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With the widespread use of new energy sources and Internet of things, the power market landscape has become complex. In
particular, new energy is more stochastic and volatile; it is prone to the problems of inaccurate forecasting on longer time scales,
a�ecting electricity trading. �is study proposes a new method for predicting medium-term load series data based on the
transformer-lightGBM. �e method �rst preprocesses electricity market data, including missing value processing, outlier
processing, overall analysis, and correlation analysis, to extract features with a strong correlation to medium-term electricity
consumption forecasts. �en, a transformer neural network is used to learn the complex patterns and dynamic time scales of the
load series data to predict the day-ahead market series. Finally, lightGBM is used to combine power characteristics and time
characteristics to forecast power consumption. �e e�ectiveness of the proposed method is proved using the ISO-NE dataset.
Experimental results indicate that the present method veri�ed more accurate prediction than LSTM-based methods.

1. Introduction

Load forecasts are based on the known demand for elec-
tricity and take into account the political, economic, cli-
matic, and other relevant factors to forecast future electricity
demand. Internet of things brings more extensive data access
to smart grid, making the data involved in prediction richer.
From an economic point of view, a load forecast is essentially
a forecast of electricity market demand [1]. In recent years,
renewable energy has grown considerably under the target
incentives and policy support of governments. Owing to the
high randomness of renewable energy, there is a trouble of
inaccurate forecasting on a longer time scale, which may
result in more conservative trading results in medium- and
long-term power trading, which is not conducive to the full
consumption of renewable energy [2]. �erefore, many
countries in the electricity market use medium- and long-
term contracts to lock in power generation and create
revenue. �en, they introduce electricity spot market con-
struction to promote direct participation of renewable en-
ergy in the market competitive transactions [3]. �e
electricity spot market consists of day-ahead demand,

composed primarily of �xed and price-sensitive demand
bids, as well as real-time demand, de�ned as the sum of
nondistributed load assets, station-served load assets, and
nonmetered load assets.

�e accuracy of load forecasting has a large impact on
electricity generators and operators. A forecast that is too
low may result in reduced revenue from electricity sales; a
forecast that is too high may result in poor utilization of new
generation capacity or even existing generation capacity.�e
medium-term load forecast has a forecast period of 1 month
to 1 year and is used for the preparation of long-term op-
erational plans for reservoir scheduling, unit maintenance,
exchange plans, and fuel plans. �e main methods of me-
dium-term load forecasting include dynamic averaging
based on extrapolation of time-series trends, exponential
smoothing, growth rate methods, grey forecasting, Markov
forecasting, and growth curve methods [4]. In medium-term
load forecasting, single-factor regression analysis and elas-
ticity coe�cient methods are used to take into account
unrelated factors, and forecasting methods for multi-
correlated factors include multiple regression analysis,
clustering forecasting, decision trees, and econometric
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methods. Machine learning techniques have developed
rapidly; they can establish complex nonlinear relationships
through a learning process involving trends in historical
data.

)e following studies highlight the latest advances in
forecasting future energy demand. Guan et al. [5] proposed a
method for the kernel function of the Gaussian process
model for long-term load probability prediction. Son et al.
[6] proposed that LSTM was used for medium- and long-
term load forecast. Omaji et al. [7] proposed a model to
predict the hourly load for the following month based on
historical hourly data and temperature data, and improved
entropy mutual information was used in the data pre-
processing. Dong et al. [8] proposed a new selective sequence
learning method to transform the multiyear long-duration
prediction problem into a sequence prediction problem with
multiple time steps. Also, a neural network prediction model
with singular spectrum analysis was proposed for the
problem of the decomposition prediction accuracy of
nonsmooth, nonlinear, and medium-term load sequences.
Further, Liu and Zhao [9] proposed a medium-term fore-
casting method considering economic and meteorological
factors. First, the monthly historical electricity consumption
is decomposed into long-term trend components, cyclical
components, seasonal components, and irregular compo-
nents using the seasonal decomposition method. )en,
based on electricity, meteorological, and economic data, a
support vector machine is used to forecast each component
separately and make a comprehensive forecast of the total
monthly electricity consumption. Zhang et al. [10] proposed
a medium- and long-term forecasting model that takes into
account the coordination relationship and lag effect of each
influencing factor. )e strongly correlated factors affecting
the load change are obtained through correlation matrix
screening. After obtaining the characteristic decomposition
part, the delayed effect test is used to determine the number
of lag periods, and the effect of data noise is removed using
principal component analysis. He et al. [11] presented a
probability density with a continuous conditional quantile
function to predict the medium-term electricity load for a
given day and introduced the concept of electricity load
density. Khatereh et al. [12] proposed a model for predicting
solar energy with a HMM to find the energy variation at a
specified time over consecutive days. Shang et al. [13] used
WNN and generalized regression to predict weather factors,
Elman neural networks, and the cuckoo search to optimally
predict wind speed. Finally, the variance analysis model was
presented to combine the forecast results of weather factors
and wind speed data. Shobana Devi et al. [14] presented an
integration prediction method to predict wind power to
improve the performance of the prediction. A modified
LSTM enhanced forgetting gate model was used to optimize
the parameters of the LSTM-EFG model using the cuckoo
search optimization algorithm for the prediction of subseries
data extracted from integrated empirical modal decompo-
sition. Xia et al. [15] improved GRU-RNN structure, and
improved training methods were used to improve robust-
ness. Yang et al. [16] proposed a multitask prediction
framework with BDL to quantify the uncertainty among

