
Research Article
A Data-Driven Miscalibration Detection Algorithm for a
Vehicle-Mounted Camera

Haiyang Jiang ,1 Yuanyao Lu ,2 and Jingxuan Wang2

1School of Electrical and Control Engineering, North China University of Technology, Beijing, China
2School of Information Science and Technology, North China University of Technology, Beijing, China

Correspondence should be addressed to Yuanyao Lu; luyy@ncut.edu.cn

Received 6 April 2022; Revised 15 June 2022; Accepted 11 October 2022; Published 25 October 2022

Academic Editor: Ashish Bagwari

Copyright © 2022Haiyang Jiang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

LiDAR and camera are two commonly used sensors in autonomous vehicles. In order to fuse the data collected by these two
sensors to accurately perceive the 3D world, it is necessary to perform accurate internal parameters’ and external parameters’
calibration on the two sensors. However, during the long-term deployment and use of autonomous vehicles, factors such as aging
of the equipment, transient changes in the external environment, and interference can cause the initially correctly calibrated
camera internal parameters to no longer be applicable to the current environment, requiring a recalibration of the camera internal
reference. Since most of the current work is focused on the research of perception algorithms and the calibration of various
sensors, there has not been much research in identifying when a sensor needs to be recalibrated. Consequently, this paper
proposed a data-driven detection method for the miscalibration of RGB cameras to detect the miscalibrated camera internal
parameters. �e speci�c operation process is to �rst add a random perturbation factor to the correctly calibrated camera internal
parameters to generate an incorrect camera internal parameter and then calibrate the raw image with the incorrect internal
parameter to generate a miscalibrated image data.�emiscalibrated image data are used as the input data of the neural network to
train the network model and generate a network model for detecting the miscalibration parameters. On the KITTI dataset, we
conducted training as well as model deployment with the data collected from Cam2 and Cam3, respectively, and evaluated the
abovementioned two models. �e experimental results show that our proposed method has some application value in detecting
errors in the calibration of the camera’s internal parameters.

1. Introduction

In autonomous driving, a single sensor cannot accurately
perceive the complex and ever-changing road tra�c envi-
ronment, and therefore, a fusion of data collected by several
di�erent kinds of sensors is the mainstream solution for
current autonomous driving perception systems. To enable a
more accurate fusion of sensor data, accurate calibration of
the sensors becomes the basis for all applications. As two
commonly used sensors in autonomous vehicles, LiDAR and
cameras, once their calibrated internal and external pa-
rameters are determined, they will be in a constant state
throughout the operating period of the autonomous vehicle.
However, during long-term deployment and use, due to the
aging of the camera equipment, transient changes in the

external environment, and distraction, the initial calibration
of the camera’s internal parameters are no longer applicable
to the current environment, and the camera’s internal pa-
rameters need to be recalibrated. �e periodic calibration of
the internal parameters of the camera will waste a lot of
manpower and resources. A better state would be to calibrate
the camera when the system detects a miscalibration, so
identifying when the camera needs to be recalibrated is the
main purpose of this paper. Miscalibrated camera internal
parameters can adversely a�ect the performance of the
perception and control modules for autonomous driving,
which makes detecting camera data faults crucial to the
safety and stability of autonomous vehicles. In order to avoid
system errors caused by the miscalibration of camera in-
ternal parameters, this paper proposes a data-driven RGB

Hindawi
Mobile Information Systems
Volume 2022, Article ID 5058611, 10 pages
https://doi.org/10.1155/2022/5058611

mailto:luyy@ncut.edu.cn
https://orcid.org/0000-0002-9438-998X
https://orcid.org/0000-0003-0019-3028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5058611

camera miscalibration detection method to detect the
miscalibration of camera internal parameters.)e main
contributions of this paper are as follows:

(1) We propose a method to generate miscalibration
datasets.)e method is based on the idea that in-
correct calibration parameters will cause the pixel
projection position of the raw image to change
relative to the pixel projection position with the
correctly calibrated parameters. Adding a random
perturbation factor to existing correctly calibrated
camera internal parameters to generate incorrect
camera internal parameters, thus generating mis-
calibration image data.

(2) We designed a convolutional neural network that
uses incorrectly calibrated images as the input data
and trained a network model that can detect whether
the calibration of the camera is incorrect and thus
identify when the camera needs to be recalibrated for
internal parameters.

2. Related Work

Projecting the point cloud onto the image requires a joint
calibration of the LiDAR and the camera.)e calibration
process of different sensors is the process of estimating the
rigid body transformation between two sensor reference
coordinate systems.)e correctly calibrated sensor can
reproject the 3D points from the world coordinate system to
the 2D pixel coordinate system, and the conversion process
of the coordinate system is shown in Figure 1.

