Hindawi

Mobile Information Systems

Volume 2022, Article ID 5051496, 16 pages
https://doi.org/10.1155/2022/5051496

Research Article

@ Hindawi

Three-Tier Computing Platform Optimization: A Deep
Reinforcement Learning Approach

Chidiebere Sunday Chidume ©,' Solomon Inalegwu Okopi (,” Taiwo Sesay (),

3

Irene Simon Materu®,* and Theophilus Quachie Asenso

'Department of Information and Communication Engineering, Xi'an Jiaotong University, Xi’an, China
Department of Control Science and Engineering, Xi’an Jiaotong University, Xi'an, China
Department of Communication and Transportation Engineering, Chang'an University, Xi'an, China
*Department of Cyber Security,Xidian University, Xi'an, China

*Department of Biostatistics, Institute of Basic Medical Sciences University of Oslo, Norway

Correspondence should be addressed to Chidiebere Sunday Chidume; chidumechidieberesunday@gmail.com

Received 4 September 2021; Accepted 18 May 2022; Published 10 June 2022

Academic Editor: Mario Muioz-Organero

Copyright © 2022 Chidiebere Sunday Chidume et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The increasing number of computing platforms is critical with the increasing trend of delay-sensitive complex applications with
enormous power consumption. These computing platforms attach themselves to multiple small base stations and macro base
stations to optimize system performance if appropriately allocated. The arrival rate of computing tasks is often stochastic under
time-varying wireless channel conditions in the mobile edge computing Internet of things (MEC IoT) network, making it
challenging to implement an optimal offloading scheme. The user needs to choose the best computing platforms and base stations
to minimize the task completion time and consume less power. In addition, the reliability of our system in terms of the number of
computing resources (power, CPU cycles) each computing platform consumes to process the user’s task efficiently needs to be
ascertained. This paper implements a computational task offloading scheme to a high-performance processor through a small base
station and a collaborative edge device through macro base stations, considering the system’s maximum available processing
capacity as one of the optimization constraints. We minimized the latency and energy consumption, which constitute the system’s
total cost, by optimizing the computing platform choice, base station’s choice, and resource allocation (computing, commu-
nication, power). We use the actor-critic architecture to implement a Markov decision process that depends on deep rein-
forcement learning (DRL) to solve the model’s problem. Simulation results showed that our proposed scheme achieves significant
long-term rewards in latency and energy costs compared with random search, greedy search, deep Q-learning, and the other
schemes that implemented either the local computation or edge computation.

1. Introduction

The wide spread of advanced applications such as interactive
online gaming, face recognition, autonomous driving, real-
time object recognition, virtual reality (VR), and augmented
reality (ARS) comes with a significant challenge in compu-
tation with the Internet of things (IoT) devices. This problem
is due to the limited processing, memory, and energy re-
sources present in these IoT devices [1-3]. The disadvantages
of the IoT device’s computational ability have drastically
reduced users’ quality of experience (QoE) and IoT devices’

performance. One way to address this problem is to employ
mobile cloud computing (MCC) technology to assist the IoT
device’s powerful computing and storage capability. However,
relying on MCC for the computational offloading service
results in the inability to support delay-sensitive applications
due to distance from users and data loss, leading to unreliable
wireless connection caused by deep fading. Its geographically
centralized position caused congestion when there is an ex-
plosive growth of users’ computational demand [4, 5].

To deal with the drawback seen with MCC, mobile edge
computing (MEC) found at the edge of the network is used to

mailto:chidumechidieberesunday@gmail.com
https://orcid.org/0000-0002-1873-821X
https://orcid.org/0000-0002-2036-5045
https://orcid.org/0000-0003-2681-7441
https://orcid.org/0000-0003-3124-625X
https://orcid.org/0000-0002-2717-1171
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5051496

provide computing services [6, 7]. MEC server provides more
computational capability than the IoT devices, but its com-
putational capacity is less than MCC because of its distributed
structure [6]. MEC enhances the QoE of users due to its
proximity to IoT devices. It guarantees traffic decongestion at
the core network due to MEC servers distributed structure
and supports delay-sensitive applications due to the trans-
mission latency significantly reduced [6, 8]. Nevertheless, an
efficient MEC offloading scheme should still consider if
offloading the IoT devices’ computational tasks is required
due to limited resources. The instantaneous user’s available
processing capacity (APC) should always be greater than the
user’s required processing capacity (RPC) needed before
deciding to offload [9]. It is important to note that MEC tasks’
stochastic nature and frequency indicate that the instanta-
neous computational demand and input data cannot overhaul
to the next scheduling interval. Hence tasks break into units
that can be efficiently managed within the scheduling time
interval. Moreover, the offloading from IoT devices to MEC
servers utilizes the dynamic wireless channel. Therefore, a
proper offloading scheme is required to consider the wireless
channel’s variability too [10-14]. It is usually best to select
offloading devices based on their radio link’s strength and the
critical need for an additional computation facility. Fur-
thermore, power constraints are the major limiting factor to
IoT devices’ computation capacity, frequently querying the
limited MEC servers for computational resources. Hence, to
further improve the quality of service (QoS) for IoT devices
and reserve MEC for critical requirements, renewable energy
harvesters (EH) can be deployed to extend the battery lifetime
of ToT devices [15-18]. The IoT device can capture ambient
renewable energy such as solar radiation, radio-frequency
(RF) signals, wind power generation, and human kinetic
motion. These renewable energy sources provide the greener
energy required for the IoT central processing unit (CPU) and
the radio transceiver using EH module [13, 19, 20].

In [21], the computation of task offloaded from IoT
device was implemented using satellite and gateways in
satellite communication. Here tasks can be handled by
satellite or serve as a medium for task transfer to the gateway
where it is computed. When adopted to terrestrial com-
munication, this idea, computing task from IoT devices, can
be handled by the high-performance processor connected to
the small base station. The small base station also serves as a
medium of transfer to a collaborative edge device connected
to the macro base station, where the computation of the task
is completed. Reference [21] does not consider user com-
putation’s effect on overall energy consumption and latency
reduction. Also, they did not consider efficiently allocating
the available power (CPU and RF modules) to improve the
system’s available processing capacity. In summary, we
considered both the user computation and available power
in our overall energy and latency optimization expressed in
equation (5), which is an addition to the choice of computing
platform, selection of the base station, and resource allo-
cation considered in the work of [21].

The offloading scheme should adapt to the practical
scenario whereby IoT devices’ tasks are not predictable.
Furthermore, due to the MEC tasks’ stochastic nature, the

Mobile Information Systems

computation demand and input data cannot be carried to
the next scheduling interval but immediately processed
when the task is brought into the network. To achieve this,
the user’s available processing capacity (APC) at the time
instant of task arrival should be greater than the user’s
required processing capacity (RPC) [9].

However, the APC is a function of the execution latency
from [9]. If enhanced, this indeed improves the APC. At [9],
the research allocation policy ensures that the user’s APC is
more than the RPC for computing tasks. In a practical
scenario, it means that if the computing task of MEC is
constant, for the condition always to hold, then there arise
cases where the user’s task may not get access into the system
due to insufficient power to properly allocate between the
CPU and RF modules to make APC more than RPC. In
addition, because the computing capacity of the MEC is
finite. This problem results in users computing tasks missing
their deadline for delay-sensitive tasks. Therefore to support
the proposition of APC always greater than RPC, the
computing capacity of MEC can be enhanced by adding to
its computing ability by forming a D-D connection with all
the unengaged devices within the proximity of the MEC.
This leads to a better quality of experience (QoE) from the
user’s perspective. Also, to efficiently utilize the power re-
sources, an exact amount of power needed for the CPU and
RF modules for the chosen computing platform for maxi-
mizing APC needs to be ascertained as power is a limiting
resource. In addition, since there are many deployments of
these computing devices that are attached to either the small
base station or macro base station, a choice of the particular
base station a user can associate from the many available
needs to be ascertained that leads to a reduced cost in energy
consumption and delay. A resource allocation policy that
considers user association, offloading decision, computing
platform, and power as a limiting resource with the sole aim
of maximizing the APC will not only promote the QoE of
users. Still, it further adapts the scheme to the practical
scenario of addressing the unpredictable and stochastic
arrival of computing tasks into the network. The use of
mathematical optimization to solve the following observa-
tions is complex. It results in a high cost of implementation
and severe delays as the optimization runs at every time slot
during the resource allocation policy. The use of deep re-
inforcement learning leads to a less complicated and low cost
of implementation.

