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China’s wind power industry has grown dramatically in recent years as the country’s focus on clean energy and renewable energy
generation has increased. Mechanical fault diagnosis of wind power transmission is a common wind maintenance method. It has
recently become a research hotspot in the �eld of mechanical fault diagnosis as a method of fault identi�cation based on picture
attributes. Time-frequency images, on the other hand, are better for fault analysis and fault diagnosis of wind power transmission
machinery than time-domain and frequency-domain images because they contain more information about the operation status of
the gear.  is work proposes and applies an image feature extraction-based fault diagnostic method to the defect diagnosis of
wind-driven mechanical gears.  e feature extraction suitable for gear and gear box faults is analyzed, and the improved arti�cial
immune algorithm is used for fault identi�cation.  rough collecting normal vibration signals and two kinds of fault vibration
signals from the gearbox of wind power transmission in a wind farm and extracting image features on the basis of data processing,
the improved algorithm is �nally applied for fault analysis.  e experimental results show that the fault diagnosis rate of the
improved real-value negative selection algorithm is obviously improved and can improve the fault diagnosis rate by 5%.

1. Introduction

Wind power drive systems often operate in harsh working
environments, and faults can be detected and diagnosed
through signal processing techniques. In the past 30 years,
fault diagnosis of rotating motors has attracted a lot of
research interest [1]. Reducing maintenance costs and
preventing accidental downtime are the primary tasks for
manufacturers and operators of electrical drives [2]. Bearing
failure is one of the most common causes of rotating ma-
chinery failure, hence bearing prediction is critical for in-
creasing availability and lowering costs.  e use of a
condition monitoring and fault diagnosis system (CMFDS)
on wind turbines is crucial for reducing unplanned failures
[3, 4]. Fault identi�cation has always been a di�cult issue for
motor systems; it becomes even more di�cult in wind
energy conversion systems, because the sustainability and
feasibility of wind farms are heavily reliant on lowering
operation and maintenance costs [5, 6]. For condition-based

maintenance of gear transmission systems, reliable identi-
�cation of fault types and assessment of fault severity are
required as well as diagnosis of mechanical faults of wind
power transmission through image feature extraction [7, 8].

Once the transmission mechanism of the wind turbine
fails, it will send a signal through the change of the vibration
signal. In recent years, the monitoring and diagnosis of
mechanical faults are usually realized by monitoring and
analyzing their vibration signals. Vibration data, especially
those collected during system start-up and stop, contain
abundant information about gearbox condition monitoring
[9]. When mechanical equipment fails, it is usually re¡ected
in vibration signals. Cheng et al. [10] Villa et al. discovered
an adaptive time-frequency analysis method based on local
mean decomposition for diagnosing gear and roller bearing
problems (LMD). Aiming at the modulation characteristics
of fault vibration signal of gear or roller bearing, an LMD-
based defect detection method for rotating equipment is
proposed, which can e¢ectively detect equipment operating
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failures [11] and uses the vibration information of the
mechanical system under various loads and velocities to
predict and detect faults, which is faster and more reliable
than the analysis under limited working conditions. Mul-
ticomponent extraction is a feasible method for analyzing
vibration signals of rotating machinery. *erefore, Wang
et al. [12] Raj and Murali designed a friction defect diagnosis
method (VMD) based on variational mode decomposition.
Bearing faults in rotating machinery are usually regarded as
vibration signal pulses [13]. *is paper proposes a new
morphological algorithm and a fuzzy inference technique to
eliminate noise and detect pulses. Muralidharan and
Sugumaran [14] use three methods, feature extraction,
classification, and classification comparison to implement
the vibration-based integrated centrifugal pump condition
monitoring system, to improve the inspection efficiency of
rotating machinery. *e wavelet analysis of feature extrac-
tion and NaveBayes algorithm and Bayes network classifi-
cation algorithm are compared.