During the projection of the point cloud onto the image,
accurate camera calibration is essential to ensure that the
point cloud data are accurately projected onto the image.
)e current calibration techniques for cameras are mainly
divided into two methods: offline calibration [1–3] and
online calibration [4, 5]. Offline calibration of the camera is
performed by observing the geometry of a known target in
3D space, so various types of calibration boards such as
checkerboard grids [6, 7] and targets [8] have been proposed
in recent years.)ese methods usually treat the calibration
problem as a nonlinear optimization problem, estimating
the camera parameters byminimizing the reprojection error.
However, it is difficult to scale up in practical applications
due to the limitations of equipment and professional staff
and other requirements. Online calibration refers to the
calibration performed during the normal operation of the
system. Although the method is novel, it requires substantial
computational resources and is also subject to various re-
strictive factors such as the smoothness of the surface on
which the vehicle is driven. In addition, a self-calibration
method is introduced in reference [9], which uses only
images to estimate the camera’s internal parameters. Ref-
erences [10–13] use motion constraints of the camera to
calibrate the internal parameters of the camera, but these
methods consume a lot of computational resources.

With the rapid development of techniques such as deep
learning [14–16] and computer vision [17–21], in recent
years, many researchers have proposed the use of data-

driven methods to estimate the calibration of sensors.
Workman et al. [22] used a convolutional neural network to
estimate the focal length in the camera’s internal parameter.
To train the network, the authors of [23] combined the
image and camera model to construct the dataset. Lopez
et al. [24] used the SUN360 panoramic dataset [25] to
manually generate training images and then used inde-
pendent regressors that shared the same pretrained network
structure in order to estimate the camera’s internal pa-
rameters. Unlike the previous two methods, Yin et al. [26]
used a depth network to remove distortions from fisheye
camera images. In autonomous driving systems, sensor fault
detection can be accomplished by combining information
from different sensors and removing mismatchedmeasuring
values [27–31].)ese approaches are usually able to detect
faults when they occur, but they rely heavily on redundant
information about the sensor settings.

LiDAR and camera are two commonly used sensors in
autonomous vehicles. In the process of point cloud and
image fusion, the calibration of internal parameters of the
camera and external parameters between the camera and the
lidar is essential, and their calibrated internal and external
parameters, once determined, will be in a constant state
during the whole operating cycle of the autonomous
vehicles.

However, during long-term deployment and use, due to
the aging of the camera, transient changes, and interference
in the external environment, the camera’s internal param-
eters that were initially correctly calibrated are no longer
applicable to the current environment and need to be
recalibrated. Periodically recalibrating parameters can be
labor-intensive; it would be more sensible to only recalibrate
the camera when the system detects a calibration error,
which makes identifying when the camera needs recali-
bration a pressing issue.

To address this problem, in 2020, Cramariuc [32] et al.
proposed a method that uses deep learning to identify the
errors in the calibration of the camera’s internal parameters;
this method is one of the first works to propose the use of
deep learning methods to detect whether the miscalibration
of the RGB camera internal parameters. In their paper, the
authors designed a neural network to extract the features of

World
Coordinate

System

Camera
Coordinate

System

Image
Coordinate

System

Image Pixel
Coordinate

System

Rigid Body
Transformation

Perspective
Projection

Affine
Transformation

Figure 1: Coordinate transformation process of projecting the
point cloud onto the image.)e points in space are first converted
from the world coordinate system to the camera coordinate system
by rigid body transformation, then projected to the imaging plane
(image coordinate system) by perspective projection, and finally,
the data in the imaging plane are converted to the image pixel
coordinate system by an affine transformation.

2 Mobile Information Systems

the input data by using ReLU as the activation function of
the network. Due to the problem of neuron death in the
ReLU activation function, the network cannot be updated
properly in training.

In summary, to address these problems, we propose a
data-driven RGB camera miscalibration detectionmethod to
detect the miscalibrated camera internal parameters, and we
design a feature extraction network using Leaky ReLU as the
activation function, which can solve the neuron death
problem of the ReLU activation function used in traditional
methods.)e Leaky ReLU activation function has a small
positive slope in the negative half-axis, so it can also perform
better backpropagation when the input data are negative. At
the same time, in the process of generating the miscalibrated
image dataset, we introduce a random disturbance factor to
perturb the correctly calibrated camera internal parameters
so as to obtain the miscalibrated camera internal parameters.
)is allows efficient and accurate identification of when the
camera needs to be recalibrated.

