
Research Article
Attribute-BasedPolicyEvaluationUsingConstraintsSpecification
Language and Conflict Detections

Wei Sun

School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China

Correspondence should be addressed to Wei Sun; sunny810715@xynu.edu.cn

Received 29 June 2022; Accepted 22 August 2022; Published 5 September 2022

Academic Editor: Xingsi Xue

Copyright © 2022 Wei Sun. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Attribute-based access control (ABAC) has attracted widespread interest and has become an ideal mechanism due to its �exibility
characteristic and the powerful expressiveness for various security policies, such as the separation-of-duty constraint and
cardinality constraint. �e formulation of appropriate ABAC policies is critical for ensuring system security and robustness.
However, con�icts occur frequently in existing state-of-the-art systems. Most conventional detection methods either lack the
evaluation of the policy quality or consider no constraint. To resolve these problems, a novel method for the ABAC policy
evaluation is proposed in this study. First, to meet diverse organizational requirements, we use the attribute-based constraints
speci�cation language to uniformly formulate and specify the con�ict relations among attributes and present the satis�ability of
con�ict relations. Second, to comprehensively detect the con�ict problems, we present the evaluation criteria for con�icts on
attributes and rules and propose a novel algorithm for detecting con�icts. Last, we validate the e�ectiveness and e�ciency of the
proposal through experiments, which demonstrate that it not only improves the policy quality but also reduces the con�icting
number and con�icting probability.

1. Introduction

With the high-speed development in high-performance
computing and mobile-information technology, security has
been considered as a fundamental requirement for the re-
search �elds such as the Internet of �ings (IoT), smart
contracts, blockchains, and the industrial information in-
tegration system [1]. �ere are large amounts of data storage
and resource sharing in distributed and collaborative en-
vironments, and enterprises need to employ some means to
ensure the integrity and con�dentiality of information
systems. As the main benchmark, the role-based access
control (RBAC) model had been widely used for system
implementation and management over the last few decades
[2]. However, it is identity dependent and lacks �exibility
and extendibility. As an alternative, attributes are employed
to describe the features of entities.�e attribute-based access
control (ABAC) overcomes the limitations of RBAC, cap-
tures �ne-grained access requirements, and becomes very
attractive, particularly for large-scale distributed and

collaborative systems [3]. It has gained much attention in
both academia and industry [4] in recent years.

Actually, the ABAC policy rule is the combinational
form of di�erent attribute value pairs of subjects, objects,
environments, and operations. �e policy engineering [5, 6]
is to �nd a suitable ABAC rule set, which is regarded as the
most important step for implementing the ABAC mecha-
nism. Xu and Stoller [7] were the �rst to study the ABAC
policy mining problem from the given access control lists or
matrices and proposed a bottom-up resolution (represented
as the Xu-Stoller for simplicity). To reduce the scale of ABAC
rules, Das et al. [8] used the Gini impurity and presented a
policy mining method. Das et al. [9] also presented a visual
method, called VisMAP, which mined ABAC policies based
on a given authorization list.

�e ABAC policy is very �exible and extendable.
However, values of the attribute-expression conditions
speci�ed by di�erent rules are partially identical. If the access
decisions of the rules that have identical attribute values are
inconsistent, then there exist con�icts among such rules, and

Hindawi
Mobile Information Systems
Volume 2022, Article ID 5408470, 12 pages
https://doi.org/10.1155/2022/5408470

mailto:sunny810715@xynu.edu.cn
https://orcid.org/0000-0003-4399-3762
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5408470

policy maintenance becomes difficult [10].)erefore, how to
detect the conflicts among policies has become an urgent
problem to be resolved. Royer andDeOliveira [11] separated
the existing conflict detection mechanisms for the eXtensible
Access Control Markup Language (XACML) into three
different types.)e dynamic and testing detections depend
on access requests, while the static detection was based on
the rule set without generating requests. Jabal et al. [12]
summarized the related research on static conflict detections
and involved five different variants. St-Martin and Felty [13]
converted the XACML policies into the Coq code that in-
cluded the effect type and the SRAC that represented the
“subject-resource-action-condition.” Rezvani et al. [14]
proposed a method to translate an XACML policy into the
form of ASP programming, verified the properties of the
policy by an analysis tool, and then, validated its effectiveness.
Zheng and Xiao [15] visually specified ABAC rules, converted
them into a set of binary sequences and presented a novel
method for conflict detection. Shu et al. [16] proposed an
optimized method to detect explicit conflicting rules from the
given ABAC policy, which utilized the method of rule re-
duction to eliminate the redundancy of the rules and then
adopted themethod of binary search to improve the efficiency
of the detections. To extend the detecting scope while im-
proving the efficiency of the detections, based on the inter-
section of rule pairs, Liu et al. [17] proposed a novel approach
for detecting both explicit and implicit conflicts. However, the
existing methods do not consider the constraint requirements
during the detecting processes.

