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Tis paper proposes an online trajectory simplifcation algorithm based on interval foating. Te accumulated angle deviation is
used in the algorithm, and the bounded error theorem of interval foating is presented. First, the accumulated angle deviation
starts from the nearest reserved point. Next, the sum of the angle deviations generated by the subsequent trajectory points is
continuously calculated. When the simplifed threshold is reached for the frst time, it is will be judged whether the simplifed
threshold interval needs to be foated as well as the next reservation in the foating error interval. It is worth noting that the interval
between two adjacent reserved points foats only once.Te algorithm is tested on real trajectory data, and the experimental results
show that the algorithm has an improved simplifcation rate with a certain simplifcation error.

1. Introduction

In the 21st century, with the advent of 4G and 5G mobile
communication technologies, the higher popularity of the
Internet has considerably promoted social progress. Besides,
big data-related research becomes the hot spot globally. Also,
mobile computing has been constantly evolving along with
technologies such as mobile object databases and mobile
communication network coverage.Te location information
of mobile terminal equipment keeps changing with time,
and GPS and RFID are currently used as the main data
collection equipment. Researchers employ the collected
trajectory data to study the characteristics of moving objects
and apply them in areas such as smart transportation and
location-based services (LBS) [1, 2]. Location-based per-
sonalized service technology is a feld that has been thriving
in recent years. In terms of personalized recommendation,
there are location recommendation [3], travel prediction [4],
and user behavior analysis [5].Te basis of all LBS research is
positioning, and a large amount of user location data needs
to be obtained. However, many data in the stored massive
trajectory data are of little research signifcance, which in-
creases the difculty of the subsequent scientifc research
analysis, causing huge capital and workload wasted in

existing storage technology. In order to reduce the storage
cost, more attention has been drawn to the research topic of
trajectory simplifcation of moving objects. Many excellent
trajectory simplifcation algorithms have been reported, but
the development of trajectory simplifcation algorithms is
still relatively slow, and each simplifcation algorithm has its
own limitations. Many algorithms have their own specifc
application scenarios, and it is necessary to develop new
simplifcation algorithms to broaden the spectrum of tra-
jectory simplifcation so as to cope with various types of
trajectory data sets in the future; in addition, most online
algorithms use bufers since interval algorithms often have
high time complexity. Terefore, it is necessary to explore
new low-cost trajectory simplifcation algorithms.

So far, some related research has focused on the sim-
plifcation algorithm of moving object trajectory. When the
trajectory data simplifcation algorithm was frst applied to
computer graphics, the initially processed data only con-
tained spatial information. Terefore, Euclidean distance
(PED) was widely used. However, the data collected by the
GPS system records time information in addition to space
information. If we continue to use PED to study the sim-
plifed algorithm of moving object trajectories, we will in-
evitably lose time information. Terefore, the synchronized
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Euclidean distance (SED) is gradually applied to the tra-
jectory simplifcation algorithm. Many studies on trajectory
simplifcation algorithms show that researchers mainly delve
into two dimensions: ofine simplifcation and online
simplifcation.

Te advantage of online trajectory simplifcation is that it
supports real-time applications and can compress trajectory
data while picking up new trajectory points as they are
acquired. Ofine trajectory simplifcation starts compressing
only after all points are acquired from the input trajectory
and is suitable for analysing historical trajectory data. Ofine
trajectory simplifcation usually has fewer errors compared
to online trajectory simplifcation. However, in many ap-
plications, the trajectory data of the moving objects arrive in
a stream, such as real-time AIS information received by
shore-based systems. Tese applications include real-time
trajectory tracking and position monitoring. Terefore,
some online trajectory simplifcation methods have been
proposed to handle this situation.