Motivated by the observations above, this paper focuses
on the MEC IoT networks with multiple users, multiple
high-performance processors, and multiple collaborative
edge devices. The high-performance processor provides
access to the collaborative edge device for tasks offloaded
from IoT nodes/users and is not handled by the high-per-
formance processor. The IoT devices are power limited,
coupled with their computing and communication resources
being scarce. Therefore, considering computing platform
choice, base station choice, and resource allocation for task
oftfloading should be investigated to minimize the MEC IoT
system’s total cost due to latency and energy consumption.

It is quite challenging to solve the formulated optimi-
zation problem using the standard techniques due to the

Mobile Information Systems

problem’s nonconvexity. We point out the primary con-
tributions of this paper as follows:

(i) We demonstrated how the total cost could be op-
timized considering three-tier computing platforms
with multiple users, high-performance processors,
and collaborative edge devices. Unlike the existing
methods, we considered the joint user association,
offloading decision, computation, and communi-
cation resources to optimize the system’s service
latency and energy consumption under a time-
varying channel state and optimal APC.

(ii) We increased our system’s computing capacity by
making it possible for the small base station high-
performance processor to assist in processing tasks
offloaded from IoT nodes within the coverage of the
small base station. Similarly, the collaborative edge
device replaced the conventional MEC server seen
in other schemes. The task edge device can intel-
ligently form D-D connections with all the unen-
gaged devices (resource edge devices) within its
vicinity to complete task execution from the user. It
should be noted that tasks handled at the collabo-
rative edge device must pass through the high-
performance processor.

(iii) We formulated the problem of minimizing latency
and energy consumption while optimizing com-
puting platform choice for execution, the base
stations to associate with, and resource allocation.
We intelligently determine the appropriate power
the computing task requires to maximize the APC.
We adopted the actor-critic architecture of deep
reinforcement learning proposed in [19, 22] to carry
out our investigation.

(iv) We compare our method’s performance with
other known benchmark algorithms (random
search, greedy search, deep Q-learning) together
with schemes of local and edge computation and
show that our scheme provides a significant re-
duction in total cost due to latency and energy
consumption.

1.1. Related Work. The study conducted by the group known
as European Telecommunications Standards Institute
(ETSI) first gave the motivation, definition, protocol ar-
chitecture, and challenging issues of MEC [23, 24]. The
computational task offloading mechanism in edge com-
puting is responsible for MEC system all-around perfor-
mance. The power constraint of IoT devices led to energy-
efficient computation offloading, as we see in the study of
[23, 25, 26]. In [25], an actual data measurement was
suggested based on the optimization method to save users’
energy consumption by jointly formulating the joint
scheduling and computation problem. Reference [26] pro-
posed the system cost, which considers delay and task failure
as a performance metric in the dynamic computation off-
loading deploying the Lyapunov energy harvesting process.

The amount of energy usage and task delay in the MEC
method relies only on processing the task and transmitting
it. However, based on optimizing radio resources and
computing offloading, this consumed energy has increased
[13, 27].

Reference [13] investigated the resource allocation for
the multiuser MEC offloading problem under TDMA and
OFDMA scenarios. Likewise, in [27], joint optimization of
computation task scheduling and radio resource allocation
was carried out for a multi-access-assisted computing off-
loading. In all these works, the MEC maintained a static
position, unlike the work of [23] in which flying UAVs serve
as the mobile edge servers. Also, in [28], they proposed a
mobile edge computing framework with the aid of a UAV-
mounted cloudlet. They jointly formulated the UAV tra-
jectory and bit allocation problems to reduce mobile energy
consumption through a nonconvex optimization solution.
The role of edge computing enhanced industrial IoT was
carried out in [21, 29, 30]. The nondominated sorting genetic
algorithm, as proposed by [31], was used to study the trade-
off between the amount of consumed energy and delay for
their user-MEC system and further proves that the algo-
rithm can solve problems of similar kinds. A partial and
binary offloading of a three-tier computational platform was
proposed by [32], which improves the node’s energy effi-
ciency factor by optimizing both computing and commu-
nication resources. An information asymmetry and
information uncertainty as proposed by [33] were used to
improve the system service in vehicular fog computing
network. In [34], under a user-MEC system, the system
performance was enhanced by jointly considering three
indices: admission control, power control, and resource
allocation. However, the increasing number of IoT
devices and small or macro base stations that host the edge
computing devices seen with the above schemes must be
considered to associate the users appropriately for com-
putational purposes. This consideration is necessary as the
number of base stations (small or macro) is generally small
compared to the number of IoT nodes.

Reference [35] carried out joint computation and user
association for multitasks MEC systems to minimize the
overall energy consumption.

Some works focusing on the supply of renewable energy
and EH include the following: [19, 36] suggested a security
disjoint routing-based verified message (SDRVM) using
energy data from Denver’s National Solar Radiation Data-
base. Here, solar energy and battery collection for energy
storage are included in the energy consumption model.
Reference [37] defined the communication between the EH
wireless devices (WDs) and energy-transmitting devices by
suggesting a wireless powered communication (WPC)
model along with a radio-frequency (RF) energy receiver
model. Reference [38] minimized capacity using the number
of computing bits and causality of energy harvesting as
constraints. By proposing a learning-based computing off-
loading scheme for IoT devices coupled with EH, [1]
maximizes system utility.

The delay in data transmission and energy consumption
on the wireless network is defined below. Reference [39]

MEC
SERVER

i

MACRO BASE
STATION

RENEWABLE

€=g ENERGY
FLOW

CONVENTIONAL

ENERGY FLOW ‘l —)
((‘) ENERGY

ACCESS POINT

g HIGH
PERFORMANCE

PROCESSOR

USER

SMALL BASE
STATION

8 U |’ POWER
GRID

W=y

()

Mobile Information Systems

FIGURE 1: Block diagram of edge-based computation tasks offloading model for IoT device in IoT networks.

improved delay and energy consumption efficiency when
changing forwarder nodes and duty cycle using the packet
aggregation routing system (AFNDCAR) to monitor node
residual energy. The alternating direction method of mul-
tiplier (ADMM) to optimize the computation was per-
formed by joint optimization of local computing or
offloading to a MEC server and allocating transmission time
[14]. To reduce the average offloading delay, they follow an
adaptive learning-driven task scheme based on the multi-
armed bandit algorithm in [40]. Deep learning (DL) and
DRL optimize computing offloading and resource distri-
bution or transmission delay and energy consumption. An
example can be seen in the work of [41] which, by imple-
menting a joint offloading and edge server provisioning issue
based on RL, minimized the long-term device expense.
Using a postdecision state (PDS) learning algorithm, state
transformations’ unique structure in the MEC system was
also implemented.

The actor-critic RL approach was used by [22] to op-
timize caching, computing, and communication jointly. A
two layered RL algorithm is used to find the trade-off be-
tween latency and delay for a resource constraint IoT device
while offloading computing task to the MEC server as can be
seen in [42]. Reference [43] used a three-layer neural net-
work through the design of a DRL-based offloading model to
learn the optimal offloading strategy with varying data
transmission rates. A DRL-based joint optimization scheme
for computing task scheduling and wireless resource allo-
cation in a vehicular network was proposed by [44] by
modelling the communication system and edge computing.
Likewise, in the work of [45-48] the use of DRL was adopted

for an efficient task computation offloading to the edge
server to minimize both latency and energy consumption.

2. System Model

A typical MEC IoT network with multiple users, multiple
high-performance processors, and numerous collaborative
edge devices forming the three computing platforms are
presented in Figure 1.

We design a MEC system consisting of three parts where
each part is equipped with a computing platform for the
task’s execution.

(i) IoT nodes layer: This includes the smartphone, vi-
sual terminal, etc. Let ./ ={1,2...N} denote a
collection of IoT nodes.

(ii) The service equipment layer: This comprises a small
base station and high-performance processor. Let
K ={1,2...K} denote the collection of high-per-
formance processors. Since each high-performance
processor is attached to one small base station, it
then means we have k high-performance processors
and k small base stations in the system.

(iii) The MEC layer: This consists of a macro base station
and a collaborative edge device. Let
M =1{1,2...M}. Since each collaborative edge
device is connected to a macro base station, there
are M collaborative edge devices and M macro base
stations in the MEC model.