For wind power transmission machinery, time-frequency
image contains abundant operation status information, which
is more suitable for fault analysis of wind power transmission
machinery. Younus and Yang [15] propose a new intelligent
diagnosis system, that features a selection of tools based on
Mahalanobis distance and a relief algorithm which is used to
select significant features that can represent machine con-
ditions to improve classification accuracy [16]. For rotating
machinery, an improved multiwavelet packet EEMD multi-
fault diagnosis approach was proposed. To improve EEMD
decomposition findings and boost weak multifault feature
components in distinct narrow bands, a multi-wavelet packet
is utilized as a prefilter. By selecting an appropriate increase in
noise amplitude based on the vibration characteristics, the
EEMD is further improved to improve the accuracy and
validity of the decomposition results. In rotating machinery
fault diagnosis, Yan et al. [17] summarized fault diagnosis
based on continuous wavelet transform, fault diagnosis based
on discrete wavelet transform, fault diagnosis based on
wavelet packet transform, and fault diagnosis based on sec-
ond-generation wavelet transform. Tobon-Mejia et al. [18]
provide a new approach for estimating the residual service life
and bearing confidence based on wavelet packet decompo-
sition and Gauss mixture hiddenMarkovmodel. He et al. [19]
propose a set of super-wavelet transforms (ESW) to examine
the vibration characteristics of motor bearing failures, in
order to realize the flexibility of fault features, based on a
combination of tunable Q-factor wavelet transform (TQWT)
and Hilbert transform. *e use of blind source separation
(BSS) and nonlinear feature extraction techniques to detect
gear box faults is presented. To deal with nonstationary vi-
bration and retrieve the original fault eigenvector, Li et al. [20]
employ the wavelet packet transform (WPT) and empirical
mode decomposition (EMD) nonlinear analytic methods,
capable of stable and accurate analysis of gear failures.

*e fault diagnosis method based on artificial neural
network can process and accept vague information, and has
the ability of self-learning and self-organization. It has high
nonlinearity, high fault tolerance, and parallel processing.
*ese characteristics make it well applied in the field of fault

diagnosis and get good results. In order to process massive
fault data in time and provide accurate diagnostic results
automatically, there are scholars who have done a lot of
research on intelligent fault diagnosis of rotating machinery
and proposed a diagnosis method based on deep neural
network, which uses signal processing technology to extract
features and input them into ANN to classify faults. *e
diagnostic findings reveal that this method not only adapts
to the available fault features in the measured signals but also
has higher diagnostic accuracy than previous methods.
Scholars proposed a new method based on wavelet packet
decomposition (WPD) and empirical mode decomposition
(EMD), which extracted the fault characteristic frequency of
rotating machinery and the early fault diagnosis method of
neural network, based on an analysis of the shortcomings of
current feature extraction and fault diagnosis techniques. A
rotating equipment fault diagnosis model with transverse
early cracks is investigated. *e results suggest that this
method can effectively acquire signal characteristics in order
to diagnose rotating machinery early faults. Scholars have
developed a mathematical study for determining the most
significant intrinsic mode function (IMF). To classify
bearing defects, the selected features were used to train an
artificial neural network (ANN). *e experimental findings
suggest that the proposed method for classifying bearing
faults based on vibration signals of operation failure is ac-
curate, the accuracy of fault classification can reach 98%. To
extract universal multiclass pavement statistical character-
istics, researchers suggested a new intelligent problem de-
tection scheme based on wavelet packet transform (WPT),
distance assessment technology (DET), and support vector
regression (SVR). WPT preprocesses the gathered signals at
various decomposition depths. Scholars have used the
K-nearest neighbor (KNN) classifier to determine the
condition of a ball bearing using vibration and load signals.

*is research investigates a defect diagnosis approach for
wind turbine transmission machinery based on picture feature
extraction, to improve the detection of wind power trans-
mission mechanical faults. *at is, vibration signals from
important components of the wind turbine transmission sys-
tem, such as the gearbox, low-speed spindle, high-speed shaft,
and generator, are gathered in both normal and fault modes.
Time-frequency analysis employing short-time Fourier trans-
form and wavelet transform yields the time-frequency spec-
trum. *e time-frequency image features are then extracted
using a gray level co-occurrence matrix, and the feature vectors
are obtained using an artificial immune algorithm for fault
diagnosis, resulting in improved fault diagnosis accuracy.