Te earliest ofine trajectory simplifcation algorithm
based online segments is the Douglas–Peucker algorithm
(DP algorithm) proposed in 1973 [6]. Te DP algorithm
needs to give the threshold of the simplifed algorithm in
advance. Te threshold uses PED, and the algorithm is
simplifed according to the setting.Te threshold recursively
selects points greater than the simplifed threshold and keeps
the algorithm running until all points are less than the
threshold set by the simplifed algorithm. Te TD-TR al-
gorithm (also known as the top-down time ratio algorithm)
was proposed by Meratnia and De [7]. Compared with the
traditional DP algorithm, the TD-TR algorithm overcomes
the shortcomings of the DP algorithm, for example, losing
time information. TD-TR uses SED instead in the distance
function of the DP algorithm because SED not only retains
position but also time information compared with PED
distance. Lin et al. [8] proposed the ATS algorithm.Te ATS
algorithm segments the original trajectory according to the
important feature of the trajectory speed, calculates the SED
threshold of the small trajectory, and fnally uses the DP
algorithm to simplify the fnal trajectory. Ke et al. [9]
proposed the Angular algorithm, which uses the accumu-
lated angle deviation to select or reject the trajectory point.
By setting the accumulated angle threshold, the angle error
before and after the trajectory simplifcation can be con-
trolled. Te time complexity is O (n). Opening Window
(OW) is a traditional online trajectory simplifcation algo-
rithm. Te core idea of OW is to initialize a window with a
fxed size from the starting point of the trajectory and slide
the window over the points on the original trajectory. Tis
process is repeated until the last point of the original tra-
jectory is processed [10]. Opening Window Time Ratio
(OW-TR) [7] extended OPW using a synchronized Eu-
clidean distance (SED) error instead of the spatial error. A
number of successful online trajectory simplifcation algo-
rithms have been proposed to simplify the road vehicle
trajectories, terrain boundary line, trajectory data mining,
and graphics display [11, 12]. Trajcevski et al. [13] proposed
an online algorithm called Dead Reckoning, which uses the
idea of estimation to estimate subsequent trajectory points.

Muckell et al. [14] proposed the SQUISH algorithm, which
will add new points directly to the bufer when there is still
space in it. When the bufer is full, the algorithm deletes the
point with the smallest error. Te removal of small infor-
mation points increases the importance of the left and right
points of the discarded points in the area. Te trajectory
simplifed by the algorithm has a reliable error guarantee,
and the algorithm can be fexibly adjusted through the
simplifcation rate and error. SQUISH-E [14] can achieve the
smallest error under the condition of an artifcially given
simplifcation rate. Te worst-case time complexity of the
algorithm is O (nlogn/β), β represents the artifcially set
simplifcation rate. Although it is an online trajectory
simplifcation algorithm, in fact, under the condition of an
artifcially given simplifcation rate, the SQUISH algorithm
can only perform ofine trajectory simplifcation, and the
algorithm needs to repeatedly traverse all points in the
original trajectory, which is time-complex. In the most
extreme case, the error between the original trajectory and
the simplifed trajectory will be very considerable.

Te main innovations and contributions of this paper
include as follows: (1)Te bounded error theorem of interval
foating is proposed, which can fully simplify the trajectory
with a certain simplifcation error. (2) An online trajectory
simplifcation algorithm is presented and implemented,
which can simplify trajectory data online. (3) Various ex-
periments were conducted from diferent data set sizes and
diferent angle thresholds to evaluate the time performance
and simplifcation rate performance of the algorithm.
Trough experimental comparison, in the face of large-scale
trajectory data, the proposed algorithm has better time
complexity and simplifcation rate.

2. Related Definitions and
Lemmas of Algorithms

2.1. Defnition 1: Angle Diference of Trajectory Segment [9].
Defne the direction angle θ of the trajectory segment as
follows: the directions of the trajectory segment pipj and
pmpk are denoted by θ(pipj) and θ(pmpk), respectively, and
the constraints are

θ ∈ (0, 2π), (1≤ i< j≤ n, 1≤m< k≤ n). (1)

Te angle diference formula is

∆θ � θ pipj􏼐 􏼑 − θ pmpk( 􏼁. (2)

For two given angles θ1 and θ2, the magnitude of their
angle diference is

min θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, 2π − θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯. (3)

Te angle diference ∆(θ1, θ2) is divided into two cases,
|θ1 − θ2| and 2π − |θ1 − θ2| (see Figure 1). Easy to get by
defnition, the range of angle diference is [0, π].