This paper uses the small base station and high-per-
formance processor interchangeably. Similarly, the macro

Mobile Information Systems

base station and collaborative edge device refer to the same
thing as we have earlier mentioned that the high-perfor-
mance processor is hosted on a small base station and the
collaborative edge device is hosted on a macro base station.

We note that the IoT device and small base station have
energy harvesting capability and tap renewable energy from
an external source. In contrast, the task edge device subset of
collaborative edge devices is powered by a conventional
power grid. Thus, the three computing platforms’ computing
capabilities can be written: IoT node < High-performance
processor < collaborative edge device. Data flow from the
IoT nodes to the collaborative edge device through the high-
performance processor. It means that the task scheduled to
be processed at the collaborative edge device passes through
the high-performance processor but will not be handled
there. We considered a system with multiple IoT nodes,
service equipment layers, and MEC layers. The user needs to
associate with the best small base station, macro base station,
and computing platforms to reduce the cost due to latency
and energy consumption. Table 1 lists the key notations
mentioned in this work.

2.1. Collaborative Edge Device. It is a set of task edge devices
and all the resource edge devices which can form a D-D
connection with the task edge device. The connection be-
tween the task edge device and resource edge devices is
wired. Let us denote a task edge device by t° and resource
edge devices that can establish connection with t¢ as
r® ={1,2...7°}. We have that t° + r° = m, where m is a
collaborative edge device € M.

2.2. Communication Model. Our MEC system adopts OFDMA
in the two transmission segments with C, D orthogonal
subcarriers represented by € = {1,2...C}, 2 ={1,2...D},
respectively. Let the bandwidth of the small base station and
macro base station be denoted as B, and B,, respectively. The
uplink transmission rate R7.y ; for the transmission segment
from user 1 to small base station k is given by

RCTX,;‘ = Z Pi,cBllogZ(l + Pi,cgi,c)' (1)

ceC

Similarly, the transmission rate for the second segment
from small base station k to the collaborative edge device is
given by

Rix; =) piaBaloga(1+ Piggig), (2)
deD

where p; ., p; 5 € (0,1) is an indicator variable. P;. and P,
represent the power allocated to the subcarriers ¢ and d,
respectively. g;. = (Ilh; II’/N,) and g;4 = (Ih;41>/N,) de-
note their respective channel gains. N, is the power spectral
density of the additive white Gaussian noise (AGWN). h
denotes the channel response, while p is an indicator variable
which is 1 when subcarrier is assigned and 0 when no
subcarrier is assigned. To avoid interference, the following
indicator variables should be satisfied:

TaBLE 1: Summary of some of the key notations used.

Notation Description
N Set of IoT nodes
Set of small base stations (high-performance

k
processors)
M Set of macro base stations (collaborative edge devices)
re Set of resource edge devices
t¢ Task edge device
C Set of subcarriers from user to small BS
D Set of subcarriers from small base station to macro BS
B Bandwidth
Ryy; Transmission rate
Power allocated to C
Py Power allocated to D
P Indicator variable for
Dio Local computing power
fi CPU computational frequency of user 1
Effective capacitance coefficient
The available power
Latency
Number of bits in i
Computing capacity of IoT node
The computational capacity of small base station
Computing capacity of macro base station
Propagation latency

<D N R PN

T System latency

Cr Total APC

Creqi Required processing capacity for user i

E; Energy consumed at the small base station

Py Static power offset

Py Total consumed power

rL Reward at time slot L

L(w) Loss function

a, Learning rate

o Temporal difference

/4 Policy

Maximum communication capacity allocated by k and

XY, m

Z,Q,, Maximum computing capacity allocated by k and m
N
Y pic<l,
i=1
- (3)
Z pias1

2.3. Computation Model. We assume that the IoT nodes,
high-performance processor, and collaborative edge devices
can change their CPU computational frequency to adopt the
power consumption and execution latency using the dy-
namic voltage scaling (DVS) techniques [9]. We can model
their computational power as follows:

pio = fiC (4)
Plo = 135, (5)
pio = fi'¢, (6)

where pl, p¥o, pt denote the input powers for the IoT
device, high-performance processor, and collaborative edge
device, respectively. 7, £, f denote the CPU computational
frequencies measured in HZ of 10T device, high- performance
processor, and collaborative edge device, respectively. {7, & N
denote their effective capacitance coefficient that depends on
the chip architecture. We set {; >0 for all the computing
platforms. We equally set n =k =m =2 with frequency
upper bounds given by f, .. ;. This implies that their
computational power satisfies 0< P,y < f2 . .(;. The power
present at the first transmission segment is constrained by
the available power of the IoT nodes covered by the small
base station k and is given by

C
plo+ Y pi <Pl (7)
c=1

Similarly, the second transmission segment is con-
strained by the available power of the high-performance
processor given by

D
P+ Y pia<Pf, (8)

d=1

where p?' and p¥ are the CPU modules of the IoT node and
high-performance processor, respectively. ZC 1 Pic and
Y.4-1 Diq represent the RF modules of the IoT node and high-
performance processor (small base station). P* and P* are
the available power present in IoT node and hlgh perfor-
mance processor, respectively. We ignore the RF modules’
received power, consistent with other schemes, as their
feedback is negligible.

2.4. Latency Model. For every task i, we can compute the
latency in any three computing platforms. This latency includes
waiting, transmission, processing, and propagation. We look at
the three possibilities in evaluating the system’s latency and
consider only the processing latency if processed at the IoTnode.

2.4.1. Task Handled at the User. For the processing of task, i
at the user, we express the latency T? as follows:

T! =5 9)
xi,n

where N; is the number of bits in task i at time slot L. »F,, is
the computing capacity allocated to task i at time slot L for
the IoT node.

2.4.2. Task Handled at the High-Performance Processor.
If task i is handled at the high-performance processor k € K,
we express the latency T as follows:

L
ik (10)

Tf =p(L
ik Zik

We use p and p (L — 1) to denote the length of a time slot
L and waiting latency. CJ, denotes the link’s allocated
communication capacity from user to high-performance

Mobile Information Systems

processor, k. Vi, = (2d;;/S) denotes the latency due to
propagation for task i processed by high-performance
processor k, where d;, is the distance between IoT node and
high-performance processor, k. S is the speed of light. We
ignore the transmission delay from small base station k to
IoT node n because of the lesser number of bits in the return
link but not so for their propagation delay.

2.4.3. Collaborative Edge Device. Task i is processed at the
collaborative edge device. It gets offloaded through the small
base station to the collaborative edge device without pro-
cessing at the high-performance processor. Thus we express
the latency T!" as follows:

N, N, .
Sttt Vi (11)

ik im bim

T =p(L

where DY, is the communication capacity allocated for the
second transmission segment from the small base station to
the collaborative edge device. g7, is the allocated computing
capacity assrgned to the task i by the collaborative edge
device. V}, = (2d;; +2d,,/S) where d;, is the distance
between hlgh performance processor and collaboratlve edge
device. The transmission latency from the collaborative edge
device to high-performance processor and from high-per-
formance processor to users is also omitted as seen before.

From equations (9)-(11), the cost due to latency can be
defined as

T? ifa; =1,
T,=4TF ifp =1, (12)
T ify; =1

In (12), &, f;,y; are the indicators showing where to
oftload task i for processing. If «; = 1, task i will be handled at
the IoT node, if §; = 1, task i goes to the high-performance
processor for processing. If y; = 1, task i goes to the col-
laborative edge device for processing. In addition «;, §;, and y;
must satisfy «; + 5; + y; = 1. Considering the latency of all
task 7, the total cost of the system due to latency is expressed as

eff_zzz Z w;T;. (13)

nok ey,

In (13), we express the cost at time slot L due to latency
for our user-MEC system as the summation of weighted
latency for all task i scheduled. Q; comprises all the
scheduled new tasks that are to be associated with the small
base station at time slot L and w is the weights of each task.
With reference to (9)-(11), T, is related to choice of
computing platform, choice of base station, and resource
allocation (computing, communication) at each time slot.