2. Proposed Method

*e general process of fault diagnosis of wind power
transmission machinery based on image features includes
image acquisition, image processing, feature extraction,
judgment and recognition, and finally early warning or
alarm.*e overall process is shown in Figure 1. In this paper,
the vibration signal processing, feature extraction, judgment,
and recognition are studied.
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2.1.Vibration Signal Processing. Vibration signals generated
by the mechanical components in the transmission system
of wind turbines contain a lot of information related to
their mechanical state. However, due to the complex
structure and disturbance of wind turbines, and the very
unstable operating conditions under the in¡uence of
variable wind speeds, the vibration signals show obvious
nonstationarity, which makes it di�cult to extract the
characteristic information of mechanical state.  erefore,
the vibration signals of transmission system need to be
preprocessed. In addition, due to the interference of strong
background noise, its vibration characteristics are easily
concealed, so time-frequency analysis method is generally
used to process the vibration signal of wind turbine
transmission system.

 e principle of time-frequency analysis is that the
frequency description is given at a given time point, and the
frequency description of each time point is given along with
the movement of the time axis. From this, a time-frequency
joint distribution with horizontal axis as time and vertical
axis as frequency is formed, which can accurately diagnose
wind power transmission faults through data.

2.1.1. Short-Time Fourier Transform.  e basic idea of STFT
is that the original signal is truncated by the translation of
window function, the nonstationary signal is approximated
to some stationary signals by the truncation of signal, and
the stationary signals are transformed by Fourier transform
to obtain the spectrum of the signal in di¢erent time periods.
Because of the need for windowed truncation of nonsta-
tionary signals, short-time Fourier transform (STFT) is also
called windowed Fourier transform (WFT). If the basis
function, gtΩ(τ) � g(τ − t)eiΩτ , is used, it is de�ned as:

STFTx(x,Ω) � ∫
∞

− ∞
x(τ)g∗(τ − t)e− iΩτdτ

� <x(τ), g(τ − t))eiΩτ > .
(1)

In formula, g(τ) � 1, gtΩ(τ) � 1,Ω � 2πf, the window
function g(τ) should be a symmetric real function.

For a given time t, STFTx(x,Ω), it is the localization
frequency of signal x (t) in a very small range near time t.
With the translation of t, all localized spectral features of the
whole signal are extracted.  erefore, short-time Fourier
transform (STFT) is a bridge between global and local
features. From formula 1, the time-shift and frequency-shift
characteristics of short-time Fourier transform can be
proved.

(1) Time-shift characteristics: STFT does not have
time-shift invariance, its amplitude is invariant
and its phase di¢erence is a phase factor, see
formula.

If y(t) � x t − t0( ), then STFTy(x,Ω)

� STFTx t − t0,Ω( )e− iΩt0 .
(2)

(2) Frequency shift characteristics: that is, STFT trans-
form keeps the frequency shift of signal (t), see
formula.

If y(t) � x(t)eitΩ0 , then STFTy(t,Ω) � STFTx t,Ω − Ω0( ). (3)

In formula (3), x(t) represents the vibration signal.

2.1.2. Wavelet Transform. Its window function can change
dynamically with frequency, so it can fully observe the
characteristics of the signal and transform the fault signal
locally in the time-frequency domain. It can extract the
e¢ective information of the fault signal from the signal. It
can divide the fault signal into di¢erent levels of a mul-
tiscale, and has strong scaling and translation functions.
At the same time, wavelet transform combines the idea of
localization of Fourier transform, and overcomes the
problem that window size cannot be transformed freely,
so that the window can adjust itself with di¢erent
frequencies.

Let x(t) be a �nite energy function, namely, x(t) ∈ L2(R)
, then its wavelet transform is:

wx(a, b; φ) � ∫
∞

− ∞
x(t)φa,b(t)dt, a> 0. (4)

In formula (4), w represents the result of wavelet
transform.