2.2. Defnition 2: AngularDeviation of Trajectory Segment [9].
Te angle of the moving object at point pi and the angle
change between the points before and after it is the angle
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deviation of the point, which is represented by the symbol
pi.ϵd, and the details are as follows:

∆θ � θ pipi+1( 􏼁 − θ pi− 1pi( 􏼁,

pi.ϵd �

∆θ + 2π, ∆θ≤ − π,

∆θ , − π <∆θ≤ π,

∆θ − 2π, ∆θ> π.

⎧⎪⎪⎨

⎪⎪⎩

(4)

pi.ϵd has a positive value and a negative value (see Fig-
ure 2), p2.ϵd and p3.ϵd represent the angle deviation of point
p2 and point p3, respectively.

2.3. Defnition 3: Cumulative Angular Deviation [9]. Te
meaning of the cumulative angle deviation is the cumulative
sum of the angle defection of all points from the count point
to the current point, which is defned as follows:

pi.ϵd �

0, i � sk,

􏽘

i

m�sk+1
pm.ϵd, sk < i< sk + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

It should be noted that psk
represents the starting point

of the simplifed trajectory segment psk
psk+1

, psk+1
is the end

point of the trajectory segment, and the subscript of the
trajectory segment needs to satisfy the constraint: sk < i< sk+1
.

2.4. Lemma 1: Bounded Error of Position Information [15].
Te trajectory simplifcation algorithm that retains the di-
rection information generally achieves the purpose of
simplifcation by constraining the direction of the trajectory,
which can ensure a certain direction error. In fact, the al-
gorithm also retains the position information while retaining
the direction information. Long et al. [15] proved that the
direction-preserving algorithm can maintain the position
characteristics. Te following introduces the bounded error
lemma of position information:

In the simplifed algorithm that preserves direction in-
formation, if the simplifed error is within ε, then the
shortest vertical Euclidean distance dminped and ε of the
original trajectory and the simplifed trajectory must satisfy
the following relationship:

dminpe d ≤
1
2
lmax tan ε. (6)

Among them, lmax represents the maximum length of the
original trajectory segment corresponding to the simplifed
trajectory segment in the simplifed trajectory.

Proof. Let psk
psk+1

be a simplifed trajectory segment selected
arbitrarily. Among them, we stipulate that psk

is the starting
point of the simplifed trajectory section, and psk+1

is the end
point of the simplifed trajectory section. Ten, the sim-
plifcation of the current trajectory section must satisfy the
directional error within ε. For a simplifed trajectory seg-
ment psk

psk+1
selected at random, we can construct a

x

7π
4

o

4
πθ (p1 p2) =

θ (p3 p4) =

(a)

xo

(θ1, θ2) = θ1 – θ2

θ1θ2

(b)

xo

θ2

θ1

Δ (θ1, θ2) = 2π – θ1 – θ2

(c)

Figure 1: (a), (b), and (c), respectively, show how the angle diference of the trajectory segment is calculated in diferent situations.
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Figure 2: Schematic diagram of the calculationmethod of the angle
deviation of each point.

y

a

O

b

pi

pj

psk psk+1

pj-1
ε

x

Figure 3: Rhombuses constructed from trajectory segments.
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rhombus according to psk
psk+1

(see Figure 3), and prove the
theorem in the rhombus.

In the rhombus in the fgure above, there is a relationship:
∆(psk

a, psk
psk+1

) � ε. Assuming that the position ofpi is outside
the rhombus, then there must be a situation where pi is below
psk

a. Terefore, there is a diference between the unsimplifed
trajectory segment pj− 1pj and the simplifed trajectory segment
psk

a. Tere must be an intersection point between them. If the
position of pi is outside the rhombus, the direction error be-
tween the original trajectory segment pj− 1pj and the simplifed
trajectory segment psk

psk+1
must be greater than ε. So far, the

conclusion drawn is in contradictionwith our original defnition
of the direction angle error. So it is deduced that pi must exist
within the rhombus constructed by the simplifed trajectory
segment psk

psk+1
. So, it is concluded that even the point pi

farthest from the simplifed trajectory segment psk
psk+1

must
satisfy the following constraints:

dminped ≤
1
2
lmax tan ε. (7)