3. Available Processing Capacity

The APC of a user 1 is given by the maximum available
computation it can obtain in the time interval between L and
L + §;. From [9], it was shown that, at time instant L, user i
APC is expressed as

Mobile Information Systems

. w;
Ci = hm(;L 06_, (14)
L

where w; denotes the maximum available computation
obtained within the time interval L to L+ §;. It was also
proved from [9] that APC can be further expressed by

w;

3

-1
= \’Pi,O(i + ’7iRTX,i'

For any of the unpredictable tasks to be completed without
an extra delay, a sufficient condition to realize this is by making
the user’s APC greater than its required processing capacity
(RPC). The RPC is the total computation demands per second
of all tasks present at the user. Let us denote the APC of the user
from user to the high-performance processor as C; and that
from the high-performance processor to the collaborative edge
device to be C;. The total APC Cy is then given:

Cr=C; +Cy. (16)

Ci(Pyp;) =lims
(15)

This implies that, for all unpredictable tasks arriving at
the user, Cr>C,, where C, is the required processing
capacity at the user.

The APC from user to the high-performance processor

(C;) is given by
G = pZOCi_l + 1Ry x ;e (17)

Similarly the APC from high-performance processor to
the collaborative edge device (C,) is given by

Ci = \/Pf‘c,oci_l + r]iRl]i"X,i’ (18)

where the expression for pj; and Pﬁo has been given in (4)
and (5), respectively. Also the expression for RSy ; and R ;
has equally been given in (1) and (2), respectively.

We note the following constraints:

(i) (RPC constraint): Here, the resource allocation
targets making the total APC C; of the system satisfy
the RPC constraint. We express it as follows:

Cr2Cp Vi€ N (19)

(ii) (Server capacity constraint): let Z, and Q,, be the
total processing capacity seen at the high-perfor-
mance processor and collaborative edge device, re-
spectively. We have that

C
Z MiRrx;i < Z
ieN

Z rliR?‘X,i <Qp

ieK

(20)

3.1. Energy Cost Model. We considered power consumed at
the small base station and IoT device as they are the two

power-limited devices in our network. We omit power
consumed at the macro base station as the power supplied to
the static offset power is stable. The energy consumption
changes only slightly because the macro base station receives
its power from the conventional power grid. Therefore the
total cost in energy due to the collaborative edge device
hosted on this macro base station is not affected.

According to [49], we can model the power consumed at
the small base station k by the sum of its static baseline
power and consumed power as follows:

Ey (L) =[Py + nPy (L)] * L, (21)

where P, is the static power offset (baseband processor,
cooling system). P, denotes the total consumed power due
to wireless transmission by the small base station k. At time
slot (L), we express the components of the total consumed
power P, (L) of the small base station k as

N N
Pe(L)=Y plo(L)+&Y pi (L) +(1=E)pia(L), (22)
n=1 n=1

where pf (L) is the power consumed at the IoT device for
local execution at time slot L covered by a small base station
k.

Di. (L) denotes the transmit power of the first trans-
mission segment at time slot L.

piq (L) denotes the transmit power of the second
transmission segment between the high-performance pro-
cessor k and collaborative edge device m.

& denotes the ratio of offloading to high-performance
processor k and the collaborative edge device m.

4. Problem Formulation

In light of the total cost due to latency and energy con-
sumption model seen in the previous section, we formulate
our optimization problem to reduce the total cost due to
latency and energy consumption at time slot L. Let
I'=(Q,., Y, ¢,.). We formulate the problem as follows:

r,ct pt IE.LH;,L Py (L) (1T + (1= By (L), (23a)
il im ik im " k
: L
subject to Z Cii < Xpo (23b)
keQy .
Y Df,<Y
b (23¢)
ke¢m,L
L
2, #sZ (23d)
key,..
L
z qi,m < Qm’ (236)
keg,,L
C
Ply+Y pi <P}, VieN, (23)

D
P{y+ Y Py<Pf, VieKk,

(23g)
d=1
C
Y nRix;<Z, VieN, (23h)
i=1
D
Y Rix;<Q, Vi€K, (23i)
i=1
Cr2Cpqin Viek, (23)
0< Pi>0 < fmax2(i’ (23k)
Pie> Pia20. (231)

Q. ; denotes at time slot L the tasks associated with a
high-performance processor (small base station) k. It con-
sists of the ongoing tasks and new tasks Q; ; scheduled to be
processed at time slot L at the high-performance processor k.
¢, represents all the tasks to be processed at the collab-
orative edge device m at time slot L and U, ¢, € U, Q;
because the tasks offload to the collaborative edge device
through the small base station (high-performance processor)
at time slot L. y; ; consists of all the tasks scheduled to be
processed at the high-performance processor k at time slot L.
Vi € Oy because some of the new tasks are not processed
at the high-performance but merely pass through there to
the collaborative edge device where they are processed. X
and Y,, are the highest available communication capacity
available for the transmission segment from IoT device/users
to the high-performance processor and high-performance
processor to the collaborative edge device, respectively.
Similarly, Z, and Q,, are the highest available computing
capacity available at the high-performance processor k and
collaborative edge device m, respectively. We also point out
that all the resources deployed for the ongoing tasks
i € (Q /) can no longer be utilized for the new task
scheduled at time slot L. # and 1 — #, respectively, represent
the latency weight due to latency and weight due to energy
consumption. It should satisfy 0<#<1. Constraint (23b)
signifies that the summation of all the communication re-
sources (RF modules) allocated to the set of users connected
to the small base station should not be more than the
maximum communication capacity the high-performance
processor can offer. Similarly, constraint (23¢) indicates that
the summation of all the communication resources from the
high-performance processor to the macro base station
should not be more than the maximum communication
capacity present at the collaborative edge device. Constraint
(23d) signifies that the total computation offloaded to the
small base station should not be more than the high-per-
formance processor’s processing capacity. Constraint (23e)
also notes that the total computation offloaded to the macro
base station should not exceed the collaborative edge de-
vice’s processing capacity. Constraints (23f) and (23g) show
that the sum of the computation and communication powers

Mobile Information Systems

should not exceed their available powers. Constraints (23h)
and (23i) show that the sum of the RF modules for all the
users offloaded to the small base station should not exceed
the high-performance processor’s computing capability. It is
also similar to (23i) for the sum of RF modules offloaded to
the macro base station. Constraints (23j) make the user’s
total APC be more than the required processing capacity of a
user i. Constraints (23k) and (231) indicate that there should
be positive power allocation and that the computational
power has a maximum limit.

We note from 25 that the total cost due to latency and
energy consumption depends on the choice of computing
platform, choice of base station users can associate, and re-
source allocation at each time slot L. Also, the three metrics
coupled together at each time slot L + 1 depend on the state of
time slot L. Hence, we formulate the problem as a dynamic
programming problem based on metrics considered. We
deploy actor-critic architecture based on deep reinforcement
learning to solve the problem since it involves many variables.

4.1. Latency and Energy Optimization Based Deep Rein-
forcement Learning. The optimal solution to the problem
formulated in this paper is a mixed-integer problem of
nonconvex nature. It is hard to get a solution due to a
combination of discrete and continuous variables. The CPU
modules and RF modules that make up the available power
for each computing platform and resource allocation vari-
ables are continuous. In contrast, the user association and
offloading decision variables are discrete. To reduce the
complexity in finding a solution, we use an actor-critic DRL-
based algorithm to solve the joint user association, off-
loading decision, and resource allocation that involves many
states and action space. We represent the MDP using
(H, A, P, R), where H is the system state space, A represents
the system action space, and P denotes the transition
probability space from state h; and action a; .

4.1.1. State (H). The system states are expressed for all time
slots L since all the parameters we want to optimize are
defined therein. Hence, we represent the state at time slot L
as follows:

hL = {ﬁ[; IT/L) %L: ij: XL: ?L’ QL; ZL) 6L’)/(L), dk> M’ N)}
(24)

Q, is further expressed as {QLL, Q- ﬁk)L}ﬁk)L is a
collection of ongoing tasks connected to the high-perfor-
mance processor (small base station) k at time slot L.

Y, is further expressed as {‘7’1,L>‘7’2,L . ..@k,L}wk,L is a
collection of ongoing tasks being computed at the high-
performance processor k time slot L.

¢, is further expressed as {%LL’ %2,L“'§7’m,L}$m,L is a
collection of ongoing tasks at time slot L being computed at
the collaborative edge device n.

X, is further expressed as {XI)L, X0 Xk,L}Xk,L is a
collection of communication resources at time slot L en-
gaged from the users to the high-performance processor.

Mobile Information Systems

Y, is further expressed as {YI)L, Y,,. ..Ym)L}Ym,L is a
collection of communication resources at time slot L en-
gaged from high-performance processor to the collaborative
edge device.