different groups. Mohsen et al. [17] using customers’ con-
sumption records at different times, proposed a reliable
procedure to check consumption changes. Florian et al. [18]
derived speed prediction curves taking into account indi-
vidual driving style characteristics and real-time traffic data
to obtain EV vehicle consumption predictions. Alonso et al.
[19] proposed a multilevel poly-time series clustering
method using several representative features to summarize
each time series to quantile autocovariance as well as simple
and partial autocorrelation. Qian et al. [20] proposed a
combination of simulation and transfer learning to improve
the prediction accuracy of thermal and cooling loads to
address historical data due to changes. Tanveer and Zhang
[21] introduced two novel deeply supervised machine
learning models, including a fitted stochastic feature ex-
pansion Gaussian kernel regression model and a nonpara-
metric KNN-based model for demand forecasting for
buildings and utility companies. Electricity demand was
forecasted in the medium-to-long term by analyzing cus-
tomers’ electricity consumption patterns to stabilize the
supply [6]. Nasir et al. [22] presented a mixture framework
of SVM, GRU, and CNN. GreyWolf optimization and
EarthWorm optimization were used to optimize the
hyperparameters of the SVM and CNN-GRU. Omaji et al.
[7] presented a method to forecast monthly hourly loads in
advance using hourly load and temperature data. An im-
proved entropic mutual information feature selection
method was used for data preprocessing, and CRBM was
used for load forecasting, while consumer behavior was
clustered using adaptive k-means.

)e transformer is a newmodel proposed in 2017 [23]. It
is based entirely on the attention mechanism and completely
discards the structure of CNN and RNN to solve the long-
range dependency problem of RNN and its variants. It has a
better memory, remembers information over longer dis-
tances, and supports parallelized computing. Its ground-
breaking ideas turn the previous equation of sequence
modeling with RNNs on its head. So, it has been widely used
in various areas of natural language processing [24, 25], but
it has been less used in load forecasting tasks.

For the above motivation, we propose a novel data-
driven method for medium-term power consumption
forecasting based on the transformer-lightGBM method,
which aims to further improve the accuracy of electricity
market forecasting for long time series. )e study’s key
contributions are as follows:

(i) A data-driven method is adopted to analyze the data
of the New England electricity market, including
missing value processing, outlier processing, holistic
analysis, and correlation analysis, and features
strongly correlated with medium-term electricity
consumption forecast are extracted for forecasting.

(ii) In this study, the transformer is used to capture the
features of the actual changes and fluctuating trends
of the load volume. For the feature in power con-
sumption forecasting, the transformer-lightGBM
method combines a multiheaded self-attentive
mechanism with a temporal modeling capability.
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)e transformer model can extract long-term
temporal relationships owing to its special multi-
headed attention structure, and lightGBM is an
integrated learning framework that integrates fea-
ture sequences with efficient adaptive boosting
capabilities.

(iii) In this study, we derive monthly and quarterly
power consumption from hourly demand forecasts.
Our proposed method allows for multitimescale
forecasting by paying attention to the selected
feature and the results of the feature forecasts, which
allows our method to improve the accuracy of
power consumption in the context of renewable
energy.