Among them, distance represents the vertical Euclidean
distance between two elements in the calculation plane,
which can be the distance from point to point or point to
straight line. □

2.5. Lemma2:BoundedError ofDirection [9]. Te results and
discussion may be presented separately, or in one combined
section and may optionally be divided into headed sub-
sections. Ke et al. [9] proposed the bounded error theorem of
direction in the A algorithm and proved the theorem. Te
accumulated angle deviation used by the A algorithm is
based on the bounded error theorem of direction. Te
following will prove that the accumulated angular deviation
is a bounded error in direction.

Assuming that the artifcially prescribed direction
threshold pi.εd

is εt, for each original trajectory point pi, if the
cumulative angle deviation pi.εd

of point pi is greater than the
given εt, then pi will be retained.Te direction error between
the fnal simplifed trajectory and the original trajectory
must obey the following constraints:

ε T′( 􏼁< 2εt. (8)

Proof. According to the relevant defnition introduced
above, for a random segment of trajectory segment psk

psk+1
,

the direction of the trajectory segment pipi+1 composed of
connected trajectory points between psk

and psk+1
can be

derived. Te specifc expression is as follows:

ψ � θ psk
psk+1

􏼐 􏼑 + 􏽘

i

m�sk+1
pm.εd

. (9)

Among them, the psk
is the starting point, psk+1

is the end
point, and psk+1, psk+2, psk+3... etc. represent the trajectory
points between psk

and psk+1
.

For the random trajectory segment psk
psk+1

, the trajectory
segment pipi+1 composed of all the adjacent trajectory
points in psk

psk+1
satisfes the angle constraint [θ(psk

psk+1
) −

εt, θ(psk
psk+1

) + εt] (see Figure 4). In other words, for all the
trajectory segments pipi+1, the direction of pipi+1 must be
within the εt error in the direction of the frst small trajectory
segment psk

psk+1.
Te vector psk

psk+1

�������→ in the rhombus (see Figure 3) can be
expressed as follows:

psk
psk+1

�������→
� psk

a
���→

+ apsk+1

�����→
. (10)

According to (11), it can be seen that the vector sum of
the geometric vectors formed by all two adjacent trajectory
points in psk

psk+1

�������→ can be fnally expressed as psk
psk+1

�������→, then the
following constraints must be derived:

θ psk
psk+1

􏼐 􏼑 − εt < θ psk
psk+1

􏼐 􏼑< θ psk
psk+1

􏼐 􏼑 + εt. (11)

According to the above proofs, the direction angle error
of any deleted track segment in the original trajectory is
controlled within the range of ε from the original trajectory.

Terefore, when running the trajectory simplifcation
algorithm, setting the algorithm’s εt to half of ε can realize
that the error between the simplifed trajectory and the
original trajectory is within ε. □

3. TrajectorySimplificationAlgorithmBasedon
Interval Floating

3.1. Teorem: Bounded Error of Interval Float. Tis paper
proposes the theorem: Bounded Error of Interval Float.

If the current trajectory point pi.εa
is in the interval

εt <pi.εa
< 2εt, the algorithm performs a foating operation,

that is, the accumulated angle deviation interval that needs
to be discarded to simplify the trajectory foats from [− εt, εt]

to [min εa, 2εt + min εa]; if the current trajectory point
satisfes the accumulated angle deviation is within the in-
terval − εt >pi.εa

> − 2εt, the accumulated angle deviation If
the interval foats from [− εt, εt] to [− 2εt+max εa,max εa],
the simplifed error ε(T′) must satisfy the constraints:

ε T′( 􏼁< 2εt � ε. (12)

Among them, min εa andmax εa respectively represent
the minimum and maximum accumulated angle deviation
values from the last retained point to the current trajectory
point.

y

εt

εt

the maximum direction

the maximum direction

the direction of the first segment

x

θ (Psk Psk+1)