3. System Design

3.1. ImageDatasets for ErrorCorrection. To obtain the image
data of the correction error, you first need to obtain the
miscalibration camera’s internal parameters. Using the
wrong internal parameters to calibrate the camera’s raw
image produces miscalibrated image data. In general, using a
different lens to change the camera’s internal parameter is
one way to acquire miscalibrated camera’s internal pa-
rameters. However, this production process is cumbersome
because every lens change requires a new offline calibration.
Calibrating the raw image with wrong calibration param-
eters changes the position relative to calibrating with the
right ones. Based on such an idea, we use the raw data in the
KITTI dataset and the correctly calibrated camera internal
parameters to generate the miscalibrated image data by
adding a random perturbation factor to the correct camera
internal parameters, so that the correctly calibrated internal
parameters become miscalibrated. Since the lens of the
camera is not perfectly parallel to the imaging plane, lines
that are straight in the real world become curved when
projected onto the 2D plane through the camera and need to
be corrected for distortion by using a calibrated distortion
factor (as shown in Figure 2).)erefore, in the process of
generating image datasets with calibration errors, we con-
sidered pinhole camera models with radial and tangential
distortions [33].

)e paper [32] generates the miscalibrated image data by
first fluctuating a fixed magnitude from left to right on the
basis of the correctly calibrated camera internal parameters
given in KITTI, so that the miscalibrated calibrated camera
internal parameters are randomly selected from this pa-
rameter range ()e value range of the parameter for the focal
length miscalibration is 5% decrease to the left and 20%
increase to the right on the basis of the original correct
calibration parameter; the value range of the parameter for
the optical center miscalibration is 5% decrease to the left
and 5% increase to the right on the basis of the original
correct calibration parameter, and the value range of the

parameter for the aberration coefficient miscalibration is
15% decrease to the left and 15% increase to the right on the
basis of the original correct calibration parameter). Since the
KITTI [34] dataset has a total of 5 days of raw image data and
the camera calibration parameters are different for each of
the 5 days, this approach can lead to a large difference in the
miscalibrated camera parameters generated each day.

To address the abovementioned problem, we propose a
method of adding a random perturbation factor to generate
the miscalibrated camera internal parameters to reduce the
gap between the miscalibrated camera internal parameters
generated each day.)e operation process is as follows: first,
the calibration file of September 26 is used as the reference,
the range of values of the miscalibrated internal parameters
is fixed according to the method in the literature [36]; then,
the corresponding miscalibrated camera internal parameters
are obtained from the range of values of each parameter by
random sampling, and the original image is calibrated with
these internal parameters to obtain the miscalibrated image
data.)e distance between the pixel position of the mis-
calibrated image and the correctly calibrated image is cal-
culated. Using this distance as a standard, a random
perturbation factor is added to the calibration parameters for
the other days, so that the pixel difference between the
generated miscalibrated image and the pixel difference on
September 26 is controlled within a fixed threshold.

We assume that the original image captured by the
camera is I; the corrected image I′ is obtained by using the
true calibration parameters Θ � fu, fv, uc, vc, kr, kt of the
pinhole camera model by mapping function M′ � f(Θ). At
this moment, each pixel in I′ is associated with a position in
the original image, but not every pixel in I′ can find a
corresponding position in the original image.)erefore, we
define the largest rectangular area of valid pixels in image I′
as R, then crop the region R, resize it to the size of the
original image I according to a certain ratio, and finally
obtain the sample image I.

cor_calibration

raw_image

Figure 2: (a))e raw data from KITTI [34].)e three vertical lines
that are pointed by the three arrows should normally be straight
lines, but it is obvious that they are not straight, but curved with
some curvature. (b))e result of calibrating the raw image with the
correctly calibrated camera internal parameters, all three vertical
lines have become straight.

Mobile Information Systems 3

Usually, the calibration parameters of the camera are
difficult to obtain. In order to obtain samples of incorrectly
calibrated images, we get the incorrectly calibrated internal
parameter Θm by sampling each internal reference in its
corresponding range of values independently at several
random times, thus obtaining many incorrectly calibrated
images I

m and incorrectly corrected mapping functions M
m.

)us, by calibrating the sensor correctly, a large number of
incorrectly calibrated images can be generated by acquiring
only one set of raw image data, which are used to detect
whether the internal parameters of the camera is mis-
calibrated.)e variation of the corrected position of the raw
image with correct and incorrect calibration parameters is
shown in Figure 3.

3.2. Metric for the Degree of Error in the Calibration of the
Camera’s InternalParameters. Because the calibration of the
input image is performed in the first stage of the perception
system of the autonomous vehicle, the extent of the camera’s
internal parameters calibration error needs to be portrayed
by using miscalibrated images.)us, we use an average pixel
position difference (APPD) [32] metric to reflect the extent
of error of the calibration parameters.)e APPD is the
average of all pixel position deviations on an image, and its
expression is shown below:

δ �
1

H × W

p∈I

‖ M
∗
(p) − M

m
(p) ‖2, (1)

where H × W is the size of the image. p is the pixel coor-
dinate (u, v), M

∗ is the correct mapping function, and M
m is

the error mapping function and I is the raw image.
To accurately detect if the camera calibration is wrong,

we designed a convolutional neural network to extract
features.)e input data of the network are the picture I

m

with the incorrect calibration parameters.)e final output of
the network is the APPD metric, and the structure of the
network is shown in Figure 4.