φa,b(t), the basic wavelet function φ(t) is translated and
scaled to obtain:

φa,b(t) � a
− (1/2)φ

t − b
a

( ), (5)

where b is the location parameter, a >0 is the scale pa-
rameter, and a− (1/2) factor is the normalized constant, so that
the energy remains unchanged before and after the trans-
formation, that is,

Image reprocessing⤶

Feature extraction⤶

Judgment and recognition⤶ symbol

aims

Pixel⤶

Early warning and alarm⤶

graphic gathering

Figure 1: System ¡ow chart.
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∞
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φa,b(t)
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2dt

� 􏽚
∞

− ∞
|φ(t)|

2dt.

(6)

*e frequency domain representation of the wavelet
function is as follows:

􏽢φa,b(ω) �
��
a

√
e

− iω
􏽢φ(aω). (7)

Formula (7) shows that when the scale parameters be-
come smaller and the time domain resolution becomes
higher, the corresponding frequency domain resolution
becomes lower; when the scale parameters become larger
and the frequency domain resolution becomes higher, the
corresponding time domain resolution becomes lower. It
shows that the wavelet transform has the advantage of
adaptive window. Compared with STFT, the “window
function” of wavelet transform is composed of decaying
functions, not superimposed triangular functions.*erefore,
the wavelet can be scaled adaptively, which solves the
problem that the time and frequency resolution cannot reach
the optimum at the same time.

2.2. Image Feature Extraction. After the original signal is
decomposed by signal processing method, fault features
need to be extracted from the scores. If the extracted features
can accurately describe the mechanical state of each com-
ponent of the wind turbine transmission system and have
high sensitivity to the change of the mechanical state under
different working conditions, the fault identification ability
of the fault diagnosis system will be greatly improved.

*e quality of feature extraction from time-frequency
images will directly affect the fault diagnosis results of wind
turbines, so how to extract image feature information has
become a research hotspot. Useful information is extracted
from the image to describe the rich feature information
contained in the two-dimensional image when the wind
turbine transmission machinery is normal and faulty.

(1) Image texture feature: It is a measure of the rela-
tionship between the pixels in a local area. It includes
the arrangement and organization order of the image
surface structure. It refers to the surface properties of
the information contained in a region of the image,
and expresses the change in the gray level of the
image pixels in space. In pattern recognition, the
texture features of the image can reflect the regional
characteristics of the image, can resist the influence
of noise and have rotation invariance, and will not
cause recognition failure due to errors in some pixels.
*ere are four types of the most commonly used
texture feature extraction methods: structural, sta-
tistical, spectral, and model.

(2) Usually, the color feature is the feature integration of
the pixels in the image or image area, which is based
on the image pixels. But the color feature cannot
capture the local features of the object in the image,
and cannot reflect the change in the size and

direction of the image. Common methods of
extracting color features are: color histogram and
color set, color moment.

(3) Image shape features: Generally, image shape fea-
tures can be represented by region features or
boundary features, which are also widely used in
image recognition and other applications.

It is an important method to extract gray level co-oc-
currence matrix for image texture feature analysis.

2.3. Gray Level Co-Occurrence Matrix. Extracting gray level
co-occurrence matrix for image texture feature analysis is
an important method for image feature extraction. By
studying the joint distribution probability of two different
gray level pixels in the image area, it can accurately reflect
the spatial complexity, roughness, and repetitive direction
of the texture of time-frequency image of wind turbine
transmission machinery. Its essence is to start from the
pixel (position is (x, y)) whose gray level is i. *e frequency
p(i, j, d, θ) of simultaneous occurrence of pixels with
distance d and gray level j (position (x + Δx, y + Δy)) is
counted.

p(i, j, d, θ) � |[(x, y), (x + Δx, y + Δy)|f(x, y)

� i; f(x + Δx, y + Δy) � j]|.
(8)

In Equation (8), p represents the frequency of simul-
taneous occurrence of pixels.