To comprehensively capture the different organizational
requirements while ensuring the ABAC system security and
confidentiality, an important feature of the ABAC mecha-
nism is to be able to specify and perform the cardinality
constraint and the separation-of-duty constraint (SOD).
)ese constraint policies are not relevant to the specific
access control mechanism [18]. To implement several
classical access control models, Jin et al. [19] presented a
novel framework, called ABACα, which specified constraints
on the attribute-assignment relationships using the policy
specification language. However, the constraints in ABACα
were dependent on the specific events, and they became
ineffective if the attribute assignments varied. To address this
problem while uniformly specifying various types of ABAC
constraints, Bijon et al. [20] proposed the attribute-based
constraint specification language (ABCL). Based on the
subject similarity, Helil and Rahman [21] used the ABAC
constraint to check and determine the potential relation-
ships between different entities. To further specify and verify
the SoD constraints in ABAC systems, Jha et al. [22] pre-
sented a novel approach for analyzing the complexity of
enforcing the SOD constraints. To verify whether a set of
users could be replaced by another user set, Roy et al. [18]
presented the employee-replacement problem with multiple
constraints and then provided a scheme for solving the
problem. Furthermore, to automatically derive ABAC rules
from the conventional access control documents, Alohaly
et al. [23] proposed a framework for policy extraction using
natural language processing techniques. However, most
conventional methods only focus on specifying or

formulating constraints on attributes, which do not consider
the influence of constraints on the ABAC rules and lack the
evaluation of the policy quality.)us, conflict problems
among ABAC rules arise frequently while using the existing
research methods.

To resolve the abovementioned problems, this study
proposes the attribute-based policy evaluation using con-
straints specification language and conflict detections
(ABPE_CSL&CD). To sum up, the main contributions of
this work are as follows:

(1) To flexibly suit organizational requirements, while
ensuring system security, we use the ABCL to uni-
formly formulate and specify the conflict relations
among attributes and propose the satisfiability of
conflict relations. We take the reconstructed ratio as
the evaluation criterion and demonstrate the effi-
ciency of the ABPE_CSL&CD using real datasets.

(2) To comprehensively detect the ABAC conflict
problems, while ensuring the system robustness, we
present the classification representations for con-
flicting rules and propose a novel method for conflict
detection. We take the conflicting number and
conflicting probability as the evaluation criteria and
demonstrate the effectiveness of the ABPE_CSL&CD
using synthetic datasets.

)e rest of the article is organized as follows: Section 2
introduces some necessary preliminaries. Section 3 proposes
a novel policy evaluation method and presents an algorithm
for conflict detection. We present the experimental analysis
in Section 4 and conclude the article and discuss future
works in Section 5.

2. Preliminaries

In this section, some preliminaries are presented, including
the basic components of the ABAC, basic components of the
ABCL, and conflict problems in the ABAC.

2.1. Basic Components of ABAC. According to the ABACα
[19], the ABAC model mainly consists of the following sets,
relations, and functions:

(1) Sets S,O, and E represent all the subjects, objects, and
environments in which the access control occurs,
respectively. Set OP represents all the operations that
are permitted or denied to be performed on the object
resources. Sets SA,OA, and EA, respectively, represent
the identifier names of the subjects, objects, and
environments, which can be categorized into multi-
valued and single-valued types. For instance, the role
attribute is multi-valued as an employee may own
more than one role in an organization, while the id
attribute is single-valued as any employee in the or-
ganization has a unique identifier value.

(2) Functions atttype(att) and range(att), respectively,
represent the type and value domain for a specific
entity attribute att, which can be formalized as

2 Mobile Information Systems

∀att ∈ SA∪OA∪EA: atttype(att)

∈ atomic, set{ }, range(att) � val
att
i |i ∈ Z

+
􏽮 􏽯.

(1)

For the sake of convenience, the environmental el-
ements E and EA are not taken into account here.

(3) Relation SSAV represents many-to-many assign-
ments relationship of subjects and their attribute-
expression conditions, for any user attribute att,
which can be formalized as follows:

∀att ∈ SA, SSAV: S⟶
range(att), if   atttype(att) � atomic,

2range(att), if   atttype(att) � set.

⎧⎨

⎩

(2)

Similarly, OOAV can be formalized as

∀att ∈ OA, OOAV: O⟶
range(att), if  atttype(att) � atomic,

2range(att), if  atttype(att) � set.

⎧⎨

⎩

(3)

Furthermore, the value set of attribute att assigned to
any user or object entity en is denoted as function
val(en, att).

(4) Function Assigned_EntitiesEN,att returns the entities
with respect to a specific attribute value attval, which
can be formalized as follows:

∀att ∈ (SA or OA), ∃attval ∈ range(att):

Assigned EntitiesS∪O,att(attval) �

en|∃en ∈ (S or O), (val(en, att) � attval∧atttype(att) � atomic) or(attval ∈ val(en, att)∧atttype(att) � set)􏼈 􏼉

. (4)

2.2. Basic Components of ABCL.)e key component of the
ABCL [20] is conflict relations, which are used to determine
whether the policy conditions, such as mutually exclusive
constraints or cardinality constraints, can be satisfied. At-
tribute-based conflicts can occur in several ways, in which
two critical conflicting variants are considered:

(1))e single-attribute conflict is only applicable for the
multi-valued attributes and can be formally
expressed in formulation (5). In the formulation, set

Single_Conf_Set contains various types of the
constraint requirements, such as mutual exclusions
cardinality constraints, precondition constraints,
and so on. Each element of the Single_Conf_Set is a
2-tuple form, denoted as (attval, limit), where attval
represents a set of conflicts existing in the single-
attribute values, and limit represents the threshold
value for satisfying the security constraint.

∀att ∈ (SA or OA), atttype(att) � set:

Single Conf SetS,O,att � avset1, avset2, ..., avsetn􏼈 􏼉,

where avseti(att) � (attval, limit), attval ∈ 2range(att), an d 1≤ limit≤ |attval|.

(5)

(2))e cross-attribute conflict is applicable for both the
single-valued and multi-valued attributes and can be
formally expressed in formulation (6). In the for-
mulation, two different attribute sets are involved,
which are represented as Aattset and Rattset, re-
spectively.)e values of one attribute in Aattset

restrict those of the other one in Rattset. Further, set
Cross_Conf_Set also contains the constraint speci-
fications for different attributes as shown in for-
mulation (6), where each element is a function,
named attfuni.