2. Summary Method

2.1. PCC. )e PCC is a characteristic quantity of a random
variable used to measure the linear relationship between two
continuous random normal variables, as shown in the fol-
lowing equations:

ρXY �
cov(X, Y)

σXσY

�
E [X − E(X)][Y − E(Y)]{ }

σXσY

�
􏽐

n
i�1 Xi − X( 􏼁 Yi − Y( 􏼁

������������

􏽐
n
i�1 Xi − X( 􏼁

2
􏽱 ������������

􏽐
n
i�1 Yi − Y( 􏼁

2
􏽱 ,

(1)

cov(X, Y) � E [X − E(X)][Y − E(Y)]{ }

� E(XY) − E(X)E(Y),
(2)

cov(X, Y) �
􏽐

n
i�1 Xi − X( 􏼁 Yi − Y( 􏼁

n − 1
. (3)

In the above formula, X and Y are stochastic variables,
ρXY is PCC, E is the expected value of the random variable,
cov is the covariance, cov (x, y) is the sample covariance, and
σX and σY are the standard deviations. )e PCC is a value
between −1 and 1. When the linear relationship between two
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Figure 1: Transformer architecture.
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Histogram ( ) = Histogram ( ) – Histogram ( )

Figure 3: Construct a histogram of a leaf.

Figure 4: Leaf-wise tree growth.
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variables is enhanced, the PCC tends toward 1 or −1, When
one variable increases and the other also increases, the PCC
is greater than 0. If one variable increases and the other
decreases, the PCC is less than 0. If the PCC is equal to 0,
there is no linear correlation.

2.2. Transformer Model. )e transformer model improves
the attention mechanism and discards gating models such as
LSTM, without the RNNs or CNNs. )e transformer uses a
stacked self-attention and an overall structure of point-to-
point fully connected layers in the encoder and decoder. )e
structure of transformer is shown in Figure 1.

)e proposed attention mechanism is derived from the
human visual processing mechanism. After visual input, not
all the information is processed, but the attention is focused
on a specific part. )e transformer is a Seq2Seq model, with
an encoder and a decoder, not an RNN. It is based on the
mechanisms of attention and self-attention.

Attention involves giving more weight to key infor-
mation. Here, we use the column vector X to represent the
input data and the sequence [x1, x2, . . . , xN] to represent the
relevant input vector. )e query vector q is given by the
attention mechanism to calculate its correlation with the

input vector. T ∈ [1,N] represents the position of the selected
input sequence. )e definition is shown in the following
equation:

ai � p(t � 1|X, q)

� softmax s xi, q( 􏼁( 􏼁

�
exp s xi, q( 􏼁( 􏼁
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,

(4)

where s is the function to calculate the score, and αi is the
distribution to the attention mechanism. In this study, the
scaled dot-product attention commonly used in the self-
attention model is used to represent the score function, as
shown in the following equation:

s xi, q( 􏼁 �
x

T
i q
��
d

√ , (5)

where dis the dimension of x. )e self-attention introduces Q
(query vectors to match others), K (key vectors to be matched),
V (information vectors to be extracted), and the scaled dot-
product as the function to generate dynamic weights, which is
also used to process sequences containing different lengths.

0.0006

0.0005

0.0004

D
en

sit
y

0.0003

0.0002

0.0001

0.0000
2000 3000 4000 5000

RT_Demand
6000 7000

Figure 6: Real-time demand density distribution.

D
en

sit
y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
7.4 7.6 7.8 8.0 8.2 8.4 8.6

RT_Demand

Figure 7: Real-time demand logarithmic density distribution.

Mobile Information Systems 5



)e transformer model adopts multihead self-at-
tention and positional encoding methods, so it can
process information from different locations of the ex-
pression subspace synchronously at different locations.
Multihead self-attention combined with some self-at-
tention layers provides joint computation. Moreover, as
the model does not contain convolutional and recursive
units, to learn from the sequences, it must make use of
the information about the sequence positions. )e

positional code layer appears only after the embedding
on the encoder side and the decoder side and before the
first block. In the absence of this, the transformer model
does not work. Position encoding is a unique component
of the transformer framework that complements the fact
that the attention mechanism itself cannot capture po-
sitional information.