In contrast to reference [32], we use the Leaky ReLU
activation function after each convolutional layer, which
solves the neuron death problem that exists with ReLU.)e
leaky ReLU activation function still has a small positive slope
in the negative half-axis, thus allowing better back-
propagation when the input data are negative.)e ReLU and
the leaky ReLU activation functions are shown in Figure 5.

)e ReLU activation function can avoid gradient disap-
pearance during backpropagation, shield negative values, and
prevent gradient saturation, but it also has its own drawbacks.
When the learning rate is too high, some neurons will die
permanently, resulting in the network cannot be updated
properly later on.)e neural network weight update formula:

W′ � W − ηΔW, (2)

where η is the learning rate, ΔW indicates the gradient of the
current parameter obtained by derivation (generally posi-
tive), when the learning rate is too high, it will cause ηΔW to
rise up, when ηΔW is greater than W, the updated W′ will
become negative. When the weight parameter becomes

negative, the positive value of the input network will be
multiplied by the weight and will also become negative.
According to the image of the ReLU function in Figure 5, the
negative value will output 0 after passing ReLU; if W has a
chance to be updated to a positive value at a later stage, there
will not be a big problem, but when the output value of Relu
function is 0, the derivative of ReLU will also be 0, so it will
lead to the later ΔW to be 0 all the time. In turn, this leads to
the fact thatW will never be updated and therefore will lead
to the permanent death of this neuron (always output 0).

As shown in Figure 5, the output value of Leaky ReLU is
also less than 0 when the input is less than 0, thus having the
opportunity to update to a positive value if W is less than 0.

Since the acquisition platform for the KITTI [34] dataset
uses two cameras, we trained a neural network model for
each of these two cameras and deployed it next to them.)is
can be considered a complement to the calibration proce-
dure.)e purpose of describing the dataset generation
process is to reduce the amount and type of data required to
train the model. With this method, when the correct cali-
bration is known, only one dataset is enough; any manual
annotation is not required.

In the training process, each parameter in the camera's
internal parameter is sampled uniformly and independently
within its corresponding value range, so that the calculated
APPD values follow an approximately uniform distribution.
We selected a certain percentage of correctly calibrated
samples, i.e., those with zero APPD values. We use the mean
error loss function of the output of the neural network and
the true label value (as shown in (3)) for training:

loss �
1
n

n

‖ y pre d − y true ‖
2
, (3)

Figure 3: (a))e result of image edge detection after calibrating the
raw image with the correct calibration parameters. (b))e result of
image edge detection after calibrating the raw image with mis-
calibration parameters. (c))e result of overlapping the two im-
ages, you can see that the position of the corresponding pixel points
in the two images has changed.

4 Mobile Information Systems

where n is the batch_size, y pre d is the APPD value of the
neural network output, and y true is the true APPD value of
the training sample.

4. Experiments

4.1. Setting Experimental Parameters.)e collection plat-
form for the KITTI dataset [34] has two RGB cameras (e.g.,
Cam2 and Cam3 in Figure 6). We first divide the data from
September 26, 2011, into a training set and a validation set.
)e trained model was tested with data from September 28,
September 29, September 30, and October 03.

)e dataset includes a total of 5 days of data and the cal-
ibration files are different for each day.)e reason for this
situation is not clear.)erefore, there is no standard correct
calibrationwhen evaluating the performance of networkmodels.
We use the calibrated parameters from September 26, 2011, as
reference values.)e network model is trained with batch_size
set to 4, epoch set to 10, and learning rate set to 0.0001, and its
loss curve for training and validation is shown in Figure 7.

)e two curves in Figure 7 show the convergence of the
loss function of the network model during the training
process. By analyzing the two curves in the figure, it can be
concluded that the convergence of the loss function during
the training process is fast.)e trend of the validation loss
and training loss remains basically the same. When the
training reaches the 4th epoch, the loss value is basically
close to 0 and the network model converges.

Convolution

3×3×32
Leaky
Relu

×2 ×1 ×2

×2

×1

×1×1×1×1×1

2×2

Maxpooling

3×3×64
Leaky
Relu

2×2

MaxpoolingConvolution

3×3×128
Leaky
Relu

2×2
512

Leaky
Relu

50%
512

Leaky
Relu

ConvolutionMaxpoolingDenseDropoutDense

1
LinearAPPD

DenseOutput

Input

Figure 4:)e structure of the network.