F, denotes the collection of tasks at time slot L not
scheduled (served).

Q, is further expressed as {Ql,L’QZ,L .. -Qk,L}Qk,L is the
set of computing resources at time slot L allocated by the
high-performance processor to the ongoing task.

Z, is further expressed as {ZLL, ZZ,L e Zm’L}Zm’L is the
collection of computing resources at time slot L allocated by
the collaborative edge device to the ongoing task.

o, represents the matrix that shows the location of all
IoT nodes, high-performance processor k, and collaborative
edge device m.

y is a vector list of SINR of the transmission segment
between users and high-performance processor and a list of
SINR of the transmission segment between high-perfor-
mance processor and task edge device.

d is the computational requirement for task k.

K is the number of high-performance processor.

M is the number of task edge devices.

4.1.2. Action (A). The unserved tasks € fL need to be as-
sociated with the small base station k and collaborative edge
server m at time slot L. Also, resources for computing and
communication need to be assigned to the appropriate
choice of the computing platform and base station.

We define at time slot L the action space for the choice of
computing platform, choice of base station user can asso-
ciate, and resource allocation (computing and communi-
cation) of the system as follows:

ap ={A,, A, .. . A}

— (25)
Apr = {A1 Ay Ay, Ay Asy Agy Agy Agl

A, € 0,1 denotes whether an IoT device is capable or not
of completing a task at time slot L.

rp = Z; Z [j"?wiTi+(1 -
u i€y

From (26), the state h; and action a; will affect the
reward r;. The reward j-— (nwT;+ (1-#)E;;) that is
negatively correlated with the weighted-sum of latency and
energy cost is fed back for every new scheduled task i € Q|
at each time slot L, whereas the reward — (yw,T;) is fed back
for tasksi € (F} /(Y ;)) in which only the waiting latency
constitutes the value of T; and the value of E; ; is zero due to
the knowledge that the task has not been scheduled.

ﬂ)Ek,L] + Z

A, €0,1 depicts at time slot L if task i should be con-
sidered for processing.

A; €1,2... M denotes at time slot L the small base
station that associates with the task i.

A, € 0,1 indicates in which of the computing platforms
the task should be processed.

A; € 1,2...ndenotes the collaborative edge device used
to handle the task k.

Ag = {E1,0>E2,o ...Ey.. 'EN,()} where E;;(L) can be
obtained by P} * L.

A, ={E, (L), E, (L),...E (L),... Exc (L)}
E; (L) can be obtained by P;_ * L.

Ag = {El,d’Ez,d> . Ei4... EM)D} where E;; can be ob-
tained by p; ; * L.

A, =number of communication and computing re-
sources allocated to users from high-performance processor
denoted as ct={ct,ct,...ch} and
Zk = {Zik, Zhy .. .Zﬁk}, respectively, at time slot L.

A, =number of communication and computing re-
sources allocated by the collaborative edge device to tasks
offloaded from high-performance processor denoted as
DI = {Dik’Dik .. .D{jk} and qL = {qik,qik .. "ﬁk}’ re-
spectively, at time slot L. Under a particular action a;, we obtain
the choice of computing platform, base stations to which users
can associate (Q;,¥;,$;), and appropriate computing and
communication resources (C, D, Z,q, E;, E; ., E; 4).

ic> i

where

4.1.3. Transition Probability (P). A model-free DRL
framework is adopted here for the following reasons: It is
hard to get the MDP transition probability from one state to
another with an action a; because some state has continuous
variables. Secondly, it involves large state space and action
space.

4.1.4. Reward (R). We define in time slot L the reward 7|
under state h; and action a; that minimizes the system
weighted cost due to latency and energy consumption as
follows:

~(nw;T); | (26)
ieF/ < Zﬁu >
k

4.1.5. Policy and Value Function. We use the stochastic
policy to optimize the long-term performance of the action
selection strategy as 7 (als) = Pr(a; = als; = s). We equally
define the expected return of a trajectory that begins at time
L under state s and action a as

Q"(s,a)zE{iﬁkr“iln,st =S,aL=a]>, (27)

i=0

10

Mobile Information Systems

(1) Require: Data from the user/IoT nodes (N,-,I:JL)

(2) Network initialization

(3) For incident=1 to E,_,, perform

(16) end For

Data from the high-performance processor (Qy, ¥, X,,Q,) data from the Task edge device (¢;,Y,Z;) position of the nodes
(0,) choice of computing platform (Q;,¥;,$;) computing and communication resources (C, DY, Zt, QF, E)

Initialize parameters of the actor and critic network (6, &, w, @)

(4) Renew the environmental situation of the proposed user-collaborative edge device model
(5) reset the state S,
(6) reset r, =0
7) for step=1to T, do
(8) Choose g, in the simulation environment in line with 76(als)
9) obtain the reward r, and the next state S,,,
(10) cache (S, a,,1,,S;,,7 in the replay buffer D as the experiences used for training the actor and critic network
(1) Arbitrarily extract minibatch of I turples from D that will be utilized for training the primary network of the actor and
critic
12) Update the critic network parameters as follows: w—w + o, (1/I) Zle [Q - Q, (S a)]V,Q, (S al)
13) Update the actor-network parameters as follows: 8—0 + «, (1/I) ZLI Vg’ atj(n0)
(14) change the two target networks parameters every X steps as follows: W' —TW + (1 — 1)W', ¢ —10+ (1 -1)0". Where 7
=0.001
15) end for

ALGORITHM 1: Optimal resource allocation for the user-collaborative edge device

where 3 € (0,1) is a discount factor.

By selecting the greedy action, the policy for estimating
the Q-values for all state and action pair (s, a) can be derived
as follows:

n(als) = argmax,Q” (s, a). (28)

4.1.6. Evaluating Value Function. The value function
Q" (s,a) can be denoted as Q,, (s,a) making use of a fully
connected DNN with many hidden layers which are pa-
rameterized by collection of weights W = {w,, w, ... w,}. To
realize this, the two units of the DNN input layer introduce
to the hidden layers the system state s and action a. We
express the outcome of the jth neuron located in layer i,
which makes use of ReLu as the nonlinear activation
function as

Yij = max{O, (w,-.xi + bi]-)}, (29)
where y;; denotes the output value, x; denotes the inputs for
layer i, w; denotes the associated weights for the neuron
inputs, and b;; is a bias. The estimated Q-value Q,, (s, a) is
provided by the output layer of DNN. By repeatedly re-
ducing the loss function, the DNN acquires knowledge of the
best fitting weight as follows [22]:

L(w) = E[rL + ﬁmaXuLHQw (SL+1’ aL+1) - Qw (SL’ aL)]z’
(30)

where w represents the parameters of the neural network
while the target value is the term r; + fmax, Q, (sp,>ar.1)-
The difference between the target value from the estimated
value gives us the error also known as temporal-difference
(TD) error, §; given as

6, =rp +pmax, Q, (Sz+1>A141) = Qu (5o a1)- (31)

4.1.7. The Actor-Critic Architecture of the Deep RL Method to
Finding a Solution. The actor-critic algorithm shown in Al-
gorithm 1 was used to combine the concept of policy-based
and value-based methods by estimating collections of the actor
and critic parameters at the same time [22, 50]. The framework
for the actor-critic framework shown in Figure 2 comprises
actors that map states to actions and critic that maps state-
action pairs to expected long-term cumulative reward [22].
DNN is used in both actor and critic networks to correctly
predict value function and policy due to the accurate prediction
it provides [22]. The actor uses a parameterized stochastic
policy 10 (als) to generate an action after observing the current
state of the environment. The critic then evaluates action
performed by the actor by TD error (or loss function signal)
resulting from estimating Q-value with Q,, (s,a) after ob-
serving the reward and the next state of the environment. The
output from the critic guides the learning seen in the network
of the actor and critic. The teaching perfects when the actor
uses the critic’s output to either increase or decrease its action
probabilities. The actor increases its action probabilities if the
critic’s outcome showed good performance and decreases its
action probabilities if it was terrible. Similarly, the critic net-
work parameters are updated to improve the predicted Q-value
using the gradient descent method. However, the actor and
critic DNNs are trained using experience buffer D.

