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�e study of information spreading based on the complex network theory and topological structure has become an important
issue in complex networks. Plenty of infectious disease models are widely used for information di�usion research in complex
networks. Based on these state-of-the-art models, a new epidemic dynamic model with dynamic evolution equations is proposed
and performed on the homogeneous and heterogeneous networks, respectively, in this paper. Meanwhile, we divide the
propagation states into two states: L and H (low propagation ability groups and high propagation ability groups) and consider the
transformation of these two states in ourmodel.�en, the equilibria and stability of the model are analyzed for both homogeneous
and heterogeneous networks to verify the validity of the proposed model. Finally, simulation results illustrate that the proposed
model and information propagation dynamic evolution equations are reasonable and e�ective. Experiments with e�ect factors
also reveal the interaction mechanism and the di�usion process of the proposed model in complex networks.

1. Introduction

Information dissemination [1, 2] represents the process by
which information is transmitted from the original com-
municator to other receptors in social networks. Informa-
tion can be news, rumors, opinions, diseases, and computer
viruses in real life. Society provides people with di�erent
ways to exchange information through various channels. At
present, the research on information dissemination in social
networks mainly focuses on studies of the information
dissemination process [3–6] and the studies of information
dissemination prediction [7, 8]. Information propagation
dynamic models are mainly divided into three categories:
infectious disease dynamics models [9, 10], computer virus
dissemination models [11], and rumor dissemination
models [12, 13].�e process of information dissemination in
complex networks is similar to the spread of diseases. Many
scholars have applied infectious disease models to complex
social networks to address the problem of information
dissemination.

Modeling and analyzing the spreading process of the
epidemic is imperative for an in-depth analysis of the

internal mechanism of epidemic spreading and prediction of
the spreading range, which can be applied to e�ectively
prevent and control the transmission of diseases. �e classic
infectious disease models can be traced back to the SI [14]
model proposed by Vazquez and the SIR and SIS [15] models
proposed by Kermack. With these as a foundation, many
scholars have studied the dynamics of epidemic propagation
and have created many signi¡cant epidemic propagation
models. In particular, the SEIR [16] model was proposed
based on the SIR model by adding the latent node E to
represent the proportion of latent nodes in the network. �e
SEIR model was widely used in the early research on the law
of information dissemination. With the development of
technology, the SEIR model has been unable to accurately
describe the dissemination of information. Samuel et al. [17]
proposed a modi¡ed susceptible-exposed-infectious-recov-
ered (SEIR) model for predicting epidemic dynamics in-
corporating pathogens in the environment and
interventions. He et al. [18] built an SEIR epidemic model
according to control strategies. However, most infectious
disease models are unidirectional. Infection is the most
important factor in the spread of disease in populations. It is
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of great practical significance to classify the infected and
study the internal transformation of the infected.

In addition, individuals in the network are regarded as
nodes, and connections between individuals are regarded
as edges for studying the epidemic spreading. According to
whether the nodes of the network are of the same degree,
the model can be divided into a homogeneous network
model and a heterogeneous network model [19, 20].
Classical models study the dynamics of homogeneous
networks and ignore the connections between individuals.
)e diseases will spread more rapidly than with fewer links,
where individuals have a complex connection. A hetero-
geneous network is more realistic than a homogeneous
network because of the different links between each in-
dividual. Xia et al. [21] proposed an improved suscepti-
bility-exposure-infection-removal (SEIR) model with a
hesitating mechanism, which considers the attractiveness
and fuzziness of the content of rumors and verifies the
dynamics of SEIR models both on homogeneous and
heterogeneous networks. El-Saka studied the dynamics of
the fractional model in the homogeneous network of the
(SIRS) model [22] and improved their study of the dy-
namics of the fractional model in a heterogeneous network
of the (SIRS) model [23].

Motivated by the above analysis, we propose a novel
epidemic dynamic model called SELHR, which is improved
from the epidemic SEIR model. For the SEIR model, there
exists only one type of propagation state, which cannot
greatly displays the real situations of disease dissemination.
We divide the propagation state into two types: low-risk
states and high-risk states, and add the transformation
process of these two states, which can better match real-life
situations. Furthermore, the proposed model SELHR is
introduced for both homogeneous networks and hetero-
geneous networks. )e main contributions to this paper are
listed as follows.

(1) A new epidemic dynamic model (SELHR) is pro-
posed based on the SEIR infectious disease model.
We consider the different types of propagation states
and add the transformed rate between the two types
of propagation states.

(2) Dynamic evolution an equation of information
propagation is constructed in both homogeneous
and heterogeneous networks. Meanwhile, the equi-
libria and stability of the model are analyzed to verify
the validity of the proposed model.

(3) Effect factors of the information propagation process
both in homogeneous and heterogeneous networks
are investigated. In addition, a series of simulation
experiments are conducted to prove the superiority
of the proposed model.

)e rest of this paper is organized as follows. In Section
2, we introduce some related research on an information
dissemination model based on the infectious disease model.
In Section 3, we introduce the propagation rules of SELHR
and drive the dynamic equations on both the homogeneous
and heterogeneous networks. In Section 4, the equilibria and

stability of the model are analyzed both for the homoge-
neous and heterogeneous networks. Section 5 is the simu-
lation analysis of the above model. We finish the paper with
Section 6, where the conclusion and future research work are
discussed.

2. Related Work

)e new generation of information technology includes but
is not limited to blockchain [24], Big data [25], cloud
computing [26, 27], Internet of )ings [28–30], deep
learning [31, 32], etc., which is a new state of full utilization
of the information resources. Information dissemination
has been studied and applied in various fields. For a 5G
network, to improve the computational efficiency and to
address the privacy and security of IoT (Internet of )ings)
data, Jin et al. [28] proposed a Multiple-Strategies Differ-
ential Privacy Framework on STF (MDPSTF) for HOHDST
network traffic data analysis. For the Internet of medical
things (IoMT), Mohammad et al. [29] reviewed the trust
challenges in cloud computing and analyzes how block-
chain technology can address these challenges. Computer
virus propagation can also simulate the process of infor-
mation propagation. Mohammad et al. [30] suggested a
collection of strategies for preventing virus propagation in
the computer population.