X X

YY

Leaky ReluRelu

0.500.25-0.25 0.00 0.75-0.75 1.00-1.00 -0.50

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

100

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00-1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

100

Figure 5: ReLU and leaky ReLU activation functions.

Figure 6: Top view of the data collection platform for the KITTI
[34] dataset.

Mobile Information Systems 5

4.2. Analysis of Prediction Results. We tested the trained
model by using data from dates other than September 26,
and the results are shown in Figure 8.

As can be seen from Figure 8, the average absolute
error of our trained model on the data of other dates is
within 0.5, which indicates the feasibility of our proposed
method in detecting whether there is an error in the
calibration of the internal reference of the camera.)e
worst evaluation result was obtained for the data on
September 29, with an average absolute error close to 0.5.
)e possible reason for this is the high diversity of the data
on September 29.

We trained the network models for the Cam2 camera
data and Cam3 camera data on September 26 and tested the
two network models with data from other dates, and the test
results are shown in Tables 1 and 2.

Tables 1 and 2 show the prediction results of the trained
network models for the Cam2 data and Cam3 data, re-
spectively, which shows that both network models have a
good generalization ability to previously unseen images and
environments. Although both network models are powerful
in detecting miscalibration relative to the reference pa-
rameter set they were trained on, it can be seen from Table 1
that the network of Cam2 performs better. It is also evident
from Tables 1 and 2 that the trainedmodels performworse at
both very low and very high APPD values.

In the KITTI data collection platform, Cam2 and Cam3
are from the same brand, and their operating environment
and location in the car are horizontal, so we evaluated the
Cam3 data with the model trained on the Cam2 data
(Figure 9), and the Cam2 data with the model trained on the
Cam3 data (Figure 10).

By analyzing Figures 9 and 10, we can see that the model
trained on Cam2 can be well generalized to Cam3. While the
model trained on Cam3 does not generalize well to Cam2.
)is illustrates the importance of reference calibration,
which is another reason why Cam3 may be inconsistently
calibrated.

To verify the effectiveness of the Leaky ReLU activation
function we used in this experiment, we trained the data
collected by using Cam2 on September 26 by using both
ReLU and Leaky ReLU activation functions, respectively,
and tested them with data that are not used in training.)e
test results are shown in Figure 11.

From Figure 11, it can be seen that when the learning
rate is 0.000001, the network model with Leaky ReLU is not
as effective as the network model with ReLU. As the learning
rate increases, the network model with Leaky ReLU is
significantly better than the network model with ReLU.
When the learning rate is 0.0001, the average absolute error
of the trained network model is the smallest, and the net-
work model performs the best.

4.3. Generalization to New Environments and Cameras.
Since the KITTI dataset is limited by the variation of the
scene as well as the camera sensor positions (both cameras
are forward facing with only horizontal offset between
them); therefore, to test the potential generalization capa-
bility of the proposed method, we trained the same model by
using our proposed method on some daytime scenes
recorded by using the forward-facing cameras of theWaymo
dataset [35] and tested the trained model, the results of
which are shown in Figure 12.

From Figure 12, it can be seen that the network model
trained on the Waymo dataset still has great generalization
ability, but there are big errors in the prediction for both
small and large APPD values.)e data of their test results
are generally similar to those of the network model trained
on the KITTI dataset, respectively. It shows that the
method proposed in this paper is still applicable to other
datasets.

Train_loss_mse
Val_loss_mse

0

2

4

6

8

10

12

lo
ss

86 100 42
epoch

Figure 7: Convergence curves for training and validating loss
functions.

28/9 30/9 03/1029/9
Date

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Ab

so
lu

te
 E

rr
or

 (M
A

E)

Figure 8: Test results of the network model.

6 Mobile Information Systems

Table 1: Train on cam2, test on cam2.

True APPD
Prediction 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
0.00∼0.20 476 215 4 2 0 0 0 0 4 0 5 0
0.21∼0.40 58 538 27 0 6 0 0 5 2 0 43 0
0.41–0.65 133 153 805 17 31 2 0 0 0 0 32 0
0.66∼0.90 0 6 41 835 25 34 3 0 0 0 109 0
0.91∼1.15 7 0 37 23 826 6 7 13 0 0 0 45
1.16∼1.40 0 0 0 0 43 875 26 14 9 0 0 85
1.41∼1.65 0 3 0 3 16 14 877 8 38 0 0 0
1.66∼1.90 43 0 0 9 0 3 53 905 23 0 0 7
1.91∼2.15 0 0 0 0 0 12 3 32 883 12 152 0
2.16∼2.45 0 0 0 2 0 0 0 13 15 931 32 103
2.46∼2.65 0 0 3 0 3 1 0 0 2 16 497 163
2.66∼3.00 0 0 0 0 0 1 3 0 6 0 42 462

Table 2: Train on cam3, test on cam3.