In summary, multihead self-attention can be expressed
as shown in the following equation:
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2.3. LightGBM Model. LightGBM improves the performance
of the GBDT, and the optimal segmentation point based on the
histogram algorithm and leaf-wise decision tree growthmethod
with depth limitation is adopted. )e method eliminates most
samples with a small weight in the training process from the
perspective of sample reduction, and only the information gain
is calculated for the remaining sample data [26–28].

)e histogram optimization algorithm needs to convert
feature values into bin values in advance before training, that is,
make a piecewise function for the value of each feature, divide

the values of all samples on this feature into a certain segment
(bin), and finally convert feature values from continuous values
to discrete values. An intuitive example is shown in Figure 2.

)ere are many advantages to using histogram algo-
rithms. First, it reduces memory consumption, and it can
only store values after feature discretization.)us, the cost of
computing is dramatically reduced. )e histogram algo-
rithm only needs to calculate k, which can be considered as a
constant and the number of segments. )is way, the cal-
culated time complexity measure can be reduced from O
(data× feature) to O (k× feature).

)e histogram difference only needs to traverse k buckets
of the histogram. LightGBM can construct a histogram of a
leaf (the parent node is calculated in the previous round) and
get a histogram of its brother leaf at a fraction of the cost,
doubling its speed, as shown in Figure 3.

LightGBM adds a maximum depth limit to the leaf-wise
method to ensure high efficiency while preventing over-
fitting, as shown in Figure 4.
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)e gain function (G) of the splitting characteristic (j) at
point v is defined, as shown in the following equation:

Gj(v) �
1
S

Gj1(v) + Gj2(v)􏼐 􏼑,
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where P is the set of extraction, Q is the set of random
extraction, a and b are the extraction ratios, S is the value of

P∪Q, Sl is the set of data less than v, Sh is the set of data
greater than v, and gk is the opposite direction gradient of Xk.
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2.4.6ePowerConsumptionForecasting FrameworkBased on
the Transformer-LightGBM Method

2.4.1. Data Processing. )e dataset contains data from the
ISO-NE, from a selected Connecticut region [29]. Me-
teorological data are from [30]. )e data are from January
1, 2016, to March 31, 2021, with 46009 data records.

)e seasonal decomposition of the real-time demand
series is analyzed using the 2020 dataset as an example, and
the original, trend, seasonal, and residual series are shown in
Figure 5.

)e real-time power demand density distribution is
shown in Figure 6.)e data are still volatile, and we want the
fluctuations to be relatively stable; otherwise, it will be easy

Table 1: )e transformer-lightGBM parameter settings.

Model Parameters Value

Transformer

num_layers 2
d_model 256

num_heads 2
dff 256

input_vocab_size 8500
maximum_position_encoding 6

optimizer Adam
learning_rate 0.0001

loss mae
metrics mse

LightGBM

GridSearchCV (optimize the parameters method)

Estimator

objective Regression
boosting_type gbdt
n_estimators 81

metric rmse
boosting_type gbdt

objective Regression
learning_rate 0.3
num_leaves 50
max_depth 17
subsample 0.8

colsample_bytree 0.8
max_depth range (10, 30, 5)
num_leaves range (50, 170, 30)
learning_rate [0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01]

feature_fraction [0.5, 0.6, 0.7, 0.8, 0.9]
bagging_fraction [0.6, 0.7, 0.8, 0.9, 1.0]

subsample 1
min_samples_split 2
min_samples_leaf 1

num_leaves 110
max_depth 10
learning_rate 0.1

feature_fraction 0.8
bagging_fraction 0.8
bagging_freq 10

num_boost_round 531
early_stopping_rounds 200

Table 2: Real-time demand data and related data tables.

Data Input variable t

t real-time cleared demand

t-744/2208 day-ahead cleared demand
t-744/2208 real-time cleared demand
t-744/2208 day-ahead cleared LMP
t-744/2208 real-time cleared LMP

Transformer preprocessing features t+ 744/2208 day-ahead cleared demand (transformer predicted value)
t+ 744/2208 day-ahead cleared LMP (transformer predicted value)

Date features
Hour
Month
Holiday

10 Mobile Information Systems



to produce overfitting, so we want to process the data to
make it relatively stable. Here, we choose logarithmic var-
iation to make the data stable, as shown in Figure 7. After
logarithmic transformation, the data distribution is more
uniform, and the size difference is also reduced. Using such
labels is effective for the training model.