Studies based on the classic SIR model can be divided
into three categories: variant infectious disease models,
hesitated infectious disease models, and improved infectious
disease models based on the classic model. In fact, in the
process of virus spreading, not all infected people can re-
cover after being infected. New viruses have a high chance of
invading when people are in an infected state. Elena and Zhu
[33] established the SIVR (susceptible infective variant re-
covery) model, whereV represents the variant after infecting
a new virus. Xu et al. [34] proposed a novel SIVRS math-
ematical model for infectious diseases spreading, where
virus variation factors are considered to describe different
contact statuses for different agents, including the suscep-
tible, the infectious, the variant, and the recovery in a
network.

Considering the mutual influence of forgetting and re-
membering mechanisms, Zhao et al. [35] proposed the SIHR
(susceptible infected hibernator removed) model. By adding
direct links from infected to stiflers, this model examines the
final size of the rumor spreading under various spreading
rates, stifling rates, forgetting rates, and average degree of the
network. Considering individuals’ opinion divergences and
differentiations in online social media, Liu et al. [36] pro-
posed a susceptible hesitated infected removed (SHIR)
model to study the dynamics of competitive dual infor-
mation diffusion.

An important purpose of information dissemination
research based on the infectious disease model is to predict
and control the information dissemination behavior of a
system. Rui et al. [37] proposed a susceptible potential in-
fective removed (SPIR) model, which analyzes the diffusion
process based on discrete time. Considering the counter-
attack mechanism of rumor spreading, Zan et al. [38]
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introduced two new models: the susceptible infective
counterattack refractory (SICR) model and the adjusted-
SICR model, and the self-resistance parameter τ was in-
troduced to study the influence of this parameter in rumor
spreading. Wang et al. [39] analyzed that information dis-
semination in online social networks not only includes
substantive news but also emotional expressions. )ey
proposed an emotion-based spreader–ignorant–stifler
(ESIS) model to simulate the process of information dif-
fusion, which categorizes information cascades into fine-
grained classes.

In reality, the interaction between individuals in net-
works is connected to the structure of heterogeneous dis-
tribution but not of homogeneous distribution. Xueyu et al.
[40] proposed an epidemic SEIRV (susceptible exposed
infected removed vaccinated) model and an evolutionary
game model to analyze the difference between the manda-
tory vaccination method and voluntary vaccination method
on heterogeneous networks. Kabir et al. [41] presented a
modified susceptible vaccinated infected recovered (SIR/V)
with the unaware-aware (UA) epidemic model in hetero-
geneous networks to study the effect of information
spreading in the spatial structure of the vaccination game on
epidemic dynamics. Taking two susceptible groups into
account, Gui and Guo [42] developed a modified sub-
healthy-healthy-infected- recovered (SHIR)model with time
delay and a nonlinear incidence rate in networks with
different topologies.

We can see in Table 1 that in the process of developing
the model, the variables of the model are constantly in-
creasing. More and more models take the effects of time lag,
variation, and isolation into account. )e attributes and
characteristics of the information itself can also be used as
part of the model parameters.

3. SELHR Spreading Model

)e mutation of the new coronavirus has accelerated the
expansion of the epidemic, which has had a huge impact on
social and economic development. We proposed a new
epidemic spreading model and applied it to simulate the
process of information propagation on social networks. An
individual in a complex social network is considered a node
and the relationship between users is regarded as an edge.
)e population in complex social networks is divided into
five groups: S, E, L, H, and R. Moreover, S represents the
uninfected population. E refers to the group infected by the
virus but still in the incubation period of the infection. L
andH stand for the population with low propagation ability
and the population with high propagation ability, respec-
tively. R is the group of people who have been cured after
contracting the virus. To simplify the calculation, assuming
that the total population of the model is constant, the
population entry rate and exit rate are the same, that is μ.
)e state transition diagram of the SELHR model is shown
in Figure 1. )e notations used in the proposed model are
listed in Table 2.

3.1. Principle of the Information Propagation Process. )e
rules of state transformation of the SELHR model can be
summarized as follows:

(1) μ is the population entry and exit rates, ρ is the
proportion of susceptible people in the new entry
population.

(2) When an uninfected node Si is linked to a propa-
gation node L or H, the uninfected node Si trans-
forms to a latent node E with probability α1 or α2.

(3) For the latent node E, it can become a propagation
node L or H with speed p1 or p2. In addition, it can
also transform into an immune node R with speed v.

(4) For the propagation nodes L and H, when they are
adjacent to an immune node R, the propagation
nodes L and H will become immune node R with
probability r1 and r2. Meanwhile, propagation nodes
L and H can be converted to each other at speeds t1
and t2.

(5) For the immune node R, its state has not changed.

3.2. Node State Transition Probability. For the node i in the
complex social network, its state can be transformed among
five different states (S, E, L, H, and R). )e probability of
node state transition in the period [t, t + Δt] is shown in
Table 3.

3.2.1. S⟶ E. If the node i is in S state at time t, it is obvious
that:

P
i
SS + P

i
SE � 1. (1)

)e number of neighbors of a node i is k and states of its
neighbors can be divided into , H and other states. m1 and
m2 represent the number of propagation nodes L and H

respectively. So, we can have as follows:

m1 + m2 + m3 � k

P
i
SS � 1 − ∆tα1( 􏼁

m1 1 − ∆tα2( 􏼁
m2

(2)

It is supposed that node i has k edges and m1 , m2 are
random variables, which are subject to polynomial
distribution:

P k1 � m1, k2 � m2, k3 � m3( 􏼁

�
k!

m1!m2!m3!
PILS(k, t)

m1PIHS(k, t)
m2

1 − PILS(k, t) − PIHS(k, t)􏼐 􏼑
k− m1− m2

.