True APPD
Prediction 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
0.00∼0.20 432 18 0 13 0 0 0 0 0 0 0 0
0.21∼0.40 25 364 23 0 0 3 0 0 0 0 0 0
0.41∼0.65 69 16 536 62 35 0 0 6 0 7 3 0
0.66∼0.90 103 0 124 749 12 54 7 0 0 0 0 0
0.91∼1.15 0 0 32 53 820 32 3 0 7 0 0 64
1.16∼1.40 54 24 0 21 43 834 13 16 0 0 16 0
1.41∼1.65 74 86 6 0 27 17 853 23 8 1 0 0
1.66∼1.90 11 43 22 0 0 8 8 842 4 5 0 15
1.91∼2.15 3 6 0 0 0 3 3 31 857 3 24 43
2.16∼2.45 0 0 0 2 0 0 0 9 13 894 231 0
2.46∼2.65 0 0 0 23 0 3 0 7 3 9 527 125
2.66∼3.00 26 0 0 2 0 5 2 2 0 14 75 446

Confusion Matrix

452

73

84

12

0

0

21

0

0

0

68

0

103

492

117

91

0

0

0

0

14

0

0

0

24

114

642

43

0

0

7

0

0

11

0

0

0

0

52

703

17

31

25

0

0

12

0

0

0

3

0

37

752

13

8

0

0

0

1

0

0

0

7

16

23

806

42

0

1

0

3

0

2

0

0

0

8

21

837

12

14

0

0

0

0

0

0

0

3

6

5

833

12

5

0

2

0

0

3

0

0

0

3

7

873

8

0

15

14

7

0

0

27

1

74

0

173

406

84

3

0

0

17

8

0

0

0

0

84

137

372

63

0

0

7

0

18

0

54

0

0

139

42

4142.66~3.00

2.46~2.65

2.16~2.45

1.91~2.15

1.66~1.90

1.41~1.65

1.16~1.40

0.91~1.15

0.66~0.90

0.41~0.65

0.21~0.40

0.00~0.20

Pr
ed

ic
tio

n
A

PP
D

 V
al

ue

1.751.51.251.0 2.5 2.750.5 2.0 2.250.25 0.750.0
True APPD Value

0

100

200

300

400

500

600

700

800

Figure 9: Result of testing cam2 trained model on cam3.

Mobile Information Systems 7

Confusion Matrix

257

0

32

17

29

0

174

0

0

0

126

13

78

346

102

16

0

5

0

0

38

0

0

0

0

65

407

121

89

0

0

0

12

0

0

0

0

0

84

479

132

43

0

0

8

12

0

0

7

0

13

85

562

53

4

12

0

0

1

7

12

32

7

0

105

547

121

16

0

0

0

9

0

0

0

13

63

16

651

31

0

0

0

0

0

5

16

25

0

73

16

706

117

0

0

0

0

0

0

32

131

0

84

117

472

47

13

0

0

5

16

0

37

76

137

51

0

438

113

13

0

0

0

0

53

67

0

27

21

173

413

21

0

4

1

26

52

0

12

136

64

37

211

3522.66~3.00

2.46~2.65

2.16~2.45

1.91~2.15

1.66~1.90

1.41~1.65

1.16~1.40

0.91~1.15

0.66~0.90

0.41~0.65

0.21~0.40

0.00~0.20

Pr
ed

ic
tio

n
A

PP
D

 V
al

ue

1.751.51.251.0 2.5 2.750.5 2.0 2.250.25 0.750.0
True APPD Value

0

100

200

300

400

500

600

700

Figure 10: Result of testing cam3 trained model on cam2.

Relu
Leaky Relu

0.00

0.05

0.10

0.15

0.20

M
ea

n
Ab

so
lu

te
 E

rr
or

 (M
A

E)

0.00001 0.0001 0.001 0.010.000001
Learning Rate

Figure 11: Performance of network models with different activation functions at different learning rates.

2.5

3.0

3.5

2.0

2.0 2.25 2.5 2.75

1.5

1.5 1.75

1.0

1.0 1.25

0.5

0.5 0.75
0.0

0.0 0.25

Pr
ed

ic
te

d
A

PP
D

 V
al

ue

True APPD Value

Figure 12: Test results of the network model on the Waymo dataset [36].