4.1.8. Critic DNN. One of the problems with this architecture
is the inability to converge easily. To facilitate this convergence
issue and improve the stability of the algorithm, we employ
fixed target network techniques [51] and replay of experience

Mobile Information Systems

11

RL Agent
Actor
Action, a
> Q)
Qw (s, a) e e e 16 (als)
TD error § 000
or L (w) V
Critic S State, s Environment
o 0.
- Repl —
@ @ <9 9 1; Bueﬂfpe;1)1,) M
@ @ - <t——— Reward, r

FIGURE 2: The actor-critic learning framework.

[52] to remove problems of nonstationary targets and break up
the temporal correlations arising from the different training
episodes [22]. The replay buffer stores experiences in the form
of I turples as{s;,a;,r;,s;,;» and providesIminibatches
which are sampled to allow DNN update parameters W.

Using the fixed target network and experience replay
techniques, we get the loss function which can be expressed
as

L(w) = Ep [T'L +pmax, Qu (S2+1>A141) = Qu (15 aL)]z’
(32)

where w! and D are the parameters of the target network
and experience replay buffer, respectively. If we continu-
ously differentiate the loss function with respect to pa-
rameter w, the gradient of loss function updates the
parameters w of the critic DNN as follows:

Aw = a, [QL -Qy (SL’ aL)]vaw (SL’ aL)’ (33)

where Q, =1, + fmax, Qy(sp,1,a.,;) represent the tar-
get value and «, denotes learning rate of the critic. We use
the average value over the minibatch to update parameters w
as follows:

)
By =g P[0 - Qs) [VuQu(shodt). (0
i=1

where Q) can be gotten from all critic network output and
immediate reward.

4.1.9. Actor DNN. The agent observes most of the training
samples that have good rewards due to taking the right action
and then tries to improve the probabilities of selecting those
right actions. Similarly, it gives negative rewards when poor
actions are taken and does not increase the probability of
favouring those wrong actions. We make use of a different
parameterized DNN to depict the network of the actor, and
the initial policy depicts arbitrarily collection of parameters
6 =16,,6,...6,}. There is one unit from the actor’s DNN
input layer to pass information to the hidden layer of their
current state. The actor DNN output layer then decides the
current system state. There is experience replay also in the

actor-network to cache samples of minibatch used to train the
DNN. The policy objective function iteratively improves the
policy to maximize the long-term average reward as follows:

j(n6) = E{Q" (s,a)}
=Y d(s)Y m0(als)Q” (s, a), (35)
S A

where d(s) denotes the state distribution. When the ob-
jective function is partially differentiated with parameters 6,
we get the following gradients:

Vei(n6) =) d(s)) Venb(als)Q" (s,a). (34
S A

When approximated Q-value Q,, (s, a) is used, the partial
differentiation of the objective function with respect to
parameter 0 gives the approximated gradient as follows:

Voj(nf) =) d(s) Y Venb(als)Q, (s, a). (37)
S A

The natural policy-gradient method is adopted to avoid
standard methods that seldom converge to the local max-
imum with high variance. The natural policy-gradient
process looks for the steepest ascent direction concerning
the fisher information metric (FIM) given in [53] which is
expressed as

F(6) =) d(s)) nB(als)Ven(als)Velnnb(als)'. (3
N A

We get the natural gradient of the policy by using the
inverse FIM to transform the standard gradient as follows:

Ve j(n8) = F 1 (0)Vj (n6). (39)

The parameter 0 is updated towards the natural gradient
with respect to the learning rate «, as follows:

Vo= a,Vy *j(76). (40)

5. Numerical Results

This section evaluates the performance of our proposed joint
optimization of computing and communication resources,

12

choice of computing platform, and selection of base station
users can associated with minimizing the total cost due to
latency and energy consumption of our MEC system
through computer simulations.

5.1. Simulation Setup. We considered a framework of n € N
IoT devices, k € K high-performance processor, and m € M
collaborative edge devices. We assumed that each IoT device
is at an equal distance of 20 m from the small base station
and 80 m from the macro base station. At a particular time
slot L, each small base station can cover one IoT device.
Similarly, the macro base station can cover one high-per-
formance processor at each time slot. Moreover, L = 2 ms.
The maximum allocated power for IoT devices P .. is
0.5W. The maximum allocated transmit power of an IoT
device to high-performance processor, k, is Py of 0.5W.
Also the maximum transmit power from the small base
station k to the collaborative edge device m is set to be pii™
of 0.5W. The maximum power at the collaborative edge
device P, .. is 0.5W. We equally set each small base
station’s static power P to be 0.5 W. We set the maximum
communication and computing capacity of the high-per-
formance processor to be X, =100Mbps and
Z,. = 10" cycles/s respectively. We set the maximum com-
munication and computing capacity of the collaborative
edge device to be 500 Mbps and 5 x 10'° (cycles/s). The
maximum bandwidth of the collaborative edge device and
high-performance processor is 6 MHz and 3 MHz.

We used a fully connected DNN with two hidden layers
of 300 neurons and a ReLu activation function. Three
hundred neurons were used in the hidden layers to maintain
a trade-off between higher complexity in computation and
accuracy for the value function approximation. Too many
neurons lead to higher complexity in analysis. We generate
two separate target networks for the actor and critic to
regularize the learning algorithm and increase stability. It is
followed by replacing the actor and critic network’s pa-
rameters once every X = 300 iteration using the current
estimates of their primary network’s parameters when
7= 0.001. We use an experience replay buffer of size 10000
for training the DNN that returns a minibatch of experiences
of 64 when needed. We set the full episode and the maxi-
mum number of steps in each episode to 1000. The learning
rate of the actor «, and critic «, is, respectively, 0.0001 and
0.001. We showed the other scenario and actor-critic DRL
parameter in Tables 2 and 3, respectively.

5.1.1. Convergence of the Proposed Scheme. In this subsec-
tion, we showed the training results of the proposed scheme.
The convergence process of L(0), as defined in the training
process, is shown in Figure 3.

Here we see that L(6) converges at about 1.1 x 10* steps,
which implies that the approximated Q-function Q (k, a, 0)
is close to the target action-value function Q* (h,a). The
complexity of the convergence steps due to the large action
space in our work reduces. This reduction is because our
proposed scheme deals with the large action space during the
training process and the offloading, and we obtain resource

Mobile Information Systems

TaBLE 2: Simulation parameters.

Value
8 x 10* — 1.2 x 10°bit

Scenario parameters
Task size N,

Weight of each task wy 1

X 10 Mbps

Y, 50 Mbps

Zy 10'0 cycles/s
Q,, 5% 10'0 cycles/s

TaBLE 3: Actor-critic DRL parameters.

Description Value
Entropy weight 0.005
Clip value of the gradient clipping 40.0
Buffer size 10,000
Minibatch size of DNN 64
Maximum episode 1000
Maximum number of steps in each episode 1000
Actor learning rate o, 0.0001
Critic learning rate a, 0.001
Number of iterations X 300
Activation function of DNN ReLu
Number of hidden layers of DNN 2
Number of neurons in the hidden layers 300
4000
N
\
\
1
3000 | %
S !
- +
= 1
kS |
g 2000 -+
Y !
= 3
1000 F Y
+
\.\>
¥
0 IR SO S SR Sy SR PSS PSP SPSPO S
0 1 2 3 4 5
Step %10

FIGURE 3: Convergence process of loss.

allocation on the trained Q-network with no iterations.
Similarly, total cost defined in (4) converges almost syn-
chronously with L(6) at about 1.05 x 10*th episodes shown
in Figure 4.

We can conclude that the algorithm not only converged,
but it did so at a faster rate making it suitable for a dynamic
environment. Our model’s convergence analysis went like
this: The gradient sharing operation facilitated exploration
in our approach, which automatically resulted in various
policies among agents. This policy diversification opens up a
more extensive search field without jeopardizing long-term
convergence to the best policy. In the same way, there is less
weight in entropy loss terms for long-term convergence to
the optimal policy that does not jeopardize exploration.

Mobile Information Systems

0.142 T T T

014} %

0.138 } %
1

0.136 *

0.134 |

Total cost (s)

0.132 |
0.13

0.128 |

0.126 L L L L L L L L L
0 05 1 1.5 2 2.5 3 3.5 4 45 5
Episode

FIGURE 4: Convergence process of total cost.