(3)

PILS(k, t) is the probability from the susceptible node
with k edges to a propagation node L. Likewise, PIHS(k, t) is
the probability of the susceptible node with k edges to a
propagation node H.
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Table 1: Analysis of different propagation dynamics models.

Model Node
states Parameters Heterogeneous Structure Advantage

SIVR
[33] 4 4 N Unidirectional Individuals can be exposed to new information in the dissemination

of information influence.
SIVRS
[34] 5 9 N Unidirectional Considering the influence of network node degree and mortality.

SIHR
[35] 4 5 N Bidirectional Infectious disease model with forgetting mechanism H.

SHIR
[36] 5 3 N Unidirectional A dynamic model of competitive dual information diffusion.

SPIR [37] 3 2 N Unidirectional )e concept of potential spreader set is presented.
SICR
[38] 4 5 N Unidirectional Present a counterattack group in rumor propagation model.

ESIS [39] 3 3 N Unidirectional Information disseminated in online social networks includes
expressions of emotion.

SEIRV
[40] 4 7 Y Unidirectional )e impact of the cost of vaccination and disease treatment on the

vaccination coverage rate is analyzed.
SIR/V
[41] 7 5 Y Unidirectional Two layers SIR/V epidemic model is considered, and individuals are

parted as an unaware and an aware state
SHIR
[42] 4 10 Y Unidirectional Two dynamical systems are designed in homogeneous and

heterogeneous networks by utilizing mean field equations.

SELHR 5 9 Y Bidirectional Transform rate between different types of propagation nodes is
considered.

S E R

v

p1 r1

IL

IH

t1 t2

r2
p2

𝜇𝜌

𝜇 (1 – 𝜌)
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𝜇
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Figure 1: State transition diagram of the proposed SELHR model.

Table 2: Notations.

Symbol Description Value range
S(k, t) )e density of susceptible individuals with degree k at time t [0, 1]

E(k, t) )e density of exposed individuals with degree k at time t [0, 1]

IL(k, t) )e density of infected individuals (L) with degree k at time t [0, 1]

IH(k, t) )e density of infected individuals (H) with degree k at time t [0, 1]

R(k, t) )e density of recovery individuals with degree k at time t [0, 1]

μ )e population entry and exit rates [0, 1]

ρ )e proportion of susceptible person of entry population [0, 1]

α1 Probability of transforming to a latent node linked with node L [0, 1]

α2 Probability of transforming to a latent node linked with node H [0, 1]

p1 Speed of transforming to a propagation node L [0, 1]

p2 Speed of transforming to a propagation node H [0, 1]

t1 Probability of node L converted to node H [0, 1]

t2 Probability of node H converted to node L [0, 1]

r1 Probability of node L transforming to an immune node [0, 1]

r2 Probability of node H transforming to an immune node [0, 1]

v Speed of a latent node transforming to an immune node [0, 1]

〈k〉 Average degree of the network Finite positive integer
P(k) Degree distribution function [0, 1]
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PILS(k, t) � 􏽘
k1

P k1|k( 􏼁P ILk1
|Sk􏼐 􏼑,

PIHS(k, t) � 􏽘
k2

P k2|k( 􏼁P IHk2
|Sk􏼐 􏼑,

(4)

where P(k1|k) is the degree correlation function, P(ILk1
|Sk)

represents the probability of a propagation node L whose
degree is k1 linked to a susceptible node whose degree is k.
PIHS(k, t) is the same as PILS(k, t).

)en, the average probability PSS(k, t) of remaining
susceptible state during the period [t, t + Δt] can be
expressed as follows:

PSS(k, t) � 􏽘
m1 ,m2

1 − ∆tα1( 􏼁
m1 ∗ 1 − ∆tα2( 􏼁

m2

∗
k!

m1!m2! k − m1 − m2( 􏼁!
PILS(k, t)

m1PIHS(k, t)
m2

1 − PILS(k, t) − PIHS(k, t)􏼐 􏼑
k− m1− m2

≈ 1 − α1∆tPILS(k, t) − α2∆tPIHS(k, t)􏼐 􏼑
k

. (5)

Hence, the average probability PSE(k, t) of a node from a
susceptible state to a latent state can be derived during the
period [t, t + Δt],
PSE(k, t) � 1 − PSS(k, t)

� 1 − 1 − α1∆tPILS(k, t) − α2∆tPIHS(k, t)􏼐 􏼑
k
.

(6)

3.2.2. E⟶ I. It is supposed that node i is in a latent state at
the time t, then,

P
i
EE + P

i
ER + P

i
EIL

+ P
i
EIH

� 1, (7)

and
P

i
ER � ∆tv,

P
i
EIL

� ∆tP1,

P
i
EIH

� ∆tP2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

3.2.3. L⟶ R. It is supposed that the node i is in the
propagation state L at time t. We can know that,

P
i
ILIL

+ P
i
ILIH

+ P
i
ILR � 1. (9)

)e number of neighbors of a node i is k and the state
of its neighbors can be divided into H, R and other states. n1
and n2 represent the number of propagation nodes H

and immune nodes R, respectively. So, we can have as
follows:

P
i
ILIL

� 1 − ∆tt1( 􏼁
n1 ∗ 1 − ∆tr1( 􏼁

n2 (10)

It is supposed that node i has k edges, and n1, n2 are
random variables, which are subject to polynomial distribution:

P k1 � n1, k2 � n2, k3 � n3( 􏼁

�
k!

n1!n2!n3!
PIHIL

(k, t)
n1PRIL

(k, t)
n2

1 − PIHIL
(k, t) − PRIL

(k, t)􏼐 􏼑
k− n1− n2

.