8 Mobile Information Systems

5. Conclusion

In this paper, we propose a data-driven method for detecting
vehicle camera miscalibration by generating a set of mis-
calibrated data on the KITTI dataset by using a random
perturbation factor as the training data for the neural net-
work. Also, we designed a lightweight feature extraction
network to extract the features of miscalibrated images.
Finally, the metric of average pixel position difference
mentioned in reference [32] was used to measure the degree
of error in the calibration of the camera’s internal reference.
Our method solves the problem that it is not necessary to
recalibrate the camera internal reference periodically but
only to recalibrate the camera’s internal reference when an
internal reference calibration error is detected.)e current
problem with our approach is that for different autonomous
vehicle platforms, depending on the camera and radar
mounting positions and angles, a separate model needs to be
trained for each camera, thus ensuring that the camera’s
internal parameters can be recalibrated when the camera
position changes. However, this also makes it impossible to
apply models from one acquisition platform to another. In
our next work, we intend to mix multiple datasets from
different acquisition platforms to train the network model,
so that the network model can be adapted to multiple ac-
quisition platforms with better generalization capability.

Data Availability

All data and programs included in this study are available
upon request by contact with the corresponding author.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is research was supported by the National Natural Science
Foundation of China (61971007 and 61571013).

References

[1] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna,
“LiDAR camera calibration using 3D-3D point correspon-
dences,” ArXiv eprints, vol. 65, p. 199, 2017.

[2] W. Zhen, Y. Hu, J. Liu, and S. Scherer, “A joint optimization
approach of LiDAR-camera fusion for accurate dense 3-D
reconstructions,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3585–3592, 2019.

[3] T. Schneider, M. Li, M. Burri, J. I. Nieto, R. Siegwart, and
I. Gilitschenski, “Visual-inertial self-calibration on informa-
tive motion segments,” IEEE International Conference on
Robotics and Automation, pp. 6487–6494, 2017.

[4] J. A. Preiss, K. Hausman, G. S. Sukhatme, and S. Weiss,
“Simultaneous self-calibration and navigation using trajectory
optimization,”2e International Journal of Robotics Research,
vol. 37, no. 13-14, pp. 1573–1594, 2018.

[5] H.-J. Chien, R. Klette, N. Schneider, and U. Franke, “Visual
odometry driven online calibration for monocular LiDAR-

camera systems,” in Proc. 2e 23rd International Conference
on Pattern Recognition (ICPR), pp. 2848–2853, 2016.

[6] J.-K. Huang and J. W. Grizzle, “Improvements to target-based
3D LiDAR to camera calibration,” IEEE Access, vol. 8,
pp. 134101–134110, 2020.

[7] S. Verma, J. S. Berrio, and S. Worrall, “Automatic extrinsic
calibration between a camera and a 3D Lidar using 3D point
and plane correspondences,” IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, pp. 3906–3912, 2019.

[8] Z. Tang, M. Naphade, M. Y. Liu, and X. D. Yang, “A city-scale
benchmark for multi-target multi-camera vehicle tracking
and re-identification,” vol. 72, p. 944, Proc. CVPR, 2019.

[9] B. Boudine, “A flexible technique based on fundamental
matrix for camera self-calibration with variable intrinsic
parameters from two views,” Journal of Visual Communica-
tion and Image Representation, vol. 39, pp. 40–50, 2016.

[10] M. Shan, J. S. Berrio, and S. Worrall, “Probabilistic egocentric
motion correction of LiDAR point cloud and projection to
camera images for moving platforms,” in Proceedings of the
IEEE 23rd International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1–8, IEEE, Rhodes, Greece, 20-
23 September 2020.

[11] Q. Liao, Z. Chen, Y. Liu, Z. Wang, and M. Liu, “Extrinsic
calibration of LiDAR and camera with polygon,” 2018 IEEE
International Conference on Robotics and Biomimetics
(ROBIO), in Proceedings of the 2018 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 200–
205, Kuala Lumpur, Malaysia, 12-15 December 2018.

[12] J. Jiang, P. Xue, S. Chen, Z. Liu, X. Zhang, and N. Zheng, “Line
feature based extrinsic calibration of LiDAR and camera,”
2018 IEEE International Conference on Vehicular Electronics
and Safety (ICVES), in Proceedings of the 2018 IEEE Inter-
national Conference on Vehicular Electronics and Safety
(ICVES), pp. 1–6, Madrid, Spain, 12-14 September 2018.

[13] T. M. Nguyen, Q. H. Pham, L. B. Doan, H. V. Trinh, and
V. A. Nguyen, “Contrastive learning for natural language-
based vehicle retrieval,” Computer Vision and Pattern Rec-
ognition, vol. 65, p. 2898, 2021.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, China, 2016, http://www.deeplearningbook.org.

[15] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” ICLR,
vol. 3898, pp. 18–34, 2015.

