,e energy usage of the network is analyzed by the
energy usage balance, and the energy usage balance of the
nodes in the network is defined as

s

���������������������


m
a�1 ut(a) − ut(iv)/u0( 

2

m



. (19)

In formula (19), m is the total number of nodes in
the wireless sensor network, u0 is the initial energy of
the nodes in the network, and ut(a) is the remaining energy
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of node ma at time t. ,e statistical method is ut(a) �

u0 − mr · ur − ms · us − m1r · u1r − m1su1s, where mr and ms

are the times that the node receives and sends data packets,
respectively, and ur, us, u1r, and u1s represent the energy
consumed by the node in receiving, sending, and routing
control information each time. m1r and m1s are the times
that the node receives and sends routing control messages,
and u1(iv) is the average value of the remaining energy of all
nodes in the network at time t. ,e energy usage balance is a
typical square of calculating the remaining energy of all hubs
within an organization at time t, reflecting the consistency of
energy utilization at each hub throughout the organization’s
activity, further reflecting the stack balance of energy for
each center in the organization.

Figure 10(a) shows the change of the network energy
balance curve of nodes when the simulation program runs
until the first dead node appears. It tends to be obviously
seen from the figure that the energy balance performance of
the dynamic programming-based wireless sensor network
energy-saving routing algorithm (DPER) proposed in this
paper is better than that of MAODV, AODV, MGPSR, and
GPSR routing protocols. ,is is because, compared with the
two improved routing algorithms, the routing protocol
proposed in this paper has a global consideration for the
nodes selected each time, especially the energy consumption
of nodes has obvious changes. Moreover, the combination of
multihop transmission and direct transmission is adopted in
this paper, which significantly increases the probability of
surrounding nodes being selected, and reduces the balance
of energy consumption of nodes in the network, especially
nodes around the sink. ,erefore, compared with the other
two algorithms, the energy-saving routing algorithm of
wireless sensor network based on dynamic programming
can better realize the balanced consumption of network
energy.

Figure 10(b) is a comparison graph of the average energy
consumption in a single route from the source node to the
sink node in the wireless network energy-efficient routing

algorithm based on dynamic programming and four other
algorithms. As can be seen from the figure, the energy-saving
routing algorithm of wireless sensor network based on
dynamic programming is significantly lower than the energy
consumption of a single node. Among the other four al-
gorithms, the AODV routing algorithm consumes the most
energy in terms of shape. ,e main reason is that the al-
gorithm is almost flooded in the route discovery stage,
resulting in a large energy consumption, and the AODV
routing algorithm does not consider the energy consump-
tion problem. It can also be seen that the improved routing
algorithms MAODV and MGPSR have obvious improve-
ments over the previous two algorithms, AODV and GPSR.
,is minimizes the energy consumption of nodes in the
network.

Figure 11(a) is the network delay comparison between
the energy-saving routing algorithm for wireless sensor
network based on dynamic programming and the other four
algorithms. As can be seen from the figure, compared with
GPSR, MGPSR, AODV, and MAODV, the average network
delay performance of DPER is worse. ,is is because DPER
considers more important factors and considers the energy
balance consumption of the network globally through the
dynamic programming algorithm, so that the energy vari-
ance of the network is as small as possible, resulting in
complicated network initialization process and network
route discovery process, which takes a long time to calculate.
But the benefit of this is that it can extend the life cycle of the
network.

,e analysis also shows that the average end-to-end
delay of running the AODV routing protocol is significantly
greater than the end-to-end delay of running the GPSR and
MGPSR routing protocols. ,is is because in the AODV
routing protocol, the node adopts a three-step handshake
method (flooding routing method) for negotiation in each
route selection and forwards data to the route that needs data
forwarding. ,e route selected by the protocol may not be
optimal. ,e routing path is not the shortest path to the sink
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Figure 10: Network energy comparison. (a) Network energy variance. (b) Average energy consumption of the network.
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node.,e GPSR andMGPSR routing protocols always select
the path with the shortest distance from the sink node.
,erefore, the end-to-end average delay under the condition
of running the AODV routing protocol is greater than the
end-to-end delay of the GPSR and MGPSR routing
protocols.

Figure 11(b) is a comparison diagram of network energy
consumption with a network topology size of 100×100 and a
number of nodes of 300. It can be seen from the figure that as
the number of nodes in the network topology increases, the
energy consumption of the network is relatively uniform,
which is consistent with the trend in Figure 10(a).

5. Discussion

,is article mainly analyzes how to research wireless sensor
network routing optimization based on deep learning. ,e
concepts and algorithms of deep learning are expounded,
artificial neural networks are studied, convolutional neural
networks are explored, and the applicability of DPER in
wireless sensor networks is analyzed through experiments.

,e experimental simulation and description of the re-
search algorithm of the wireless sensor network optimization
method based on dynamic programming are mainly carried
out. First, the simulation experimental environment is de-
scribed in detail, and the experimental steps are analyzed step
by step. ,en, with the help of Matlab7.0, the experimental
simulation is carried out. ,rough the experimental simu-
lation of GPSR routing algorithm based on energy aggrega-
tion (MGPSR), directional AODV routing algorithm
(MAODV), and dynamic programming-basedwireless sensor
network optimization method research algorithm (DPER),
the relevant parameters are adjusted, the routing algorithm is
optimized, and then the parameters such as network lifetime,
energy consumption, average network hops, and network
delay of wireless sensor networks are compared [29].

,rough the experimental analysis in this paper, it can be
seen very well that the research algorithm of the wireless
sensor network optimization method based on dynamic
programming is a relatively feasible method. It is helpful for

theoretical research on energy-efficient routing algorithms
for various wireless sensor networks. ,e experimental re-
sults show that this method is indeed an effective routing
algorithm based on reasonable inferences.

6. Conclusions

,e wireless sensor network deployed in the field or on each
floor of a large building works in a passive environment for a
long time, so the time that the wireless sensor network can
work, that is, the life span of the wireless sensor network is
limited. ,erefore, how to use the existing science and
technology to extend the life of the wireless sensor network
as much as possible, and even make the wireless sensor
network work continuously without dying due to energy
problems is very necessary. Routing in traditional networks
hardly needs to consider the energy sharing of nodes, but the
energy efficiency of routing algorithms in wireless sensor
networks is often more important than finding the shortest
path. ,is paper mainly studied the residual energy and
energy uniformity of nodes and proposed an energy routing
algorithm for wireless sensor networks based on dynamic
programming. In order to better prolong the lifespan of the
network, the idea of dynamic programming is used to find
an efficient way to generalize the data as much as possible,
ensuring that the energy consumption of all network nodes
is balanced. Due to the limitations of research time, research
conditions, and the academic level, this paper inevitably has
some shortcomings, it is hoped to be further improved.
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Figure 11: Data comparison of different routing protocols. (a) Average network delay. (b) Network energy consumption.
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