(11)

where PIHIL
(k, t) is the probability of the propagation node L

with k edges to a propagation node H. PRIL
(k, t) is the

probability of the propagation node L with k edges to an
immune node R.

PIHIL
(k, t) � 􏽘

k1

P k1|k( 􏼁P IHk1
|ILk􏼐 􏼑

PRIL
(k, t) � 􏽘

k2

P k2|k( 􏼁P Rk2
|ILk􏼐 􏼑

(12)

where P(IHk1
|ILk) represents the probability of a propaga-

tion node H whose degree is k1 linked to a propagation node
L whose degree is k, PRIL

(k, t) is the probability of an im-
mune node R whose degree is k2 linked to a propagation
node L which degree is k.

)e average probability PILIL
(k, t) of the remaining

propagation state L during the period [t, t + Δt] can be
expressed as follows:

PILIL
(k, t) � 􏽘

n1 ,n2

1 − ∆tt1( 􏼁
n1 ∗ 1 − ∆tr1( 􏼁

n2

∗
k!

n1!n2! k − n1 − n2( 􏼁!
PIHIL

(k, t)
n1PRIL

(k, t)
n2

1 − PIHIL
(k, t) − PRIL

(k, t)􏼐 􏼑
k− n1− n2

≈ 1 − t1∆tPIHIL
(k, t) − r1∆tPRIL

(k, t)􏼐 􏼑
k
.

(13)

)e propagation nodes L will be converted to propa-
gation nodes H with speed t1,

P
i
ILIH

� ∆tt1. (14)

)en,
P

i
ILR � 1 − PILIL

(k, t) − ∆tt1 (15)

3.2.4. H⟶ R. It is supposed that node i is in the prop-
agation state H at time t. We can know that,

P
i
IHIH

+ P
i
IHIL

+ P
i
IHR � 1. (16)

)e same as Pi
ILIL

, we can know,

P
i
IHIH

� 1 − ∆tt2( 􏼁
l1 ∗ 1 − ∆tr2( 􏼁

l2 , (17)

and
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P k1 � l1, k2 � l2, k3 � l3( 􏼁

�
k!

l1!l2!l3!
PILIH

(k, t)
l1PRIH

(k, t)
l2

1 − PILIH
(k, t) − PRIH

(k, t)􏼐 􏼑
k− l1− l2

,

(18)

where

PILIH
(k, t) � 􏽘

k1

P k1|k( 􏼁P ILk1
IHk

􏼌􏼌􏼌􏼌􏼐 􏼑,

PRIH
(k, t) � 􏽘

k2

P k1 | k( 􏼁P Rk2
IHk

􏼌􏼌􏼌􏼌􏼐 􏼑.
(19)

)erefore, the average probability PIHIH
(k, t) of the

remaining propagation state L during the period [t, t + Δt]
can be derived as follows:

PIHIH
(k, t) � 􏽘

l1 ,l2

1 − ∆tt2( 􏼁
l1 ∗ 1 − ∆tr2( 􏼁

l2

∗
k!

l1!l2! k − l1 − l2( 􏼁!
PILIH

(k, t)
l1PRIH

(k, t)
l2

1 − PILIH
(k, t) − PRIH

(k, t)􏼐 􏼑
k− l1− l2

≈ 1 − t2∆tPILIH
(k, t) − r2∆tPRIH

(k, t)􏼐 􏼑
k
.

(20)

)e propagation nodes H will be converted to propa-
gation nodes L with speed t2,

P
i
IHIL

� ∆tt2. (21)

Similarly,

P
i
IHR � 1 − PIHIH

(k, t) − ∆tt2. (22)

3.3. Dynamic Equations of Information Propagation. In the
complex social network, we consider that the ratio of dif-
ferent states can be represented as S(k, t), E(k, t), IL(k, t),
IH(k, t), R(k, t) respectively; then,

S(k, t) + E(k, t) + IL(k, t) + IH(k, t) + R(k, t) � 1 (23)

In the period [t, t + Δt], the ratio changes of various
nodes are as follow:

(1) Susceptible nodes
S(k, t + ∆t) � μρ + S(k, t)PSS(k, t) − μS

� μρ + S(k, t)

1 − α1∆tPILS(k, t) − α2∆tPIHS(k, t)􏼐 􏼑
k

− μS.

(24)

(2) Latent nodes
E(k, t + ∆t) � μ(1 − ρ)

+ E(k, t) + S(k, t) 1 − PSS(k, t)􏼐 􏼑

− E(k, t) PER + PEIL
+ PEIH

􏼐 􏼑 − μE

� μ(1 − ρ) + E(k, t) + S(k, t)

1 − 1 − α1∆tPILS(k, t) − α2∆tPIHS(k, t)􏼐 􏼑
k

􏼒 􏼓

− E(k, t) ∆tv + ∆tP1 + ∆tP2( 􏼁 − μE.