∀(Aattset,Rattset)⊆(SA or OA), ∀att ∈ (Aattset or Rattset):

Cross Conf SetS,O,Aattset,Rattset � attfun1, attfun2, ..., attfunn􏼈 􏼉,

where attfuni(att) � (attval, limit), 1≤ limit≤ |attval|,

attval ∈ 2range(att), atttype(att) � set􏼐 􏼑or(attval⊆range(att), atttype(att) � atomic).

(6)

Mobile Information Systems 3

)e ABCL also presents two nondeterministic functions,
written as OE(X) and AO(X). OE(X) selects one element
from the set X, while AO(X) returns the other elements from
X except for the element with OE(X). Both of them are
related to contexts.)is is because there exists an equation
{OE(X)}∪AO(X)�X for the given set X.

2.3. Conflict Problems in ABAC. Taking the ABAC policy
specified by the XACML [11] as an example, there exist
conflict problems among the rules. Several concepts such as
attribute expression, policy rule, access request, and conflict
are taken into account in this study, which are described as
follows:

(1) Attribute expression ap: it can be formalized as a
triple ap� (attribute identifier, operator, and attri-
bute values), where the operator can take different
comparison operators.

(2) Policy rule ar: it can be represented as a quad-
rupleari � (S

ap
i , O

ap
i , opi, di), where opi represents

the operating action on the object resources, di
represents the positive or negative access decision,
which takes only two possible values: permitted or
denied.Sap

i or O
ap

i is represented as the set of com-
binations of various attribute-expression conditions
for the subjects or objects.)e set of n different rules
ar1,ar2,· · ·, arn constructs an ABAC policy, denoted
as P� {ar1, ar2, . . ., arn}.

(3) Access request req: it can be formalized as a
triplereq � (S

ap
req, O

ap
req, opreq), which indicates that

the subjects of S
ap
req request to perform the oper-

ationopreq on the objects of O
ap
req.

(4) Conflict: for the given rules ari and arj, which satisfy
a single request req simultaneously while owning the
identical attribute identifiers, if the intersections of
the attribute-expression conditions of the rules have
common attribute values, the operation sets overlap,
but if the access decisions are distinct, then there
exists a conflict between ari and arj.

3. Methodology

)e proposed ABPE_CSL&CD is threefold: (1) the formu-
lation and specification for conflict relations among attri-
butes, (2) classification representations of conflicting rules,
and (3) ABAC conflict detections. Specifically, based on the
conventional policy-engineering method, we first construct
an initial policy set that takes no conflicts into consideration.
Subsequently, according to the requirement descriptions of
usage scenarios, such as the banking businesses, we utilize
the ABCL to formulate and specify the conflict relations in a
single attribute and multiple attributes. Meanwhile, we
categorize the conflicting rules into two classifications and
present the evaluation criteria for conflicting rules and at-
tribute-conflict relations. Last, we present a novel algorithm
for detecting conflicts from the initial policy set and evaluate
the performance of the proposal through experiments.)e
framework of the ABPE_CSL&CD is presented in Figure 1.

3.1. Formulation and Specification for Conflict Relations
among Attributes. In this section, an extensive case study in
the banking-domain scenario is presented, which utilizes the
standard ABCL to formulate various conflict relations
among attributes, in order to express the business re-
quirements and ensure system security.

3.1.1. Requirement Descriptions for the Banking Businesses.
First, the corresponding attribute characteristics of subjects
and objects are presented in Tables 1 and 2, respectively.
Each subject is a user who is assigned attributes id and style.
)e attribute role represents the job responsibility. trust-
ness_level and work_year are the other two attributes of the
subjects, of which the values can be denoted using the
comparison operation expressions, such as
trustness_level≥ 11, and work_year≥ 8.)e descriptions of
object features are omitted owing to the space limitation.

According to Tables 1 and 2, the organizational re-
quirements with various constraints are stated as follows:

Const 1: any user can obtain 5 benefit businesses at most
Const 2: any user cannot have both the cashier and
accountant roles
Const 3: any user cannot obtain both the bf1 and
bf2benefit businesses
Const 4: any user can together obtain 5 loan and card
businesses at most
Const 5: if the trustness_level value of a user is less than
5, then this user cannot obtainmore than 1 benefit from
{bf1, bf2, and bf3}
Const 6: the number of users obtaining the house loan
business is no more than 12
Const 7: any two users cannot own the same id value
Const 8: if a user has the house and car loan businesses
and also has more than one card business, then this user
cannot obtain any benefit business

3.1.2. ABCL Specifications for the Security Requirements.
Next, the standard ABCL is used to specify the security
requirements mentioned above, including the declarations
and initializations of different conflict relations in a single
attribute and multiple attributes, in which SMERole repre-
sents a related set of mutually exclusive constraints towards
the role attribute values, and OMEBenefit is another conflict
set towards the benefit business attribute. Similarly, SOMETB
and SOMETWB represent mutually exclusive conflict sets of
the trustness_level with benefit business and the trust-
ness_level and work_year with benefit business by the
Cross_Conf_Set variant, respectively. Here, assume that the
number of attributes, which are assigned to an entity for
satisfying each constraint relation from Single _Conf_Set or
Cross_Conf_Set is less than the threshold limit.