In formula, x, y � 0, 1, 2, . . . , N − 1 is the pixel coordi-
nates of the image. i, j � 0, 1, . . . L − 1 is the gray value. d �

(Δx,Δy) is the generation step of GLCM, θ is the direction
of GLCM generation, as shown in Figure 2.
Δx � dcosθ,Δ � dsinθ, when d and θ is set, we can get an L ∗
L dimension GLCM, which is represented by the symbol
P. Generally, the image can be counted in four different
directions: 0, 45, 90, and 135.

GLCM can describe the comprehensive information of
gray image about direction, adjacent interval, and change
range. *e characteristic parameters of gray level co-oc-
currence matrix can be used for texture analysis of gray
image.

(1) Contrast (defined as w1): Used to describe image
texture clarity. *e bigger the w1 is, the more ob-
vious the gray difference between adjacent pixel
pairs is, and the clearer the image texture is
w1 � 􏽐

g
i�1 􏽐

g
j�1(i − j)p2(i, j, d, θ)

(2) Relevance (defined as w2): Used to describe the
texture direction of an image. *e direction of w2 is
the texture direction of an image. It is used to
measure the similarity of elements in GLCM in row
or column directions.

w2 �
􏽐

g
i�1 􏽐

g
j�1 i∗ j∗p(, j, d, θ) − j − μ1 ∗ μ2( 􏼁

σ1 ∗ σ2
. (9)

In the formula, the mean and standard deviation of
μ1, μ2 and σ1, σ2 are p1 and p2, respectively:
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p1 � p1(i)|p1(i) �∑
g

j�1
p(i, j)





,

p2 � p2(i)|p(i) �∑
g

j�1
p(i, j)





.

(10)

(3) Energy (de�ned as w3): Also known as angular
second-order moment and uniformity, is a measure
of image texture uniformity.  e larger the w3, the
rougher the image texture is, on the contrary, the
�ner the texture. When the gray level distribution
has a constant or periodic form, the energy reaches
its maximum.

w3 �∑
g

i�1
∑
g

j�1
p2(i, j, d, θ). (11)

(4) Inverse Gap (de�ned as w4): Measures the local
change of image texture. w4 means that the image
contains texture with ideal repetitive structure, so
the larger the inverse gap, the more regular the
texture.

w4 �∑
g

i�1
∑
g

j�1

p(i, j, d, θ)
1 +(i − j)2[ ]

. (12)

(5) Entropy (de�ned as w5):  e complexity of image
texture is a measure of the randomness of image
content.  e larger the w5 value, the more complex
the image is.

w5 � − ∑
g

i�1
∑
g

j�1
p(i, j, d, θ)lgp(i, j, d, θ). (13)

(6) Variance: De�ned as w6, w6 � ∑∑ (i − m)
2

p(i, j, d, θ)
(7) Means(de�ned as w7):

w7 � ∑
2g
k�2k∗Px(k), in formula, Px(k) � ∑

g
i�1∑

g
j�1 p(i, j, d, θ), k � 2, 3, . . . , 2g

(8) Variance sum (de�ned as w8):

w8 � ∑
2g

k�2
k − w7( )2Px(k). (14)

(9) Variance of di¢erence (de�ned as w9):
w9 � ∑

g
k�0 [k—∑

g− 1
k�0k ∗Py(k)]2 ∗Py(k)

(10) Sum entropy (de�ned as w10):

w10 � − ∑
2g

k�2
Px(k)∗ lg Px(k)( ). (15)

(11) Di¢erential entropy (de�ned as w11):
w11 � − ∑

g− 1
k�0Py(k)∗ lg(Py(k))

(12) Cluster shadow (de�ned as w12):

w12 � − ∑
g

i�1
∑
g

j�1
i − u1( ) + j + u2( )[ ]2 ∗p(i, j, d, θ). (16)

(13) Signi�cant clustering (de�ned as w13):

w13 � − ∑
g

i�1
∑
g

j�1
i − u1( ) + j + u2( )[ ]4 ∗p(i, j, d, θ) (17)