Figure 4: Directional error range chart.
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Proof. For the simplifed trajectory segment psk
psk+1

in
Lemma 2, if the cumulative angle deviation of the end point
psk+1

is in the interval εt <psk+1 .εa
< 2εt, there must be a small

value Ω (see Figure 5), so that the current point psk+1.εa

satisfes the following formula:

Ω � 2εt − psk+1∙εa
, (13)

and the minimum accumulated angle deviation min εa in
the trajectory section psk

psk+1
must satisfy the following

formula:

min εa > − εt. (14)

Terefore, point psk+1
is not necessarily the frst reserved

point encountered from point psk
, and the interval of the

error threshold needs to be foated up: from [− εt, εt] to
[min εa, 2εt + min εa]. After that, continue to search for
the frst reserved point encountered from point psk

, and the
point pssk+1

whose cumulative angle deviation is greater than
2εt + min εt for the frst time is reserved; in the same way,
when − εt >psk+1 .εa

> − 2εt, the interval needs to be foated
down to [− 2εt+max εa,max εa].

Te direction of the trajectory segment pipi+1 existing
between the frst and last points of the simplifed trajectory
psk

pssk+1
that foats through the interval satisfes the formula:

ψ � θ psk
pssk+1

􏼐 􏼑 + 􏽘
i

m�sk+1
pm.εd

. (15)

For the foating interval, the random trajectory segment
pipi+1 satisfes the angle constraint in its trajectory segment
psk

psk+1
:

θ psk
pssk+1

􏼐 􏼑 − min εa, θ psk
pssk+1

􏼐 􏼑 + 2εt + min εa􏽨 􏽩. (16)

Tat is, the directions of the small trajectory sections
pipi+1 between the simplifed trajectory sections psk

psk+1
are

all within the direction error interval of the foating interval
[min εa, 2εt + min εa] of the frst small trajectory section
psk

psk+1
of the simplifed trajectory section psk

psk+1
.

After foating, the simplifed trajectory segment psk
pssk+1

of the new end point will be obtained, and the rhombus is
reconstructed according to psk

pssk+1

��������→ (see Figure 6). Te
vector B in the rhombus can be expressed as follows:

psk
pssk+1

��������→
� pssk

a
����→

+ apssk+1

������→
. (17)

According to the abovementioned formula, the vector
sum of the geometric vectors composed of all the two ad-
jacent trajectory points between psk

pssk+1
can be fnally

expressed as psk
pssk+1

��������→, and the satisfed constraints must be
derived:

θ psk
pssk+1

􏼐 􏼑 − min εa < θ psk
pssk+1

􏼐 􏼑< θ psk
pssk+1

􏼐 􏼑 + 2εt + min εa. (18)

In the same way, the descending provable interval must
satisfy the constraint:

θ psk
pssk+1

􏼐 􏼑 + max εa > θ psk
pssk+1

􏼐 􏼑> θ psk
pssk+1

􏼐 􏼑 − 2εt + max εa. (19)

According to the above proofs, the error between a
random small track segment deleted in the middle of the

simplifed track segment and the original track can be
guaranteed to be [min εa, 2εt + min εa] or
[− 2εt+max εa,max εa].

Terefore, when running the trajectory simplifcation
algorithm, when the cumulative angle deviation of the
current point is greater than the given threshold ε, refnding
the frst reserved point after an interval foat must ensure the
directional error between the simplifed trajectory and the
original trajectory in 2εt. □

3.2. Description of Interval Floating Algorithm. According to
related lemmas and theorems, this paper proposes an in-
terval foating-based trajectory simplifcation algorithm for
moving objects. As long as the simplifed threshold is set, for
each trajectory point collected, the search started from the
most recently retained point each time, if there is a tra-
jectory. If the point satisfes pi.εa

> 2εt, the point will be
reserved, which can avoid the situation that the angle de-
viation of the reserved point is extremely small when its
accumulated angle deviation reaches the threshold. For
example, we set the direction error to 0.6, and the simplifed
threshold value when the algorithm is running 0.3, point p3