Furthermore, the algorithm’s search space was extended by
the diverse rules from the gradient sharing operation, in-
creasing the chances of finding the rewarding path. It is not
easy to achieve long-term convergence if we do not regulate
the sharing process. This regularization was achieved by
ensuring that the process complies with [54] work by
selecting an appropriate learning rate and clipping gradients.
The algorithm’s initial investigation was more thorough
because of the various policies, but it automatically con-
verged to the optimal policy in the long run due to the lower
bias. We also ran the other performance test, seeing the
converged algorithm, which measured average service la-
tency and average service energy usage.

5.1.2. Performance Analysis. In the MEC system, we com-
pare our scheme’s performance with three benchmark al-
gorithms, which are random search, greedy search, and deep
Q-learning.

We take an average of over 5000 tests for every point in
the simulation results. From Figure 5, we found that our
proposed algorithm performed better in the system’s total cost
than the other benchmark algorithms. In terms of this total
cost, random search increased from 0.055s to 0.3s when
users increased from 1 to 7. Greedy search increased from
0.035s to 0.25s. Deep Q-learning increased from 0.030s to
0.225s and finally our proposed scheme increased from
0.0275s to 0.2s. These showed that our proposed scheme
improved the total cost by 42.03%, 24.64%, and 13.04% when
compared with random search, greedy search, and deep
Q-learning, respectively. The rise in total cost results from
sharing the limited resources to all the participating users in a
time slot L. However, our scheme can intelligently deploy
more of the task computation at the users when there is
competition in the computing and communication resources
at the edge servers. Also, users’ renewable energy improves
their lives to complete tasks when there is no appropriate edge
device the user can associate.

Figure 6 shows the dependence on the total cost on
weight of latency and energy consumption. The plots show a

13

0.3

Total cost (s)

1 2 3 4 5 6 7
Total numbers of users

—o— Random search
—+- Greedy search

-o- Deep Q-learning
—+— proposed scheme

F1GURE 5: Total cost versus the total number of users.

Total cost (s)

045 05 055 06 065 0.7

Weight of Latency (1)

03 035 04

—o— Random search
—+- Greedy search

-o- Deep Q-learning
—*— Proposed scheme

FIGURE 6: Total cost versus weight of latency ().

linear relationship between the total cost and weight. For the
delay-sensitive task, a higher value of importance # is re-
quired to prioritize delay over energy consumption for the
execution in any of the three computing platforms. Our
scheme performed better than the other one because it
associates the task with the best small base station or macro
base station for faster computation.

In Figure 7, we saw that the increase in the number of
small base stations decreases the system’s total cost, which is
the same for all the schemes. As the number of small base
stations varies, our method showed better performance
because it associates their computing task to the appropriate
small base station for processing. Our scheme considers the
energy expended at the small base station and intelligently
allocates the computing and communication resources in a
way that leads to minimizing energy consumption, which
results in an overall reduction in total cost. We considered

14

Total cost (s)
IS IS4 IS IS S IS
= = = = = =
> w [e)} ~ oo O

e
=
w

e
=
o

(=)

Number of small base stations

—— Random search
—+- Greedy search

-o- Deep Q-learning
—+— Proposed scheme

FiGure 7: Total cost versus number of small base station.

0.2

0.19

0.18

0.17 +

0.16

Total cost (s)

0.15

k.

0.14

0.13

0.12

1 1.5 2 2.5 3 3.5 4 4.5 5
Computing capability of collaborative edge device (bits/s)

—o— Random search
—+- Greedy search

-o- Deep Q-learning
—*— Proposed scheme

FiGure 8: Total cost versus collaborative edge device computing
capability.

the small base station’s energy consumption since IoT nodes
receive their power from the small base station’s coverage for
its local computation and offloading to the high-perfor-
mance processor. The available power present in the small
base station also provides the transmit power to the col-
laborative edge device.

Similarly, the graph of the total cost for the collaborative
edge device computing capability shown in Figure 8 shows
our scheme performed better than the other methods when
the collaborative edge device’s computing capabilities in-
creased. Our collaborative edge device consists of one task
edge device and resource devices. The capabilities of our
collaborative edge device are varied by the number of re-
source devices connected to it. The edge device computing
capability is not fixed as in the other schemes. Our system’s
task edge device subset of the collaborative edge device

Mobile Information Systems

18 T T T

16 + Tk

14

12

Average Delay (s)

10

Number of Users

—o— Edge Computation
-%- Proposed Scheme
—+- Local Computation

FIGURE 9: Average delay versus number of users.

adequately uses all those not engaged for computation. These
resource devices increase their computing ability and
complement the analysis of tasks not handled at the high-
performance processor.

We also saw that deep Q-learning and our proposed
scheme performed optimally in total cost when the edge
servers’ computing capabilities were varied. The total cost
reduction is higher with these two schemes because the
oftloading rate is higher than the greedy search and random
search with a low offloading rate. However, our proposed
system still had the best-reduced cost due to the high-
performance processor’s presence that had assisted with the
task computation before being offloaded to the collaborative
edge device. The small base station boosts the user’s transmit
power for its onward journey to the collaborative edge
device, contributing to our scheme’s increased offloading
rate.

The average delay of the proposed scheme, local com-
putation, and edge computation decreases as the number of
users varies from 2 to 20, as shown in Figure 9. The average
delay of the local computation showed a minor performance
due to the low processing power of the IoT nodes. This delay
in computation increases the average delay as tasks get
queued waiting to be scheduled for computation. Unlike the
schemes that involve local computation, the edge compu-
tation and the proposed scheme showed lesser average delay
as the number of users increased due to the higher com-
puting power of the MEC to compute tasks at a faster rate.
However, our scheme showed the best performance in the
average delay as the capacity of the MEC is further improved
to handle more complex applications by forming a D-D
connection with all the unengaged devices within its vicinity.

6. Conclusion

This paper has shown an effective use of the three computing
platforms for processing computationally intensive tasks.

Mobile Information Systems

Our proposed algorithm chooses the best computing plat-
form and optimally allocates computing and communica-
tion resources to process task. The high-performance
processor between the user and the collaborative edge device
increases our system’s available processing capacity to adapt
to the practical scenario where task arrival in the system is
random and unpredictable. Our approach ensures that the
appropriate computing resources are attained to increase the
available processing capacity. It also ensures that our system
can reliably handle complex and unpredictable computing
tasks that arrive at the network by ensuring that available
processing capacity (APC) is always more significant than
the required processing capacity (RPC). We employ actor-
critic deep reinforcement learning to solve the joint problem
of allocating resources and deciding on the best computing
platform. Simulation results showed a minimized cost of
latency and energy consumption adopting our proposed
scheme. In furthering this work, the priority of the user’s
task to access the network to be processed should be noted.
The maximal APC obtained in each scheduling time should
consider high-demanding applications and user’s
satisfaction.

Data Availability

The dataset used to support this article’s conclusion is
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang,
“Learning-based computation offloading for iot devices with
energy harvesting,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 2, pp. 1930-1941, 2019.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2322-2358, 2017.

[3] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Ve-
hicular fog computing: a viewpoint of vehicles as the infra-
structures,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 6, pp. 3860-3873, 2016.

[4] S. Tong, Y. Liu, M. Cheriet, M. Kadoch, and B. Shen, “Ucaa:
user-centric user association and resource allocation in fog
computing networks,” IEEE Access, vol. 8, Article ID 10671,
2020.

[5] C.S. Chidume, O. Nnamani, A. Ajibo, and J. M. M. C. L. Ani,
“Flow bandwidth mlwdf for lte downlink transmission,”.

[6] Z.Wei, B. Zhao, J. Su, and X. Lu, “Dynamic edge computation
offloading for internet of things with energy harvesting: a
learning method,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4436-4447, 2018.

[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computinga key technology towards 5g,” ETSI
white paper, vol. 11, no. 11, pp. 1-16, 2015.

[8] P.Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing
based face identification and resolution scheme in internet of

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

15

things,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 4, pp. 1910-1920, 2016.

M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei,
“Power-constrained edge computing with maximum pro-
cessing capacity for iot networks,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4330-4343, 2018.

P. Mach and Z. Becvar, “Mobile edge computing: a survey on
architecture and computation oftloading,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.
Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic
joint radio and computational resource management for
multi-user mobile-edge computing systems,” IEEE Transac-
tions on Wireless Communications, vol. 16, no. 9, pp. 5994-
6009, 2017.

T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in
mobile edge computing: task allocation and computational
frequency scaling,” IEEE Transactions on Communications,
vol. 65, no. 8, pp. 3571-3584, 2017.