(14) Maximum probability (de�ned as w14):

w14 � max
i,j
(p(i, j, d, θ)) (18)

2.4. Texture Feature Extraction of Time-Frequency Image.
 ere are 14 texture feature parameters calculated by GLCM,
but these parameters are not all irrelevant.  erefore, if all
the parameters are extracted as features, there will be some
redundancy. According to the theoretical analysis and ex-
perimental results of texture features of time-frequency
image of wind turbine transmission machinery vibration
signal, four features are selected in this paper, contrast
correlation, energy, and inverse di¢erence, to form texture
feature vectors of gray image, and texture analysis is carried
out.

t � w1, w2, w3, w4[ ]. (19)

 e meanings and ranges of the four eigenvalues are
shown in Table 1.

In this paper, we use the gray level co-occurrence matrix
based on correlation analysis and Hu invariant moments to
fuse the features and read the HU invariant moments of
seven Gaussian normalized time-frequency images of the
target. Seven invariants de�ned by upq under translation,
scaling, and rotation transformations, ∅ � ∅i|i �{
1, 2, . . . , 7}. Four eigenvalues are proposed as feature vectors
to fuse gray level co-occurrence matrix to get more obvious
eigenvalues.

2.5.Negative SelectionAlgorithmBased on ImprovedDynamic
Adjustment of Radius Size. Arti�cial immune algorithm can
train detector and generate detector database. Antigens are
matched with mature detector databases to identify antigens
and output fault results.  e immune network can well
describe the relevant characteristics of the immune system
through the model of immune molecules, and its role comes
from the interaction between immune molecules. Negative

J4⤶

135°

90°

45°

0°

J3⤶

J2⤶

J1⤶I⤶
d1⤶

d2⤶d3⤶
d4⤶

Figure 2: Four generation directions of GLCM.
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selection algorithm (NSA) is an important way to train
detectors in arti�cial immune algorithm.  e ¡ow chart of
the algorithm is shown in Figure 3.

(1) De�ne a self-sample string S consisting of N char-
acters for the training of detectors.

(2) Initialization detector is generated randomly and
matched with self-sample string S. If matched,
random generation detector is generated again; if
not, it is added to detector set R.  is is the negative
choice.

(3) Check whether the number of detectors meets the
requirement, and return (2) if the number of de-
tectors is not reached; if the number of detectors is
reached, it ends.

Aiming at the wide application of eigenvector in the
algorithm, the concept of detector is generalized. A real-
valued vector detector is proposed.  e eigenvectors in real-
valued vector detectors must have the same dimension as the
eigenvectors in the device’s normal state (its own space Ny).
And the unique eigenvectors (nonself-space) of various fault
states of wind turbine transmission machinery can only
match other eigenvectors in self-space. It cannot match the
feature vectors in the normal state, that is, the feature vectors
in its own space. Vector detectors satisfy the following
formula: E (m, s)> r.

 e Euclidean distance is E; the normal state vector in
one’s own space is s; the detector threshold is r; and the
detector vector is m.  e larger radius detector reduces the
number of detectors, reduces the training time and the
detection time. At the same time, small radius detectors are
used to cover areas that �xed radius detectors cannot cover,
which reduces black holes and improves the coverage of
nonself-areas.  e process of generating detectors by neg-
ative selection algorithm with variable radius is as follows:
(Algorithm 1)

3. Experiments

3.1.DataSourceandProcessingFlow.  edata studied in this
paper mainly come from the fault data of large wind turbines
in a wind farm. Fan model: SL77-1500; gearbox model:
PPSC1290; rated wind speed: 10.8m/s; single sampling time:
1min; transmission ratio: 104.125; real-time data monitor-
ing of gears and gearboxes in operation, through fault di-
agnosis model, the running status of gears and gearboxes is

diagnosed.  e main types of faults studied in this paper are
gearbox broken teeth fault and tooth surface wear and
peeling fault.

 e vibration signals of gearbox collected by sensors are
analyzed, processed, and identi�ed.