Pssk+1

2εt+min_εa
εt

εt

εt

-εt

min_εa

Psk+1 Psk+2

Psk+3

Psk+1

Psk

Figure 5: Te direction range diagram after the interval is foated,
the point pssk+1

marked in the fgure is the point.

y

a

O

b

pi

pj

psk Pssk+1

pj-1
ε

x

Figure 6: Rhombuses constructed from trajectory segments.
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will be retained instead of point p2, but the contribution of
point p2 is much greater than that of p3, so we cannot use
pi.εa
> εt as the judgment condition (see Figure 7). However,

algorithm Angular uses pi.εa
> εt as the judgment condition;

if it does not exist, it will continue to fnd the point where the
accumulated angle deviation is greater than the simplifed
threshold from the current point, perform an interval foat
from the current point, and continue to fnd the frst point
after the foating operation. If the point pssk+1

accumulated
angle deviation exceeds the foating interval, this point pssk+1

must be retained. At this time, the direction interval is
updated to the initial threshold interval again, that is, for
each simplifed trajectory, they pass the foating interval no
more than once. If more than once, the bounded error
between the simplifed trajectory and the original trajectory
cannot be guaranteed (see Algorithm 1).

4. Experiment and Discussion

In order to verify the trajectory simplifcation algorithm
STIF based on interval foats, this paper uses the Geolife
dataset in [16–18]. Te GPS trajectory dataset was collected
in (Microsoft Research Asia) Geolife project by 182 users in a
period of over fve years (from April 2007 to August 2012). A
GPS trajectory of this dataset is represented by a sequence of
time-stamped points, each of which contains the informa-
tion of latitude, longitude, and altitude. Each fle in the data
selected for this experiment is larger than 30KB. Te ex-
periment in this paper uses data sets of diferent sizes and
diferent angle thresholds for experiments and analyzes the
time performance and simplifcation rate performance of the
algorithm through the experimental results.

Te simplifcation rate of the algorithm is defned as
follows:

rate �
T′
T

× 100%. (20)

Among them,T′ represents the simplifed trajectory, and
T represents the original trajectory. What we hope is that the
algorithm can guarantee a low simplifcation rate within a
certain error.

4.1. Performance Evaluation Based on Simplifed Time.
According to the experimental results (see Figure 8), when
the data size is constant and the threshold is set very small,
the simplifcation time of STIF algorithm is slightly larger
than that of Angular. As the threshold increases, the sim-
plifcation time of STIF algorithm tends to decrease and
gradually approach Angular. From the perspective of the two
algorithms, whether it is STIF or Angular, as the simplif-
cation threshold increases, the simplifcation time of the
algorithm tends to decrease.

Te size of the data set ranges from 1000 to 5000.
According to the experimental results, for the two algo-
rithms, the average simplifcation time (see Figures 9 and 10)
of the simplifcation thresholds of diferent sizes decreases
with the increase of the data set.

4.2. Performance Evaluation Based on Simplifcation Rate.
According to the experimental results (see Figure 11), it can
be concluded that under 5000 trajectories, the average

(P1 P2)

(P2 P3)
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P2 P4

P3
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θ

0.29
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Figure 7: Cumulative angle deviation.
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Figure 8:Te performance of the time performance of the Angular
algorithm and the STIF algorithm under 5000 trajectories as the
direction error increases.
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simplifcation rate of the two algorithms tends to decrease
with the increase of the simplifcation threshold, and the
simplifcation rate of STIF algorithm is lower than Angular.

By observing the experimental results (see Figures 12 and
13), we can conclude that no matter what the simplifcation
threshold is, the relationship between the simplifcation rate
of the two algorithms and the data scale is that the larger the
data scale is, the lower is the simplifcation rate.