(25)

(3) Propagation nodes

μIL

IL(k, t + ∆t) � IL(k, t) + E(k, t)PEIL
+ IH(k, t)PIHIL

− IL(k, t)PILIH
− IL(k, t)PILR(k, t) − μIL � IL(k, t) + E(k, t)∆tP1

+IH(k, t)PIHIL
− IL(k, t)∆tt1 − IL(k, t) 1 − 1 − t1∆tPIHIL

(k, t) − r1∆tPRIL
(k, t)􏼐 􏼑

k
− ∆tt1􏼒 􏼓−

IH(k, t + ∆t) � IH(k, t) + E(k, t)PEIH
+ IL(k, t)PILIH

− IH(k, t)PIHIL
− IH(k, t)PIHR(k, t) − μIH

� IL(k, t) + E(k, t)∆tP2+IL(k, t)PILIH
− IH(k, t)∆tt2 − IH(k, t) 1 − 1 − t2∆tPILIH

(k, t) − r2∆tPRIH
(k, t)􏼐 􏼑

k
− ∆tt2􏼒 􏼓 − μIH

(26)

(4) Immune nodes

R(k, t + ∆t) � R(k, t) + E(k, t)PER

+IL(k, t)PILR(k, t) + IH(k, t)PIHR(k, t) − μR � R(k, t) + E(k, t)∆tv
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+IL(k, t) 1 − 1 − t1∆tPIHIL
(k, t) − r1∆tPRIL

(k, t)􏼐 􏼑
k

− ∆tt1􏼒 􏼓

+IH(k, t) 1 − 1 − t2∆tPILIH
(k, t) − r2∆tPRIH

(k, t)􏼐 􏼑
k

− ∆tt2􏼒 􏼓 − μR.

(27)

For susceptible nodes:

S(k, t + ∆t) − S(k, t) � μρ + S(k, t)

1 − α1∆tPILS(k, t) − α2∆tPIHS(k, t)􏼐 􏼑
k

− 1􏼒 􏼓

− μS � μρ + S(k, t)

− α1∆tkPILS(k, t) − α2∆tkPIHS(k, t)􏼐 􏼑 − μS,

(28)

zP
S
(k, t)

zt
� μρ − P

S
(k, t)

α1kPILS(k, t) + α2kPIHS(k, t)􏼐 􏼑 − μSμρ − Sk(t)

α1k 􏽘

k′

ILk′(t)P k′|k( 􏼁 + α2k 􏽘

k′

IHk′(t)P k′|k( 􏼁⎛⎝ ⎞⎠

− μSk(t)

(29)

Similarly:

zP
E
(k, t)

zt
� μ(1 − ρ) + P

E
(k, t) − v − P1 − P2( 􏼁

+P
S
(k, t) α1kPILS(k, t) + α2kPIHS(k, t)􏼐 􏼑 − μE,

(30)

zP
IL (k, t)

zt
� P1P

E
(k, t) + t2P

IH (k, t) − t1P
IL (k, t)

− P
IL (k, t) t1kPIHIL

(k, t) + r1kPRIL
(k, t) − t1􏼐 􏼑 − μIL,

(31)

zP
IH (k, t)

zt
� P2P

E
(k, t)+t1P

IL (k, t)

− t2P
IH (k, t) − P

IH (k, t) t2kPILIH
(k, t)􏼐

+r2kPRIH
(k, t) − t2) − μIH,

(32)

zP
R
(k, t)

zt
� vP

E
(k, t) + P

IL (k, t) t1kPIHIL
(k, t)􏼐

+r1kPRIL
(k, t) − t1) + P

IH (k, t)

t2kPILIH
(k, t) + r2kPRIH

(k, t) − t2􏼐 􏼑 − μR.

(33)

By further simplifying and improving the above model,
we can apply it to homogeneous and heterogeneous net-
works, respectively.

For homogeneous networks, k � 〈k〉, let S stands for
PS(k, t). Hence, the differential equation of homogeneous
networks can be denoted as follows:

dS

dt
� μρ − S α1kIL + α2kIH( 􏼁 − μS

dE

dt
� μ(1 − ρ) + S α1kIL + α2kIH( 􏼁

− E v + P1 + P2( 􏼁 − μE

dIL

dt
� EP1 + t2IH − t1kILIH − r1kILR − μIL

dIH

dt
� EP2 + t1IL − t2kILIH − r2kIHR − μIH

dR

dt
� Ev + t1kILIH + r1kILR + t2kILIH

+r2kIHR− t1IL − t2IH − μR

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

For heterogeneous networks, S(t) � 􏽐
k

Sk(t)P(k), P(k) is
the degree distribution function. We can conclude as follows:

dSk(t)

dt
� μρ − Sk(t)

α1k 􏽘

k′

ILk′(t)P k′|k( 􏼁 + α2k 􏽘

k′

IHk′(t)P k′|k( 􏼁⎛⎝ ⎞⎠

− μSk(t),

(35)

dEk(t)

dt
� μ(1 − ρ) + Sk(t)

α1k 􏽘

k′

ILk′(t)P k′|k( 􏼁 + α2k 􏽘

k′

IHk′(t)P k′|k( 􏼁⎛⎝ ⎞⎠

− Ek(t) v + P1 + P2( 􏼁 − μEk(t),

(36)
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dILk(t)

dt
� Ek(t)P1 + t2IHk(t)

− t1kILk(t) 􏽘

k′

IHk′(t)P k′|k( 􏼁

− r1kILk(t) 􏽘

k′

Rk′(t)P k′|k( 􏼁 − μILk(t),

(37)

dIHk(t)

dt
� Ek(t)P2 + t1ILk(t)

− t2kIHk(t) 􏽘

k′

ILk′(t)P k′|k( 􏼁

− r2kIHk(t) 􏽘

k′

Rk′(t)P k′|k( 􏼁 − μIHk(t),

(38)

dRk(t)

dt
� Ek(t)v + t1kILk(t) 􏽘

k′

IHk′(t)P k′|k( 􏼁

+r1kILk(t) 􏽘

k′

Rk′(t)P k′|k( 􏼁 + t2kIHk(t)

∗ 􏽘

k′

ILk′(t)P k′|k( 􏼁 + r2kIHk(t) 􏽘

k′

Rk′(t)P k′|k( 􏼁

− t1ILk(t) − t2IHk(t) − μRk(t).