3.2. Data Acquisition and Normalization.  e experimental
data of vibration signals collected by four sensors mainly
include three states: normal state, gear broken state, and
tooth surface wear state.  e mean square eigenvalue was
extracted by MATLAB, and 60 groups of normal state data,
10 groups of gear broken state data, and 10 groups of gear
surface wear state data were obtained.

3.3. Generating Detector Database by Arti�cial Immune
Algorithms. Arti�cial immune algorithm is used to train
detector and generate detector database. Antigens are
matched with mature detector databases to identify antigens
and output fault results.

Table 1: Statistical feature description.

Attributes Description

w1 (CON(Contrast)) It re¡ects the total amount of local gray changes in the image, and describes the strength and clarity of the
image texture. Range of values [0,(size(GLCM,1)-1)̂2] for monochrome images, the value is 0

w2 (CORRE(Correlation)) By re¡ecting the linear correlation of the gray level in the image, the extension of one gray value in one
direction can be obtained. Range of values [− 1,1]

w3 (ASM(Energy))
 e texture thickness and uniformity of the gray level distribution in the image are described by the sum of the
squares of all the elements in the gray level co-occurrence matrix. [0,1] range of values the larger the value, the

simpler the image texture is

w4 (IDM(Homogeneity)) Re¡ect a local texture transformation in the image. e range of values is [0,1].  e larger the value, the slower
the texture change between di¢erent regions

begin⤶

Random generation random detector⤶

Match with self sample

Join the detection set R⤶

Reach the number of
detection sets⤶

end⤶

N⤶

N⤶

Y⤶

Y⤶

Figure 3:  e negative selection algorithm ¡ow chart.
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(1) Constructing Detector Set by Using Variable
*reshold Real-Value Negative Selection Algorithms
to Collect a Certain Quantity of Data
In this study, 100 samples of wind turbine gearbox
positive data and two kinds of fault data are selected,
and time-frequency analysis of these data samples is
carried out to obtain time-frequency images.

(2) Image preprocessing
*e feature vectors are taken from the three samples’
time-frequency pictures. Offline training is used for
the first 50 eigenvector samples. *e last 50 eigen-
vectors are put to the test. To match the off-line
trained detector set D, the vector detector E (m, s)
>R is employed. Each detector is individually
matched. *e detector is turned on when the Eu-
clidean distance (matching distance) E� r.

(3) Observing the detector set, which detector is acti-
vated, determining the fault type, and finally getting
the diagnosis results.

4. Discussion

(1) Data are normalized to facilitate the application of
data in experiments. Table 2 shows some mean
square datasets and normalized mean square data-
sets. *e data in Table 2 comes from the data
extracted by MATLAB for the vibration of the sensor
on the gear.

(2) From the gray level co-occurrence matrix, extract the
picture feature vector. Positive data from a wind
turbine gearbox, as well as two types of fault data, are
processed in this work. For each dataset, 100 samples
are chosen.*e time-frequency analysis of these data
samples yields time-frequency images. In order to
extract visual features, a gray level co-occurrence
matrix and Hu invariant moments are used.*e gray
level co-occurrence matrix of each image in four
offset directions is calculated separately. After fusion
by weighting method, an improved gray level co-
occurrence matrix is obtained.*e extracted features
of the gray level co-occurrence matrix are worth
getting the image feature vectors of three different
states of the gear and normalizing them. *e results
are as shown in Table 3.

By counting 300 samples based on GLCM eigen-
vector, Hu moment invariant eigenvector and
GLCM-Hu eigenvector, the diagnosis results are
shown in Figure 4.