(1) Declaration and initialization for Single_Conf_Set

(a) Single_Conf_SetS, role SMERole:SMERole�

{avset1}avset1(role)�({cashier, accountant }, 2)

4 Mobile Information Systems

(b) Single_Conf_SetO, benefit business OMEBenefit:
OMEBenefit� {avset1}avset1(benefit busi-
ness)�({bf1, bf2}, 2)

(2) Declaration and initialization for Cross_Conf_Set

(a) Cross_Conf_SetS, O, trustness_level, benefit business
SOMETB:SOMETB� {attfun1, attfun2}
attfun1(trustness_level)�(”≤5”, 2), attfun1(be-
nefit business)�({bf1, bf2, bf3}, 2)

attfun2(trustness_level)�(”≤5”, 1), attfun2(be-
nefit business)�({bf1, bf2, bf3, bf4, bf5}, 1)

(b) Cross_Conf_SetO, {loan business, ccard business}, benefit

business OMELCB:OMELCB� {attfun1}attfun1(-
loan business)�({house, car}, 2), attfun1(ccard
business)�({card1, card2, . . ., card12}, 2), att-
fun1(benefit business)�({bf1, bf2, . . ., bf10}, 1)

)en, the conflict relations and functions are used to
express the security requirements in the ABCL form as
follows:

Spec 1: |benefit business(OE(S))| ≤ 5
Spec 2: |role (OE(S)) ∩ OE (SMERole).avset| < OE

(SMERole). limit.
Spec 3: |benefit business(OE(S)) ∩O E(OMEBenefit).
avset|<OE(OMEBenefit).limit.

Construction of the
initial policy set

Requirement descriptions
for usage scenarios

Classification representations
for conflicting rules

Formulation and specification
for conflict relations

Deployment of evaluation criteria
for conflicts

Implementation of
conflict detections

Implementation of
policy evaluation

Figure 1:)e framework of the ABPE_CSL&CD.

Table 1: Attribute characteristics of subjects.

SA Type of SA Range of SA
Id atomic {id1, id2, . . .id20}
Style atomic {client and banking employee}
Role set {customer, general employee, cashier, accountant, junior, assistant manager, and manager}
trustness_level atomic {1, 2, . . ., 15}
work_year atomic {1, 2, . . ., 30}

Table 2: Attribute characteristics of objects.

OA Type of OA Range of OA
General business atomic {deposit and withdrawal}
Loan business set {house, car, and education}
Benefit business set {bf1, bf2, . . ., bf10}
Card business set {Card1, card2, . . ., card12}

Mobile Information Systems 5

Spec 4: |loan business(OE(S)) ∩ ccar d business

(OE(S))| ≤ 5.
Spec 5: |trustness level(OE(S))∩ OE(SOMETB)

(trustness level).avset|<OE(SOMETB) (trustness

level).limit⇒|benefit business(OE(S))∩OE(SOMETB)

(benefitbusiness).avset|<O E(SOMETB)

(benefitbusiness).limit.
Spec 6: |Assigned EntitiesS∪O,loan business(house)|≤ 12.
Spec 7: i d(OE(S))≠ i d(OE(AO(S))).
Spec 8: (|loan business(OE(S)) ∩OE(OMELCB)

(loanbusiness).avset|≥OE((OMELCB) (loanbusiness).
limit)∧(|ccard business(OE(S)) ∩ OE(OMELCB)

(ccardbusiness).avset|≥OE(OMELCB)

(ccardbusiness).limit)⇒ |benefit business(OE(S)) ∩
OE(OMELCB)(benefitbusiness).avset|<OE(OMELCB)

(benefitbusiness).limit.

3.2. Classification Representations of Conflicting Rules.
According to the description of conflicts, if multiple rules
satisfy the same access request, while their access decisions
are different, then a conflict occurs among these rules.)e
conflicting rules can be directly compared and are easy to be
detected by implementing the static analysis or using the
existing tool before the system runs.)ey are referred to as
explicit conflicting rules and are commonly seen in the

policy set, such as ar5 and ar6, as shown in Table 3. Fur-
thermore, other rules that seem to be not directly compa-
rable, which are called implicit ones, and they still exist. For
instance, implicit conflicts occur between ar2 and ar4 when
the access request is ({role� {general employee},
trustness_level> 12}, {loan business� {house}, card
business� {card2}}, apply for). Similarly, ar3 and ar5 become
implicit conflicting rules for a given request such as ({role�

{general employee}, trustness_level> 8, 10<work_year< 20},
{benefit business� {bf1}}, apply for). Note that, it is difficult to
statistically determine the implicit conflicts since such
conflicts can only be detected for the coming access request
during the system running.

It has been shown that any two rules can be compared by
using the method of attribute complementation [17].)e
distinction between the explicit and implicit conflicting rules
just lies in the different representations , while the nature of
both is the same. According to whether or not the conflicts
happen, all the rules in the policy can be categorized into two
classifications as follows:

(1) Probable-conflicting rules ar and ar’need meet all of
the following conditions, where op(), d(), att(), and
ap(), respectively, represent the corresponding
functions or actions with respect to their prefixes:

(a)op(ar) ∩ op ar′(􏼁≠∅,

(b)d(ar)≠ d ar′(􏼁,

(c)
∀att ∈ (att(S, ar), att(O, ar)), ∃att′ ∈ att S, ar′(􏼁, att O, ar′(􏼁(􏼁:

att � att′,

(d)∀ap ∈ (ap(S, ar), ap(O, ar)), ∃ap′ ∈ ap S, ar′(􏼁, ap O, ar′(􏼁(􏼁: att(ap) � att ap′(􏼁(􏼁, ap∩ ap′ ≠∅(􏼁.

(7)

(2) Nonconflicting rules ar and ar’ need meet one of the
following conditions:

(a). d(ar) � d ar′(􏼁,

(b). op(ar)∩ op ar′(􏼁 � ∅,

(c).∃ap ∈ (ap(S, ar) or ap(O, ar)), ∃ap′ ∈ ap S, ar′(􏼁or ap O, ar′(􏼁(􏼁:

att(ap) � att ap′(􏼁(􏼁 an d ap∩ ap′ � ∅(􏼁.