(39)

Let,

ΘIL
(k) � 􏽘

k′

ILk′(t)P k′|k( 􏼁,

ΘIH
(k) � 􏽘

k′

IHk′(t)P k′|k( 􏼁,

ΘR(k) � 􏽘

k′

Rk′(t)P k′|k( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

whereΘi(k) represents the probability that a node with
degree k points to the infected or immune node. )e dif-
ferential equation of heterogeneous networks can be ob-
tained as follows:

dSk(t)

dt
� μρ − Sk(t) α1kΘIL

(k) + α2kΘIH
(k)􏼐 􏼑 − μSk(t),

dEk(t)

dt
� μ(1 − ρ) + Sk(t) α1kΘIL

(k) + α2kΘIH
(k)􏼐 􏼑 − Ek(t) v + P1 + P2( 􏼁 − μEk(t),

dILk(t)

dt
� Ek(t)P1 + t2IHk(t) − t1kILk(t)ΘIH

(k) − r1kILk(t)ΘR(k) − μILk(t),

dIHk(t)

dt
� Ek(t)P2 + t1ILk(t) − t2kIHk(t)ΘIL

(k) − r2kIHk(t)ΘR(k) − μIHk(t),

dRk(t)

dt
� Ek(t)v + t1kILk(t)ΘIH

(k) + r1kILk(t)ΘR(k) + t2kIHk(t)ΘIL
(k) + r2kIHk(t)ΘR(k),

− t2ILk(t) − t2IHk(t) − μRk(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (41)

4. Equilibrium Analysis

4.1.HomogeneousNetworks. For the real world, the equation
satisfied the conditions that S(t)≥ 0, E(t)≥ 0, IL(t)≥ 0,

IH(t)≥ 0, R(t)≥ 0. Let the equation equals to 0. We can
calculate the disease-free equilibrium point
E0(ρ, 1 − ρ, 0, 0, 0). According to the next-generation matrix
method, we can obtain as follows:
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F �

0 α1kρ α2kρ

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

V �

v + P1 + P2 + μ 0 0

− P1 μ − t2

− P2 − t1 μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(42)

)e basic reproductive number R0 is equal to the spectral
radius ρ(FV− 1) of the next-generation matrix, that is, the
maximum value of the eigenvalue modulus of the next-
generation matrix V− 1; hence,

R0 �
α1kρ μP1 + t2P2( 􏼁 + α2kρ μP2 + t1P1( 􏼁

t1t2 − μ2􏼐 􏼑 v + P1 + P2 + μ( 􏼁
, (43)

Theorem 1. If 0<R0 < 1 , the system is asymptotically stable
at the disease-free equilibrium point.

Proof. )e Jacobi matrix of the system at the disease-free
equilibrium point is as follows:

J E0( 􏼁 �

− μ 0 − α1kρ − α2kρ

0 − v + P1 + P2 + μ( 􏼁 α1kρ α2kρ

0 P1 − μ t2

0 P2 t1 − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

We can calculate the eigenvalue of the Jacobi matrix, that
is,

λ1 � − μ,

λ2 � M −
A

B
− B,

λ3 � M −
A

(− (1/2) +(
�
3

√
/2)i)B

− −
1
2

+

�
3

√

2
i􏼠 􏼡B,

λ4 � M −
A

(− (1/2) +(
�
3

√
/2)i)B

− −
1
2

−

�
3

√

2
i􏼠 􏼡B,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

where

M � − μ −
1
3

v + P1 + P2( 􏼁,

A � 3 kρα1P1 + kρα2P2 + t1t2( 􏼁 + v + P1 + P2( 􏼁
2
,

B �
1
3

−
27
2

C +
1
2

��
D

√
+ 3μ + v + P1 + P2( 􏼁

3
+
3
2

3μ + v + P1 + P2( 􏼁 A − 3μ + v + P1 + P2( 􏼁
2

􏼐 􏼑􏼒 􏼓
3
,

C � α1kρ μP1 + t2P2( 􏼁 + α2kρ μP2 + t1P1( 􏼁 − t1t2 − μ2􏼐 􏼑 v + P1 + P2 + μ( 􏼁,

D � − 4A
3

+ −
27
2

C + 2 3μ + v + P1 + P2( 􏼁
3

− 3 3μ + v + P1 + P2( 􏼁 A − 3μ + v + P1 + P2( 􏼁
2

􏼐 􏼑􏼒 􏼓
2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Table 3: Definition of node state transition probability.

Transition probability Description
Pi

SS )e probability that node i remains inactive state
Pi

SE )e probability that node i transfers from inactive state to latent state
Pi

EE )e probability that node i remains latent state
Pi

EIL
)e probability that node i transfers from latent state to L propagation state

Pi
EIH

)e probability that node i transfers from latent state to H propagation state
Pi

ER )e probability that node i transfers from latent state to immune state
Pi

ILIL
)e probability that node i remains L propagation state

Pi
ILIH

)e probability that node i transfers from L propagation state to H propagation state
Pi

ILR )e probability that node i transfers from L propagation state to immune state
Pi

IHIH
)e probability that node i remains H propagation state

Pi
IHIL

)e probability that node i transfers from H propagation state to L propagation state
Pi

IHR )e probability that node i transfers from high propagation state to immune state
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We can easily obtain that λ1, λ2 < 0. When 0<R0 < 1,
λ3, λ4 < 0. )erefore, all the eigenvalues of the Jacobi matrix
J(E0) are less than 0. According to the Lyapunov criterion,
the system is asymptotically stable at the disease-free
equilibrium point.

4.2.HeterogeneousNetworks. )e same as the homogeneous
networks, the disease-free equilibrium point is
E0(ρ, 1 − ρ, 0, 0, 0),

Theorem 2. In a heterogeneous network, the basic repro-
ductive number R0 is related to the topological structure of the
network.