In normal state, tooth surface wear state, and gear
broken state, the diagnostic accuracy of image fea-
ture vectors extracted by GLCM is 83%, 78%, and
80%, respectively; the diagnostic accuracy based on
Hu invariant moment extraction is 86%, 76%, and
82%, and the feature vectors extracted by LCM-Hu
fusion are 90%, 91%, and 94%. *e results show that
the fusion of gray level co-occurrence matrix and Hu

Step 1: D is the empty detector
Step 2: Repeat
Step 3: t← 0, T← i, r←∞
Step 4: Initialize random generation X in normalized real space
Step 5: Repeat, D (i) for each existence
Step 6: Calculate the Euclidean distance between X and detector D (i)
Step 7: If d< r(D(i))then t← t + 1
Step 8: If t≥ 1/(1 − c0) then Return D else go to 4
Step 9: Each element in Repeat Self-Set S
Step 10: Calculate the distance d1 between X and the elements in self-set S
Step 11: If dl − rself then r←dl − rself else t← t + 1
Step 12: If t> 1/(1-c), C is the maximum coverage of the self, exit
Step 13: Until�m Return D

ALGORITHM 1: (Self-sample set is S, self-radius is rself , number of detectors is 8m; nonself-coverage rate is c0).

Table 2: *e self-sample data.

Mean square dataset Normalized mean squared dataset
55.4159 51.3323 48.4346 45.8690 0.4573 0.7380 0.8295 0.7953
46.4307 53.0492 56.1401 47.7569 0.5411 0.9918 0.8701 0.7656
43.8901 48.1202 53.6939 50.2418 0.2579 0.2632 0.5319 1.0100
45.1617 50.6599 56.3062 45.6106 0.5603 0.6386 0.7012 0.5632
44.1584 55.9437 51.6196 45.7072 0.7805 0.5184 0.5676 0.5723
52.3354 55.6003 47.8481 47.4066 0.8863 0.4786 0.7742 1.0000
57.3615 51.9802 44.2522 45.0402 0.8338 0.6825 0.5801 0.5094
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invariant moment extract features can signi�cantly
improve the accuracy.

(3)  e real negative selection algorithm with variable
radius is used for fault diagnosis. Figures 5 and 6 are
the contrast diagrams of the detection rate and the
number of detectors under di¢erent radii of the self-
body by the improved variable radius

From Figure 6, we can see that the detection rate of
the detector decreases as the self-radius increases, be-
cause the large radius of the self covers the individual
elements of the non-self-set.  e detection rate of the
improved algorithm training detector is higher than that
of the original algorithm training detector, and the black
hole range is e¢ectively controlled. With the increase of
the autologous radius, a smaller radius detector is needed
to cover the nonautologous region, so the number of
detectors required increases.

In order to compare the results of fault diagnosis based
on improved variable radius real-value negative selection
algorithm and original algorithm, self-radius rself � 0.1,
coverage rate c� 95%, and c� 99% are set in the simulation
experiment.  e number of detectors generated is 375 and
613.  e number of detectors generated by the improved
variable radius real negative selection algorithm was 281 and
396, and the test was repeated 20 times. From the data in
Figure 7, it can be seen that the diagnostic rate increases with
the increase in coverage.

5. Conclusions

 e correlation between eigenvalues is employed to fuse
eigenvalues in this work, and vibration signals gathered from
gearboxes in wind power transmission machinery are di-
agnosed under normal and fault situations.  e resultant
eigenvectors have improved resolution characteristics. We
can observe from the experimental �ndings that the desired
diagnostic accuracy is achieved. Simultaneously, it is dem-
onstrated that a fault detection approach based on picture
feature extraction and a real negative selection algorithm can
accurately diagnose wind turbine transmission machinery,
the fault diagnosis rates of the two are 98% and 93%,
respectively.
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Table 3: GLCM feature vector.

Characteristic parameters T 1 T 2 T 3 T 4

Normal status 0.263 0.971 − 1.401 0.178
Gear broken state 0.352 0.761 − 1.462 0.337
Tooth surface wear state 0.504 − 1.479 0.235 0.722
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Artificial immune algorithm can be deeply studied to
make it have the same dynamic adaptive function as the
immune system. By improving the mathematical model of
AIA, setting the parameters and studying the convergence of
AIA, a more stable fault diagnosis model of AIA is
established.
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