(8)

3.3. NovelMethod of Conflict Detections. Different rules may
satisfy the same access request because of the flexibility and
powerful expressiveness of the ABAC mechanism.)e rules
with both the permitted and denied values of the access
decision, however, can cause contradictory access results.
)erefore, it is necessary to study how to detect and resolve
the existing conflict problems.

To comprehensively detect the conflict problems, we first
propose the definitions of conflict-relation satisfiability and
conflict probability as follows.

Definition 1. Conflict-relation satisfiability
)e satisfiability of conflict relations is a function sat-

isfied(ar, conf), which is used to check whether or not the

6 Mobile Information Systems

rule ar could satisfy the specific conflict relation conf, where
ar ∈P, conf ∈Conf_Set. Conf_Set� Single_Conf_Set∪Cross_
Conf_Set, which contains all the conflict relations between a
single attribute and multiple attributes using the ABCL
specification method. It can be formalized as

∀ar ∈ P,∃conf ∈ Cons Set :

satisfied(ar, conf) �
true, if conf is satisfied

false, if conf is not satisfied
􏼨

. (9)

Definition 2. Conflict probability
Given any two conflicting rules ari and arj and suppose

that there are n common attributes att1,att2,. . .,attn existing
in both the rules. If the access request is uncertain, then the
conflict probability between ari and arj is denoted as

Prob ari, arj􏼐 􏼑 � P
C att1(􏼁 × P

C att2(􏼁 × · · · × P
C attn(􏼁

� 􏽙
att

P
C

(att),

(10)

where PC(att) � sim(api, apj) � |api ∩ apj|/|api ∪ apj|; api
and apj are the attribute expressions of the common attribute
att in ari and arj, respectively; the Jaccard coefficient sim(api,
apj) of statistics, which aims to identify sample clusters, is
used to measure the similarity between api and apj.

According to the classification representation for the
conflicting rules, as well as Definitions 1 and 2, we take the
initial policy rules constructed by the conventional policy-
engineering method as input and present the process of the
conflict detections in Algorithm 1.

In the algorithm, we first create and initialize a temporary
policy set P′ and a result setCP of conflicting-rule pairs in lines
1 and 2. Next, for each rule ar in P′, we check whether or not
ar could satisfy a specific conflict relation conf (lines 3−7). If
the satisfied function returns false, which indicates that some
constraint is not yet satisfied, then rule ar is removed from the
candidate policy set.)en, based on the descriptions of the
probable-conflicting rules and non-conflicting ones, (lines
8−21) examine and calculate the conflict probability of each
rule pair (ari and arj), in order to detect the conflicting-rule
pairs, which provides quantitative evaluation criteria for re-
solving the conflicts and formulating the policies.

4. Experimental Analysis

Experiments are carried out in order to evaluate the per-
formance of the satisfiability of the conflict relations as well

as the conflict detections. All the experiments are compiled
and run under the Java environment.

4.1. Performance Evaluations for the Satisfiability of Conflict
Relations. We employ the real-world and public-available
datasets from research [1], in order to construct initial
ABAC policies using the Xu-Stoller [7] or VisMAP [9]
method, while studying the formulation of the conflict re-
lations, such as the SOD constraints and cardinality con-
straints. We utilize the Rel-SAT model counter [24] to
generate constraint policies from the given SOD constraints.

To simulate the actual scenarios while meeting the se-
curity requirements, we implement the experiments in the
initial policy-engineering system and adopt the same ex-
perimental setup with research [1], including the number of
users and the scale of the policy. Figure 2 presents the
performances of the proposal using different policy sets.

Two conclusions can be observed in Figure 2. First, as the
number of users increases, the execution time does not vary
obviously and tends to grow linearly for each given policy.
Second, if the number of users remains unchanged, the
execution time varies obviously as the scale of the policy
changes. Specifically, when the scale of the policy is set at 20,
the execution time is always close to 0.04 s, which remains
almost stable. However, if the number of users remains
constant and is set at 40, the time varies from 0.02 s to 0.04 s.
)is is because the larger the scale of the policy is, the more
verification time for the SOD constraints generated by the
Rel-SAT tool will be.

To further demonstrate the efficiency of the conflict-
relation satisfiability, we present the following evaluation
measure:

Reconstructed ratio (RR): It is used to quantitatively
evaluate the satisfiability for the constraints during the
formulation of conflict-relation sets, which can be denoted
as: RR � |SSAV′|/|SSAV|, where the SSAV′ represents the
relationship of the reconstructed attribute assignments that
can satisfy the conflict relations, and the SSAV represents the
relationship of the initial attribute assignments.

)en, we take the cardinality constraint and SOD
constraints as inputs, repeatedly implement the experiments
on the real-world datasets, such as University and Health-
care, and output the median values of the experimental
results as shown in Figure 3.

Figure 3 shows that the reconstructed ratio RR of at-
tributes varies as the threshold of the cardinality constraint
varies, where the scale number of the Conf_set respectively
takes 100, 200, 300, and 400, and the number of attributes in
the SSAV constraint set is fixed. It can be observed that the

Table 3: Description of ABAC rules.