It can be concluded from the experimental results (see
Figures 14 and 15) that for the two algorithms, the sim-
plifcation rate decreases with the increase of the simplif-
cation threshold among the fve data sets of diferent sizes.
Also, compared to algorithm Angular, the highest simpli-
fcation rate of algorithm STIF is only a data size of 1000.
When the simplifcation threshold is set to 1/12π, it is
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Figure 10: Te performance of the STIF algorithm in diferent
directions error with the increase of the trajectory data set.
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jectories as the direction error increases.
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Figure 12: Te performance of the Angular algorithm in diferent
directions error with the increase of the trajectory data set.
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Figure 13: Te performance of the STIF algorithm in diferent
directions error with the increase of the trajectory data set.
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Figure 14: Te change of the simplifcation rate of diferent data
scales with the increase of the simplifcation threshold of the
Angular algorithm.
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Input: Te starting point Ps, ε, εt � ε/2, Angle deviation of current point pi.εd
, Cumulative angular deviation of current point pi.εa

,
Upper interval positive εt � εt, Lower interval negative εt � − εt, Current maximum and minimum angle deviation max εa � 0,
min εa � 0, Float limit flag
Output: Simplifed trajectory T′
for (int i� 1; i<P.size() − 1; i++){
pi.εa

� pi.εa
+ pi.εd

if (max εa <pi.εd
)

max εa � pi.εd
;

if (min εa >pi.εd
)

min εa � pi.εd

//If the angle deviation of the current point is greater than 2∗ εt

if (Math.abs(pi.εd
)> 2∗ εt){

add (P.get(ii));
pi.εa

� 0;
fag� 0;
positive εt � εt;//“Zero adjustment” in the upper section”
negative εt � − εt; //“Zero adjustment” in the lower interval

max εa � 0;
min εa � 0;
}
if (Math.abs(pi.εa

)> εt){
//Te upper interval meets the foating condition
if (pi.εa
> positive εt && pi.εa

< 2∗ positive εt && fag�� 0){
//Float in the lower interval
negative εt �min εa;
//Float up the upper interval
positive εt � 2∗ εt +min εa;
//Calculate the subsequent points after the interval has foated once. When //the simplifed condition is reached again, “zero”

fag� 1;
} else if(pi.εa

< negative εt && pi.εa
> 2∗ negative εt && fag� � 0){

//Te lower interval meets the foating condition
//Float in the upper interval
positive εt �max εa;
//Float down in the lower interval
negative εt � − 2∗ εt +max εa;
fag� 1;

}else if(fag� � 1){

ALGORITHM 1: Continued.
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Figure 15: Te change of the simplifcation rate of diferent data scales with the increase of the simplifcation threshold of the STIF
algorithm.
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slightly higher than 0.35, but for algorithm Angular, when
the simplifcation threshold is 1/12π, the highest simplif-
cation rate is greater than 0.45, and the lowest simplifcation
rate is also greater than 0.35. Speaking of massive trajectory
data, the number of acquisition points for each trajectory is
more than tens of thousands of points. In this case, the
Angular algorithm retains too many trajectories data are not
conducive to efcient data storage. On the contrary, the STIF
algorithm can ensure the accurate retention of points while
reducing the simplifcation rate.

 . Conclusions

Tis article mainly introduces a new trajectory simplifcation
algorithm based on interval foating. Various experiments
were conducted from diferent data set sizes and diferent
angle thresholds to evaluate the time performance and
simplifcation rate performance of the algorithm. Trough
experimental comparison, algorithm STIF has outperformed
algorithm Angular in simplifcation rate; in addition, as the
data set increases, the average simplifcation time of algo-
rithm STIF is slightly longer than that of algorithm Angular
when the simplifcation threshold is smaller. With the in-
crease of the threshold, the simplifcation time of the STIF
algorithm is signifcantly reduced. Terefore, in the face of
large-scale trajectory data, the STIF algorithm can show a
better simplifcation rate and simplifcation time. For future

works, it is planned to assess the algorithms with other
datasets, considering other transportation modes and tra-
jectories’ characteristics as well as diferent application
scenarios.

Data Availability

Te dataset used to support the results of this experiment is
the GPS trajectory dataset, which is collected by Microsoft
Research Asia. In more than three years (from April 2007 to
August 2012), 182 users participated in the Geolife project.
Te data used in the algorithm experiment can be obtained
through the following website: https://research.microsoft.
com/en-us/projects/geolife/.
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