Proof. For the latent nodes,

dEk(t)

dt
� μ(1 − ρ) + Sk(t) α1kΘIL

(k) + α2kΘIH
(k)􏼐 􏼑

− Ek(t) v + P1 + P2( 􏼁 − μEk(t),

(47)

when Ek � 0, the Jacobi matrix is L � lkk′􏼈 􏼉 at k � 1, 2, · · · , n.

lkk′ � − δkk′ v + P1 + P2 + μ( 􏼁 + α1kρ + α2kρ( 􏼁P k′|k( 􏼁. (48)

where δkk′ �
1, k � k′
0, k≠ k′

􏼨 is the Kronecker Delta function. If

all the eigenvalues of the matrix L are less than 0, the system
is locally and asymptotically stable at Ek � 0; we define the
connection matrix C � ckk′􏼈 􏼉, ckk′ � kP(k′|k). Let the largest
eigenvalue of the matrix C be Λm. )en, the largest eigen-
value of the matrix L is
− (v + P1 + P2 + μ) + (α1ρ + α2ρ)Λm < 0.

Similarly, for ILk � 0, IHk � 0, there exist
− μ − (θ1 + β1)Λm < 0 and − μ − (θ2 + β2)Λm < 0, respec-
tively. )erefore, the system is locally and asymptotically
stable at ILk � 0 and IHk � 0, and we can get the basic re-
productive number R0 for heterogeneous networks.

R0 �
α1ρ + α2ρ( 􏼁

v + P1 + P2 + μ( 􏼁
Λm. (49)

5. Simulation Results

In this section, we study the propagation dynamic charac-
teristics by simulating a complex network. We apply the
proposed model to an artificial network and to real-world
networks to present the information propagation process
and verify the rationality of the proposed model.

5.1. Homogeneous Networks. In homogeneous networks, we
use the Runge–Kutta method to investigate the dynamics of
the SELHR model on the Watts–Strogatz network [43]. )e
size of the WS network is N � 10000, and the initial settings
are as follows: α1 � 0.3, α2 � 0.1, P1 � P2 � 0.05, v � 0.1,
t1 � t2 � 0.05, r1 � 0.05, r2 � 0.01, and the 〈k〉 is 10. All
parameters are set to satisfy the system’s stability. In the
beginning, the number of susceptible nodes is 9998 and the

propagation states L and H have one node for each. In terms
of population entry rate and population exit rate μ,
according to the 2019 population survey of India, the annual
population growth rate of India is 1.01%, which is regarded
as the population growth rate of 1.01%. [44] )e value of the
entrance entry rate and the population exit rate is a refer-
ence, so the value is μ �

����
1.01365

√
− 1 ≈ 0.000027.

5.1.1. Densities of Different Nodes over Time. )ere are five
states in the proposed model. )e changes in the five states
over time are presented in Figure 2. With the propagation of
information, the ratio decreases deeply to 0. On the contrary,
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Figure 2: )e evolution process of groups in different states
(homogeneous network).
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Figure 3: Influence of different k on information propagation
(homogeneous network).
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the ratio of immune nodes increases slowly at the beginning
and then increases quickly and reaches a stable state.
However, due to the attributes of the low-risk propagation
nodes and high-risk propagation nodes, the density of low-
risk propagation nodes drops to zero at a faster speed during
the process.

5.1.2. Influence of Different 〈k〉 on Information Propagation.
In homogeneous networks, the average degree decides the
speed of information spread. When the total number of

nodes in a network remains constant, the higher the av-
erage degree is, the faster the information spreads. When
〈k〉 is 10, 20, and 40, respectively, the influence of the 〈k〉

value on the number of immune nodes is studied, as shown
in Figure 3. Figure 3 shows that the average degree is
positively correlated with the number of immune nodes.
)e higher the average degree value, the faster the infor-
mation spreads. )at is because a node can transmit in-
formation to more neighboring nodes if the average degree
is higher.
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Figure 4: Influence of infection rate on information propagation (homogeneous network).
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Figure 5: Influence of exposure rate on information propagation (homogeneous network).
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5.1.3. Influence of Different Transmission Rates on Infor-
mation Propagation. In our proposed information propa-
gation model, there are four types of transmission rates:
infection rate α from uninfected nodes to latent nodes,
exposure rate p from latent nodes to propagation nodes
(nodes with high propagation ability or low propagation
ability), transform rate t between two types of propagation
nodes and recovery rate r from propagation nodes to im-
mune nodes. In Figure 4, we present the final immune node
rate for three different values of α1 and α2, where we set
α1 � 0.1, 0.2, 0.4, α2 � 0.1, 0.2, 0.4, and other parameters are
set as the initial. With the increasing of the infection rate,
nodes are more likely to be infected and the earlier the
system becomes stable. Figure 5 shows the general trends of
the immune node ratio under different values of p1 and p2,
where we set p1 � 0.01, 0.05, 0.1, p2 � 0.01, 0.05, 0.1.