[16] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep
generative image models using a Laplacian pyramid of
adversarial networks,” in Proceedings of the 29th Annual
Conference on Neural Information Processing Systems (NIPS),
Spain, 13-23 July 2019.

[17] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep
clustering for unsupervised learning of visual features,” in
Proceedings of the European Conference on Computer Vision,
pp. 132–149, ECCV, 2018.

[18] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and
A. Joulin, “Unsupervised learning of visual features by con-
trasting cluster assignments,” Advances in Neural Information
Processing Systems, vol. 33, p. 53, 2020.

[19] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: pre-
training of deep bidirectional transformers for language
understanding,” 2018, http://arxiv.org/abs/1810.04805.

[20] L. Dong, N. Yang,W. H.Wang et al., “Unified languagemodel
pre-training for natural language understanding and gener-
ation,” in Advances in Neural Information Processing Systems,
pp. 13063–13075, 2019.

Mobile Information Systems 9

http://www.deeplearningbook.org
http://arxiv.org/abs/1810.04805

[21] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117–2125, 2017.

[22] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and
N. Jacobs, “Deepfocal: a method for direct focal length esti-
mation,” in IEEE International Conference on Image Pro-
cessing, pp. 1369–1373, 2015.

[23] K. Wilson and N. Snavely, “Robust global translations with
1dsfm,” in Computer Vision - ECCV 2014 European Con-
ference on Computer Vision, pp. 61–75, Springer, 2014.

[24] M. Lopez, R. Mari, P. Gargallo, Y. Kuang, J. Gonzalez-
Jimenez, and G. Haro, “Deep single image camera calibration
with radial distortion,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 817–825,
2019.

[25] Z. Tang and J. N. Hwang, “MOANA: an online learned
adaptive appearancemodel for robust multiple object tracking
in 3D,” IEEE Access, vol. 7, no. 1, pp. 31934–31945, 2019.

[26] X. Yin, X. Wang, J. Yu, M. Zhang, P. Fua, and D. Tao,
“FishEyeRecNet: a multi-context collaborative deep network
for fisheye image rectification,” in Proceedings of the European
Conference on Computer Vision, pp. 469–484, 2018.

[27] J. P. Mendoza, M. Veloso, and R. Simmons, “Mobile robot
fault detection based on redundant information statistics,” in
IROS Workshop on Safety in Human-Robot Coexistence and
Interaction Vilamoura, Portugal, vol. 945, p. 7, Citeseer, 2012.

[28] E.-S. Kim and S.-Y. Park, “Extrinsic calibration of a camera-
LiDAR multi sensor system using a planar chessboard,” 2019
Eleventh International Conference on Ubiquitous and Future
Networks (ICUFN), IEEE, in Proceedings of the 2019 Eleventh
International Conference on Ubiquitous and Future Networks
(ICUFN), pp. 89–91, 02-05 July 2019.

[29] J. Jiao, Q. Liao, Y. Zhu et al., “A novel dual-LiDAR calibration
algorithm using planar surfaces,” 2019, http://arxiv.org/abs/
1904.12116.

[30] S. Verma, J. S. Berrio, S. Worrall, and E. Nebot, “Automatic
extrinsic calibration between a camera and a 3D LiDAR using
3D point and plane correspondences,” 2019, http://arxiv.org/
abs/1904.12433.

[31] T. Schneider, M. Li, C. Cadena, J. Nieto, and R. Siegwart,
“Observability-aware self-calibration of visual and inertial
sensors for ego-motion estimation,” IEEE Sensors Journal,
vol. 19, no. 10, pp. 3846–3860, 2019.

[32] A. Cramariuc, A. Petrov, R. Suri, M. Mittal, R. Siegwart, and
C. Cadena, “Learning camera miscalibration detection,” arXiv
e-prints, vol. 45, p. 190, 2020.

[33] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and
M. Ghaffari, “Bayesian spatial kernel smoothing for scalable
dense semantic mapping,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 790–797, 2020.

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving?)e KITTI vision benchmark suite,” IEEE
Conference on Computer Vision & Pattern Recognition
(CVPR), vol. 289, p. 190, 2012.

[35] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
and P. Tsui, “Scalability in perception for autonomous
driving: Waymo open dataset,” Conference on Computer
Vision & Pattern Recognition, IEEE, vol. 47, p. 108, 2019.

[36] P. Sun, H. Kretzschmar, X. Dotiwalla et al., “Scalability in
perception for autonomous driving: waymo open dataset,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Seattle, WA, USA, June 2020.

10 Mobile Information Systems

http://arxiv.org/abs/1904.12116
http://arxiv.org/abs/1904.12116
http://arxiv.org/abs/1904.12433
http://arxiv.org/abs/1904.12433