From the data-driven method for medium-term power
consumption forecasting, we analyze the ISO-NE hourly
dataset as a whole:

(i) Date Characteristics. Month and hour.
(ii) Meteorological Feature. Humidity, dry bulb tem-

perature, dew point temperature, and wind speed.
(iii) Power Market Characteristics. Day-ahead cleared

demand, day-ahead LMP (locational marginal
price), and real-time LMP.

)e overall analysis is shown in Figure 8.
)e data correlation analysis is shown in Figure 9.
From the data correlation, it can be seen that the highest

correlation coefficient is 0.97 for real-time demand and day-
ahead cleared demand, 0.45 for day-ahead LMP, and 0.45 for
per hour. So, we analyze the sequence features of day-ahead
cleared demand, day-ahead LMP, and per hour as the main
feature.

2.4.2. Medium-Term Power Consumption Forecasting Based
on Transformer-LightGBM. In this study, we consider the
deep relationship between the real-time market demand and
the day-ahead market demand and then design a multi-
variate model to predict the power consumption in the next
month and the next quarter based on deep learning. We
consider extracting the sequence features of the power spot
market by the transformer network. LightGBM gives the
final prediction.

)e overall research framework is shown in Figure 10,
and the processing schematic diagram is shown in Figure 11.
)e framework consists of three steps: data preprocessing,
feature extraction based on the transformer, and load pre-
diction based on lightGBM.

In this study, the transformer-lightGBM parameter
settings are listed in Table 1. A cross-validated grid search
method is used to optimize the parameters of the estimator
for lightGBM.

Processing of the real-time demand data and related data
is listed in Table 2.

)e method constructed in this study offers two main
improvements on the dataset feature extraction and
processing:

(i) )e prediction of the long time series of real-time
loads in the power market is transformed into su-
pervised learning in machine learning; that is, the
results of data of length T are predicted for time
points T+ 744 and T+ 2208 using data of length T.
After obtaining data with satisfactory accuracy, the
daily and monthly electricity consumption is cal-
culated based on real-time loads.

(ii) )e transformer-lightGBM method is built to ef-
fectively combine the variable timing processing
capabilities of the multihead self-attentive mecha-
nism with the ensemble learning model to increase
algorithmic accuracy, speed, and generalization
capabilities.

3. Experimental Results and Analysis

)e experimental environment is as follows: Python 3.7,
Tensorflow 2.3 GPU, NVIDIA GeForce 940MX graphics
card, Intel i5, 64 bit, and 12GB RAM. )e datasets for
experiment 1 and experiment 2 are annual hourly data from
ISO-NE, spanning 1916 days from January 2016 to March
2022.

In this experiment, parameter setting for comparison
methods is listed in Table 3.

Table 3: Parameter setting for comparison methods.

Model Parameters Value

CNN-LSTM

input 0
conv1d 48

max_pooling1d 0
dropout 0
dense 17

CNN-BiLSTM

input 0
conv1d 48

max_pooling1d 0
dropout 0
bilstm 4224
multiply 0
dense 33

CNN-ATT-LSTM

input 0
conv1d 48

max_pooling1d 0
dropout 0

attention_vec 1056
multiply 0
dense 33

CNN-ATT-BiLSTM

input 0
conv1d 48

max_pooling1d 0
dropout 0
bilstm 4224

attention_vec 1056
multiply 0
dense 33

Table 4: Real-time demand forecasting evaluation on the testing
set.

Time From March 1, 2021, to March 31, 2021
Statistical metrics cmae (kW) cmape (%) crmse (kW)
CNN-LSTM 300.89 11 359.64
CNN-Bi LSTM 312.22 11.36 384.87
CNN-ATT-LSTM 306.96 11.21 374.71
CNN-ATT-BiLSTM 297.89 10.68 380.56
Proposed method 273.59 9.33 330.09
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Figure 12: Real-time demand forecast from March 1, 2021, to March 31, 2021.
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Figure 13: Power consumption forecast for the next month from January 1, 2021, to March 31, 2021.
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)e APE in equation (8), the MAPE in equation (9), the
RMSE in equation (10), and the MAE in equation (11) are
used:

APE �
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Pipre means the predicted data, Pireal means the actual
value, and N means the totality.