In general, the higher the exposure rate, the faster the
immune nodes increase. However, the difference in immune
node trend among different values of p2 was slightly
compared with the exposure rate p1.)at is the transmission
rate from latent nodes to highpropagation ability nodes has
little influence on the evolution of the immune nodes. For
one reason, the number of high propagation ability nodes is
smaller than the low propagation ability nodes. For another,
high propagation ability nodes and lowpropagation ability
nodes can be transformed from each other. Figure 6 de-
scribes how the transform rate affects the evolution of the
high propagation ability nodes and the low propagation
ability nodes. When t2 � 0.01, we set t1 � 0.01, 0.05, 0.1, 0.2,
and when t1 � 0.01, we set t2 � 0.01, 0.05, 0.1, 0.2. From
Figure 6, we can see that with the increasing of the transform
rate t1, the peak of the lowpropagation ability nodes ratio
gradually becomes lower. )at is because more and more
low propagation ability nodes are being transformed into
high propagation ability nodes. Similarly, the trends of

different high propagation ability nodes can also indicate
that the higher the transform rate t2 is, the faster the high
propagation ability nodes transform into low propagation
ability nodes. Figure 7 illustrates how different recovery rates
affect the evolution of immune nodes, where we set
r1 � 0.01, 0.1, 0.2, r2 � 0.01, 0.1, 0.2. When r1 � 0.01 and
r2 � 0.01, the corresponding trends of immune nodes have a
lower slope than r1 � 0.1, 0.2, and r2 � 0.1, 0.2. However,
when r1 � 0.1, the system stabilizes faster than r1 � 0.2.)at
is because the neighbors of a propagation node have dif-
ferent states. )e transformation from propagation nodes to
immune nodes is not only decided by a single immune node.

5.2. Heterogeneous Networks. In heterogeneous networks,
we investigate the dynamics of the SELHR model on an
interaction network—Ia-fb-messages [45]. )e dataset in-
cludes the users who sent or received at least one message.
)e number of nodes and edges of the Ia-fb-messages
network is n � 1266, m � 6451. )e average degree⟨k⟩ is
10 and the clustering coefficient C is 0.0683. According to
the structure features of Ia-fb-messages, the initial settings
are as follows: α1 � 0.002, α2 � 0.001, P1 � 0.3, P2 � 0.1,
v � 0.01, t1 � t2 � 0.05, r1 � 0.05, r2 � 0.01. In the begin-
ning, the number of susceptible nodes is 1262 and the
propagation states L and H are nodes {2,3}, {4,6} for each. In
terms of population entry rate and population exit rate μ, μ is
too small to have an effect on the dynamics of the Ia-fb-
messages network. )erefore, we neglect the influence of the
population entry rate and population exit rate during the
simulation process.

5.2.1. Densities of Different Nodes over Time. Figure 8 de-
scribes the evolution of five states in the Ia-fb-messages
network. )e evolution curves have a similar dynamic
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Figure 6: Influence of transform rate on information propagation (homogeneous network).
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tendency as the simulated results in Figure 2. In Figure 9, we
plot the degree distribution of the Ia-fb-messages network.
Obviously, P(k) depicted in the log scale exhibits a power-
law form and, thus, this network can be considered a het-
erogeneous network.

5.2.2. Influence of Different Transmission Rates on Infor-
mation Propagation. In heterogeneous networks, the
transmission rates are set according to the basic

reproduction number. Figure 10 displays the immune node
ratio for four different values of α1 and α2, where we set
α1 � 0.001, 0.002, 0.005, 0.01α2 � 0.001, 0.002, 0.005, 0.01.
)e evolution curves are similar to those in homogeneous
networks. )e higher the infection rate is, the faster the
spread of information, and the wider the spread of infor-
mation. Figure 11 shows the immune nodes ratio for three
different values of p1 and p2, where we set p1 � 0.1, 0.2, 0.5,
p2 � 0.1, 0.2, 0.5. Figure 12 describes how the transform rate
affects the evolution of the highpropagation ability nodes
and the low propagation ability nodes in heterogeneous
networks. When t2 � 0.05, we set t1 � 0.01, 0.02, 0.05, and
when t1 � 0.05, we set t2 � 0.01, 0.02, 0.05. )e curves of the
transform rate in heterogeneous networks are not as smooth
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Figure 7: Influence of recovery rate on information propagation (homogeneous network).
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as those in homogeneous networks. )at is because, in every
dynamic turn, the number of propagation nodes converted
from each other is decided by the location of the node in a
network and the topological structures of a network. Fig-
ure 13 illustrates the immune node ratio for three different
values of r1 and r2, where we set r1 � 0.01, 0.02, 0.05,
r2 � 0.01, 0.02, 0.05. From Figure 13, the curves of immune
node ratio are similar under different values of recovery rate,

but they can also reflect the tendency that a high recovery
rate will lead to faster propagation of information.

Overall, the correctness of the theoretical deduction is
confirmed by sufficient simulations. According to the
simulations for both homogeneous networks and hetero-
geneous networks, we verify the rationality of the proposed
model and better understand the impacts of network
structures.
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Figure 10: Influence of infection rate on information propagation (heterogeneous network).
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Figure 11: Influence of exposure rate on information propagation (heterogeneous network).
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6. Conclusion

In summary, our work is mainly focused on the dynamics of
information spreading on a complex social network. First,
based on the classic SEIR model, we propose a new epidemic
model, SELHR. )en, we construct the dynamic evolution
equation of information propagation and analyze the
equilibrium point and stability of the model from a dynamic
perspective. In addition, simulations are carried out both on
homogeneous networks and heterogeneous networks at the

epidemic equilibrium points to verify the rationality and
validity of the proposed model. We conducted a sensitivity
analysis of model parameters for the basic reproduction
number. In particular, the heterogeneity of the network
structure makes it significant in disease propagation. Dif-
ferent from the previous epidemic models, our model
considers the two types of propagation nodes (L and H) and
adds the transformed rate between these two types. )e
influence of key parameters on information propagation
mainly reflects the speed of propagation and steady-state
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densities of individuals. It reveals that considering the
transformation of two propagation states, the dynamic
behavior of information propagation is more realistic.

)e next step is to further verify the feasibility of the
proposed model. We will consider applying it to other in-
formation propagation studies in complex networks, like
link prediction, influence maximization, identification of
influential nodes, and so on. More specifically, driven by the
practical significance of epidemic models, we desire to
identify the super spreader to curb the spread of the disease.
In our future work, we will seek to establish another epi-
demic model referring to two different social networks for
disease and information spreading.
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