C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Transactions on Wireless Communications, vol. 16, no. 3,
pp. 1397-1411, 2016.

S. Bi and Y. J. Zhang, “Computation rate maximization for
wireless powered mobile-edge computing with binary com-
putation offloading,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 6, pp. 4177-4190, 2018.

S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor
nodes: survey and implications,” IEEE Communications
Surveys & Tutorials, vol. 13, no. 3, pp. 443-461, 2010.

D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, and
W. Heinzelman, “Smart rf energy harvesting communica-
tions: challenges and opportunities,” IEEE Communications
Magazine, vol. 53, no. 4, pp. 70-78, 2015.

D. Mishra, S. De, and D. Krishnaswamy, “Dilemma at rf
energy harvesting relay: downlink energy relaying or uplink
information transfer?” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4939-4955, 2017.

F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and
computing optimization in wireless powered mobile-edge
computing systems,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 3, pp. 1784-1797, 2017.

H. Ke, J. Wang, H. Wang, and Y. Ge, “Joint optimization of
data offloading and resource allocation with renewable energy
aware for iot devices: a deep reinforcement learning ap-
proach,” IEEE Access, vol. 7, Article ID 179349, 2019.

M. Pasha and K. U. Rahman Khan, “Scalable and energy
efficient task offloading schemes for vehicular cloud com-
puting,” International journal of Computer Networks &
Communications, vol. 10, 2018.

G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy
optimization for mec enhanced sat-iot networks,” IEEE Ac-
cess, vol. 8, Article ID 55915, 2020.

Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of
caching, computing, and radio resources for fog-enabled iot
using natural actor—critic deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2061-2073, 2018.
X. Cheng, F. Lyu, W. Quan et al,, “Space/aerial-assisted
computing offloading for iot applications: a learning-based
approach,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 5, pp. 1117-1129, 2019.

M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and
A. Neal, “Mobile-edge computing introductory technical
white paper. mob.-edge comput,” MEC) Ind. Initiative,
vol. 29, pp. 854-864, 2014.

16

[25] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applica-
tions,” IEEE Transactions on Cloud Computing, vol. 7, 2016.

[26] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation

offloading for mobile-edge computing with energy harvesting

devices,” IEEE Journal on Selected Areas in Communications,

vol. 34, no. 12, pp. 3590-3605, 2016.

Y. Wu, L. P. Qian, H. Mao et al., “Secrecy-driven resource

management for vehicular computation offloading networks,”

IEEE Network, vol. 32, no. 3, pp. 84-91, 2018.

S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing

via a uav-mounted cloudlet: optimization of bit allocation and

path planning,” IEEE Transactions on Vehicular Technology,

vol. 67, no. 3, pp. 2049-2063, 2017.

[29] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran,

“The role of edge computing in internet of things,” IEEE

Communications Magazine, vol. 56, no. 11, pp. 110-115, 2018.

H. Liao, Z. Zhou, X. Zhao et al., “Learning-based context-

aware resource allocation for edge-computing-empowered

industrial iot,” IEEE Internet of Things Journal, vol. 7, no. 5,

pp. 4260-4277, 2019.

[31] L. Cui, C. Xu, S. Yang et al.,, “Joint optimization of energy

consumption and latency in mobile edge computing for in-

ternet of things,” IEEE Internet of Things Journal, vol. 6, no. 3,

pp. 4791-4803, 2018.

X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint com-

putation and communication cooperation for energy-efficient

mobile edge computing,” IEEE Internet of Things Journal,

vol. 6, no. 3, pp. 4188-4200, 2018.

[33] Z. Zhou, H. Liao, X. Zhao, B. Ai, and M. Guizani, “Reliable
task offloading for vehicular fog computing under informa-
tion asymmetry and information uncertainty,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 9, pp. 8322-8335,
2019.

[34] S. Li, N. Zhang, S. Lin et al., “Joint admission control and
resource allocation in edge computing for internet of things,”
IEEE Network, vol. 32, no. 1, pp. 72-79, 2018.

[35] Y. Wang, J. Yang, X. Guo, and Z. Qu, “A game-theoretic
approach to computation offloading in satellite edge com-
puting,” IEEE Access, vol. 8, Article ID 12510, 2019.

[36] X. Liu, A. Liu, T. Wang et al., “Adaptive data and verified
message disjoint security routing for gathering big data in
energy harvesting networks,” Journal of Parallel and Dis-
tributed Computing, vol. 135, pp. 140-155, 2020.

[37] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered commu-
nication: opportunities and challenges,” IEEE Communica-
tions Magazine, vol. 53, no. 4, pp. 117-125, 2015.

[38] F. Zhou, Y. Wu, H. Sun, and Z. Chu, “Uav-enabled mobile
edge computing: offloading optimization and trajectory de-
sign,” in Proceedings of the 2018 IEEE International Confer-
ence on Communications (ICC), pp. 1-6, IEEE, Kansas City,
MO, USA, May 2018.

[39] X. Liu, M. Zhao, A. Liu, and K. K. L. Wong, “Adjusting
forwarder nodes and duty cycle using packet aggregation
routing for body sensor networks,” Information Fusion,
vol. 53, pp. 183-195, 2020.

[40] Y. Sun, X. Guo, J. Song et al., “Adaptive learning-based task
offloading for vehicular edge computing systems,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 3061-3074, 2019.

[41] J.Xu, L. Chen, and S. Ren, “Online learning for offloading and
autoscaling in energy harvesting mobile edge computing,”
IEEE Transactions on Cognitive Communications and Net-
working, vol. 3, no. 3, pp. 361-373, 2017.

[27

[28

(30

[32

Mobile Information Systems

[42] L. Quan, Z. Wang, and F. Ren, “A novel two-layered rein-
forcement learning for task offloading with tradeoff between
physical machine utilization rate and delay,” Future Internet,
vol. 10, no. 7, p. 60, 2018.

[43] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas,
“Computation offloading in multi-access edge computing
using a deep sequential model based on reinforcement
learning,” IEEE Communications Magazine, vol. 57, no. 5,
pp. 64-69, 2019.

[44] Z. Ning, P. Dong, X. Wang, J. J. P. C. Rodrigues, and F. Xia,
“Deep reinforcement learning for vehicular edge computing,”
ACM Transactions on Intelligent Systems and Technology,
vol. 10, no. 6, pp. 1-24, 2019.

[45] M. Qin, N. Cheng, Z. Jing et al., “Service-oriented energy-
latency tradeoff for iot task partial offloading in mec-en-
hanced multi-rat networks,” IEEE Internet of Things Journal,
vol. 8, no. 3, pp. 1896-1907, 2020.

[46] X.Xu, D.Li, Z. Dai, S. Li, and X. Chen, “A heuristic offloading
method for deep learning edge services in 5g networks,” IEEE
Access, vol. 7, Article ID 67734, 2019.

[47] J. Hu, Y. Li, G. Zhao, B. Xu, Y. Ni, and H. Zhao, “Deep
reinforcement learning for task offloading in edge computing
assisted power iot,” IEEE Access, vol. 9, Article ID 93892, 2021.

[48] A.M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and

G. Liu, “Collaborative Computation Offloading and Resource

Allocation in Multi-Uav Assisted Iot Networks: A Deep

Reinforcement Learning Approach,” IEEE Internet of Things

Journal, vol. 8, 2021.

Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and

resource allocation in hetnets with hybrid energy supply: an

actor-critic reinforcement learning approach,” IEEE Trans-

actions on Wireless Communications, vol. 17, no. 1, pp. 680-

692, 2017.

V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods

for deep reinforcement learning,” in Proceedings of the In-

ternational Conference on Machine Learning, pp. 1928-1937,

PMLR, New York, NY, USA, 2016.

[51] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level

control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529-533, 2015.

A. Tatar, M. D. De Amorim, S. Fdida, and P. Antoniadis, “A

survey on predicting the popularity of web content,” Journal

of Internet Services and Applications, vol. 5, no. 1, pp. 1-20,

2014.

[53] S.-I. Amari, “Natural gradient works efficiently in learning,”
Neural Computation, vol. 10, no. 2, pp. 251-276, 1998.

[54] A. B. Labao, M. A. M. Martija, and P. C. Naval, “A3c-gs:
adaptive moment gradient sharing with locks for asynchro-
nous actor-critic agents,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 32, 2020.

(49

[50

(52