Rule Attribute condition of the subject Attribute condition of the object Operation Decision
ar 1 role� {cashier, junior} general business� {deposit, withdrawal} perform, withdraw permitted
ar 2 role� {general employee, manager} loan business� {house} apply for denied
ar 3 role� {general employee} and work_year< 20 benefit business� {bf1, bf3} apply for denied
ar 4 trustness_level> 12 card business� {card2} apply for,withdraw permitted
ar 5 trustness_level> 8 and work_year> 10 benefit business� {bf1, bf2} apply for,withdraw permitted
ar 6 trustness_level< 10 and work_year< 15 benefit business� {bf1, bf2} apply for denied

Mobile Information Systems 7

reconstructed ratio first increases significantly and then
varies slightly as the constraint threshold increases.)is is
because the reconstructed ratio is positively correlative to the
cardinality constraint, while the saturation will be present
when the threshold of the cardinality constraint reaches a
certain value. It can be also observed that the reconstructed
ratio decreases with the increasing number of cardinality
constraints, which is because of the restriction of the con-
straints on the attribute assignments.

4.2. Performance Evaluations for the Conflict Detections.
Next, we use the Shu method [16] and Liu method [17], in
order to obtain the synthetic datasets. Specifically, we as-
sume that all the attributes belong to the natural-number
type and the value ranges change from 1 to 100 since dif-
ferent attributes can take different values.)e number of
attribute conditions in each access request follows a normal
distribution, and the total number of attributes is less than
40.)e value of any attribute-expression condition varies
between an upper bound and a low bound and follows a
uniform distribution. According to the actual functional
requirements of the business organization, we first design a
generator to automatically generate various access requests,
as well as, 30 different policy sets that are separated into 5
groups for the usage scenario, as shown in Table 4.

To demonstrate the effectiveness of the proposal in the
phase of conflict detection, we propose two evaluation
metrics as follows:

(1) Average conflicting number Avg_N(CP): it can be
denoted as Avg N(CP) � 1/M 􏽐

M
i�1 N(ari), where

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
co

ns
tr

uc
te

d
ra

tio
 (%

)

3 4 5 62
cardinality threshold

|Conf_set | = 100

|Conf_set | = 300

|Conf_set | = 200

|Conf_set | = 400

Figure 3: Evaluations of satisfiability using different constraints.

ex
ec

ut
io

n
tim

e (
s)

0.01

0.02

0.03

0.04

0.05

30 40 5020
number of users

|P| = 5
|P| = 10

|P| = 15
|P| = 20

Figure 2: Execution time using different policies.

Input: the set Conf_Set of conflict relations and the initial policy set P� {ar1, ar2, . . ., arn}, where ari � (S
ap

i , O
ap

i , opi, di).
Output: the result set CP of conflicting-rule pairs, such as (ari and arj) and the conflict probability Prob(ari and arj).

(1) Initialize CP�∅;
(2) Create and initialize a temporary policy set P’�P;
(3) for each ar in P′ do
(4) if ∃conf ∈Conf_Set: satisfied(ar, conf)� � false then
(5) P’� P’\{ar};
(6) end if
(7) end for
(8) for each rule pair (ari, arj) in P′ do
(9) if (d(ari)!� d(arj))∧(op(ari)∩op(arj)!�∅) then
(10) for each ap inS

ap
i orOap

i of arido
(11) for each ap’ inS

ap
j orOap

j of arjdo
(12) if (att(ap)� � att(ap’))∧(ap∩ap’� �∅) then
(13) continue;
(14) else
(15) CP�CP∪{(ari, arj)};
(16) calculate Prob(ari, arj);
(17) end if
(18) end for
(19) end for
(20) end if
(21) end for

ALGORITHM 1: Novel method of conflict detection.

8 Mobile Information Systems

N(ari) represents the conflicting number of rule ari,
and M represents the scale number of set CP

(2) Average conflicting probability Avg_P(CP): it can be
denoted as Avg P(CP) � 1/M 􏽐

M
i�1(1 − 􏽑(ari,arj)∈

CP(1 − Prob(ari, arj)), where Prob(ari, arj) repre-
sents the conflict probability between ari and arj, and
M represents the scale number of set CP

We implement experiments on the generated policy sets,
calculate Avg_N(CP) and Avg_P(CP), and compare the
performance of our method with the results of the Liu
method and Shu method as shown in Figures 4−8.

Figure 4(a) shows that the average conflict number for
P1–P6 policies vary with the increasing number of rules when
the maximal length of the rule is set at 3. Specifically, the
average conflicting number using our method varies from
21.17 to 304.63, which increases remarkably as the number of
rules increases from 100 to 1500. Similarly, the result of the
Liu method also increases significantly from 23.29 to 360.78
as the number of rules varies. However, the result of the Shu
method tends to grow linearly and varies gradually from 0.45
to 11.5, which is a very small proportion of the actual
conflicting rules. Obviously, the conflicting number using
the Shu method is far less than those of the other two
methods, which is not applicable to the actual requirements
of organizations.)is is because the Shu method only
considers the attribute expressions and rules with the same
identifiers.)e rules with different attribute identifiers,

however, are not taken into account using such a method. In
fact, most conflicts occur among the implicit conflicting
rules, which tend to be ignored and are not easy to be
detected. To resolve this issue, both the Liu method and our
method perform better and can detect the implicit con-
flicting results, and the conflicting number using our
method is less than that of the Liu method.)is is because
the probable-conflicting rules violating the attribute-conflict
relations are first removed using our method, before actually
detecting conflicts. Furthermore, for the values of |RL| taking
7, 11, 15, and 20, the varying tendencies of the average
conflicting rules are presented in other figures, which are
similar to that of figure 4(a). Notice that the results of both
the Liu method and our method decrease as the number of
the attribute-expression conditions increases.)us, it is
suggested to choose as many attribute conditions as possible,
in order to formulate more flexible policies while reducing
the number of probable conflicts.

Figure 4(b) shows the average conflict probability for the
first 6 policies in Group 1. It is observed that using our
method and the Liu method, the conflicting probability is
always lower than 0.2 as the number of rules varies, while the
result of the Shu method exceeds 0.6. With an increase in the
length of the attribute-expression conditions, the average
conflict probability decreases remarkably as shown in the
figures. For instance, its value remains around 10−2, 10−3,
10−5 , and 10−7 when |RL| takes 7, 11, 15, and 20, respectively.
Both our method and the Liu method perform better than

0

50

100

150

200

250

300

350

400

nu
m

be
r o

f c
on

fli
ct

s

200 400 700 100 1500100
number of rules

Our method

Liu method
Shu method

(a)

0

0.2

0.4

0.6

0.8

1

co
nf

lic
tin

g
pr

ob
ab

ili
ty

200 400 700 1000 1500100
number of rules

Our method

Liu method
Shu method

(b)

Figure 4: Performance comparisons when |RL|� 3. (a) Conflict number. (b) Conflict probability.

Table 4: Descriptions of the generated ABAC rule set.

Group Policy set Maximal length of the rule (|RL|) Policy scale
1 P 1–P6 3 100, 200, 400, 700, 1000, 1500
2 P 7–P12 7 100, 200, 400, 700, 1000, 1500
3 P 13–P18 11 100, 200, 400, 700, 1000, 1500
4 P 19–P24 15 100, 200, 400, 700, 1000, 1500
5 P 25–P30 20 100, 200, 400, 700, 1000, 1500

Mobile Information Systems 9

0

50

100

150

200

250

300

350

400

nu
m

be
r o

f c
on

fli
ct

s

200 400 700 100 1500100
number of rules

Our method

Liu method
Shu method

(a)

200 400 700 1000 1500100
number of rules

Our method

Liu method
Shu method

0

0.2

0.4

0.6

0.8

1
co

nf
lic

tin
g

pr
ob

ab
ili

ty

(b)

Figure 6: Performance comparisons when |RL|� 11. (a) Conflict number. (b) Conflict probability.

0

50

100

150

200

250

300

350

400
nu

m
be

r o
f c

on
fli

ct
s

200 400 700 100 1500100
number of rules

Our method

Liu method
Shu method

(a)

0

0.2

0.4

0.6

0.8

1

co
nf

lic
tin

g
pr

ob
ab

ili
ty

200 400 700 1000 1500100
number of rules

Our method

Liu method
Shu method

(b)

Figure 5: Performance comparisons when |RL|� 7. (a) Conflict number. (b) Conflict probability.

0

50

100

150

200

250

300

350

400

nu
m

be
r o

f c
on

fli
ct

s

200 400 700 100 1500100
number of rules

Our method

Liu method
Shu method

(a)

0

0.2

0.4

0.6

0.8

1

co
nf

lic
tin

g
pr

ob
ab

ili
ty

200 400 700 1000 1500100
number of rules

Our method

Liu method
Shu method

(b)

Figure 7: Performance comparisons when |RL|� 15. (a) Conflict number. (b) Conflict probability.

10 Mobile Information Systems

the Shu method from the viewpoint of conflicting prob-
ability. Furthermore, it is observed that the varying length
of the attribute-expression conditions has a greater effect
than that of the policy scale.)us, it is also advised to use as
many attribute conditions as possible, in order to improve
the policy quality while reducing the conflicting
probability.

5. Conclusions

A novel policy evaluation method, called ABPE_CSL&CD,
was proposed in this study. According to the requirement
descriptions of usage scenarios, we first utilized the attri-
bute-based constraints specification language to formulate
and specify the conflict relations among attributes, pro-
posed the satisfiability of conflict relations, and categorized
the conflicting rules into two classifications.)en, we
presented the evaluation criteria on conflicting rules and
attribute-conflict relations and proposed a novel algorithm
for detecting conflicts. As a result, the proposed method
flexibly suited the organizational requirements and com-
prehensively detected the ABAC conflict problems.)e
experiments on the real and synthetic datasets demon-
strated that they could address the stated problems of
improving the policy quality while reducing the conflicting
number and conflicting probability. Our future work will
focus on studying how to implement the ABPE_CSL&CD
in other system scenarios such as the IoT, blockchain, and
wireless sensor networks.

Data Availability

All the underlying data used to support the results of the
study are included within the article.

Conflicts of Interest

)e author declares no conflicts of interest.

Acknowledgments

)is work was supported by the Key Scientific Research
Project of Henan Province University.

References

[1] W. Sun, H. Su, and H. Xie, “Policy-engineering optimization
with visual representation and separation-of-duty constraints
in attribute-based access control,” Future Internet, vol. 12,
no. 10, p. 164, 2020.

[2] W. Sun, “Hybrid role-engineering optimization with multiple
cardinality constraints using natural language processing and
integer linear programming techniques,” Mobile Information
Systems, vol. 23, p. 1, 2022.

[3] S. Chakraborty, R. Sandhu, and R. Krishnan, “On the Fea-
sibility of Attribute-Based Access Control Policy Mining,” in
Proceedings of the 20th IEEE International Conference On
Information Reuse And Integration For Data Science,
pp. 245–252, Los Angeles, CA, USA, August 2019.

[4] D. Servos and S. L. Osborn, “Current research and open
problems in attribute-based access control,” ACM Computing
Surveys, vol. 49, no. 4, pp. 1–45, 2017.

[5] M. Narouei, H. Khanpour, H. Takabi, N. Parde, and
R. D. Nielsen, “Towards a top-down policy engineering
framework for attribute-based access control,” in proceedings
of the 22nd ACM on Symposium on Access Control Models and
Technologies, pp. 103–114, Indianapolis, IN, USA, June 2017.

[6] D. Mocanu, F. Turkmen, and A. Liotta, “Towards ABAC
Policy Mining from Logs with Deep Learning,” in Proceedings
of the 18th International Multiconference, pp. 124–128,
Ljubljana, Slovenia, October, 2015.

[7] Z. Xu and S. D. Stoller, “Mining attribute-based access control
policies,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 5, pp. 533–545, 2015.

[8] S. Das, S. Sural, J. Vaidya, and V. Atluri, “Poster: using gini
impurity to mine attribute-based access control policies with
environment attributes,” in Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies,
pp. 213–215, Indianapolis, IN, USA, 2018 June.

0

50

100

150

200

250

300

350

400
nu

m
be

r o
f c

on
fli

ct
s

200 400 700 100 1500100
number of rules

Our method

Liu method
Shu method

(a)

0

0.2

0.4

0.6

0.8

1

co
nf

lic
tin

g
pr

ob
ab

ili
ty

200 400 700 1000 1500100
number of rules

Our method

Liu method
Shu method

(b)

Figure 8: Performance comparisons when |RL|� 20. (a) Conflict number. (b) Conflict probability.

Mobile Information Systems 11

[9] S. Das, S. Sural, J. Vaidya, V. Atluri, and G. Rigoll, “VisMAP:
Visual Mining of Attribute-Based Access Control Policies,” in
Proceedings of the 15th International Conference on Infor-
mation Systems Security, pp. 16–20, Hyderabad, India, De-
cember, 2019.

[10] E. C. Lupu and M. Sloman, “Conflicts in policy-based dis-
tributed systems management,” IEEE Transactions on Soft-
ware Engineering, vol. 25, no. 6, pp. 852–869, 1999.

[11] J. C. Royer and A. S. De Oliveira, “AAL and static conflict
detection in policy,” International Conference on Cryptology
and Network Security, pp. 367–382, Springer, Heidelberg,
Germany, 2016.

[12] A. A. Jabal, M. Davari, E. Bertino et al., “Methods and tools for
policy analysis,” ACM Computing Surveys, vol. 51, no. 6,
pp. 1–35, 2019.

[13] M. St-Martin and A. P. Felty, “A Verified Algorithm for
Detecting Conflicts in XACML Access Control Rules,” in
proceedings of the 5th ACM SIGPLAN Conference On Certified
Programs And Proofs, pp. 166–175, ACM, St. Petersburg FL
USA, January 2016.

[14] M. Rezvani, D. Rajaratnam, A. Ignjatovic, M. Pagnucco, and
S. Jha, “Analyzing XACML policies using answer set pro-
gramming,” International Journal of Information Security,
vol. 18, no. 4, pp. 465–479, 2019.

[15] G. Zheng and Y. Xiao, “A Research on Conflicts Detection in
ABAC Policy,” in 7th International Conference On Computer
Science And Network Technology, pp. 408–412, IEEE, Dalian,
China, October 2019.

[16] C. chun Shu, E. Y. Yang, and A. E. Arenas, “Detecting conflicts
in ABAC policies with rule reduction and binary-search
techniques,” in Proceedings of the 2009 IEEE International
Symposium on Policies for Distributed Systems and Networks,
pp. 182–185, IEEE, London, UK, July 2009.

[17] G. Liu, W. Pei, Y. Tian, C. Liu, and S. Li, “A novel conflict
detection method for ABAC security policies,” Journal of
Industrial Information Integration, vol. 22, Article ID 100200,
2021.

[18] A. Roy, S. Sural, A. K. Majumdar, J. Vaidya, and V. Atluri,
“Enabling workforce optimization in constrained attribute
based access control systems,” IEEE Transactions on Emerging
Topics in Computing, vol. 9, no. 4, pp. 1901–1913, 2021.

[19] X. Jin, R. Krishnan, and R. Sandhu, “A Unified Attribute-
Based Access Control Model Covering DAC, MAC and
RBAC,” in 26th Annual IFIP WG 11.3 Conference On Data
And Applications Security And Privacy XXVI, pp. 41–55, Paris,
France, July 2012.

[20] K. Z. Bijon, R. Krishnan, and R. Sandhu, “Towards an at-
tribute based constraints specification language,” in Pro-
ceedings of the 2013 International Conference on Social
Computing, pp. 108–113, Washington, DC, USA, September,
2013.

[21] N. Helil and K. Rahman, “Attribute based access control
constraint based on subject similarity,” in Proceedings of the
2014 IEEEWorkshop on Advanced Research and Technology in
Industry Applications, pp. 226–229, IEEE, Ottawa, ON,
Canada, September 2014.

[22] S. Jha, S. Sural, V. Atluri, and J. Vaidya, “Specification and
verification of separation of duty constraints in attribute-
based access control,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 4, pp. 897–911, 2018.

[23] M. Alohaly, H. Takabi, and E. Blanco, “Towards an Auto-
mated Extraction of ABAC Constraints from Natural Lan-
guage Policies,” in Proceedings of the 34th IFIP TC 11

International Conference On ICT Systems Security And Pri-
vacy Protection, pp. 105–119, Lisbon, Portugal, June, 2019.

[24] J. B. Roberto and S. C. Robert, “Using CSP Look-Back
Techniques to Solve Real-World SAT Instances,” in Pro-
ceedings of the 14th National Conference On Artificial Intel-
ligence And Ninth Innovative Applications Of Artificial
Intelligence Conference, pp. 27–31, Providence, Rhode Island,
USA, July, 1997.

12 Mobile Information Systems