3.1. Experimental 1: Power Consumption Monthly Forecast.
In the experiment, power consumption is forecasted for
744 points in March 2021. Datasets from January 1, 2016,
to January 31, 2021, are used as the training datasets,
datasets from February 1, 2021, to February 8, 2021, are
used as the validation datasets, and datasets from March
1, 2021, to March 31, 2021, are used as the testing
datasets. )e prediction results of methods are listed in
Table 4. Figure 12 shows the comparison of the real-time
demand for each method from March 1, 2021, to March
31, 2021.

It shows the presented approach can provide a better fit
to the actual demand in the forecast curve. In especial, the
presented method can capture occasional fluctuations.
However, the other compared methods show different de-
viations in the form of sudden changes or peaks. From the
experiment 1 results, it can be seen that the presented
method improves the prediction accuracy of real-time de-
mand for the coming month.

Based on the predicted real-time demand at 744 hourly
points in the future, we can draw the daily total power

Table 5: Real-time demand forecasting evaluation on the testing set.

Time From January 1, 2021, to March 31, 2021
Statistical metrics cmae (kW) cmape (%) crmse (kW)
CNN-LSTM 353.86 11.12 432.17
CNN-BiLSTM 443.20 14.04 527.65
CNN-ATT-LSTM 367.80 11.52 444.96
CNN-ATT-BiLSTM 473.44 15.37 595.91
Proposed method 248.99 8.53 300.84
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CNN_Bi_LSTM
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CNN_Bi_ATT_LSTM
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Figure 14: Real-time demand forecast from January 1, 2021, to March 31, 2021.
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Figure 15: Power consumption forecast for the next quarter from January 1, 2021, to March 31, 2021.
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consumption curve for the next months (March 1, 2021, to
March 31, 2022), as shown in Figure 13.

3.2. Experimental 2: Power Consumption Quarterly Forecast.
In this experiment, real-time electricity demand is forecasted
for 2208 points in March 2021. )e training set runs from
January 1, 2016, to September 31, 2020, the validation set
runs from October 1, 2020, to December 31, 2020, and the
test set runs from January 1, 2021, to March 31, 2021.

)e prediction results of each model are listed in Table 5.
Figure 14 shows the comparison of the demand from Jan-
uary 1 to March 31, 2021. It shows the presented method can
provide a better fit to the actual demand power in the
forecast curve. From the experiment 2 results, it can be seen
that the method proposed in this study improves the pre-
diction accuracy of power consumption for the next quarter.

Based on the predicted real-time power demand at 2208
hourly points in the future, we can draw the daily total power
consumption curve for the next three months (January 1,
2021, to March 31, 2022), as shown in Figure 15.

4. Conclusion

In this study, we have presented a novel data-driven ap-
proach to forecast medium-term power consumption with
transformer-lightGBM, which is summarized as follows:

(1) A data-driven approach was adopted to analyze the
data of the ISO-NE, and we derived monthly and
quarterly power consumption from hourly demand
forecasts. Our proposed method allowed for multi-
timescale forecasting by paying the attention to se-
lected features.

(2) A novel method for medium-term power con-
sumption forecasting based on transformer-
lightGBM was designed and improved. We used a
model architecture consisting of monthly and
quarterly forecasts.

(3) )e experimental results show that the proposed
method verifies more accurate predictions than
LSTM-based methods, such as CNN-LSTM, CNN-
BiLSTM, CNN-ATT-LSTM, and CNN-ATT-
BiLSTM.

Abbreviations

LSTM: Long short-term memory neural network
Transformer: Transformer neural network
LightGBM: Light gradient boosting machine
ISO-NE: US New England electricity market
MSE: Mean squared error
MAE: Mean absolute error
MAPE: Mean absolute percentage error
RSME: Root mean square error
HMM: Hidden Markov model
GRU: Gated recurrent unit
RNN: Recurrent neural network
BDL: Bayesian deep learning
SVM: Support vector machine

CNN: Convolutional neural network
CRBM: Conditional restricted Boltzmann machine
PCC: Pearson correlation coefficient
GBDT: Gradient boosting decision tree
WNN: Wavelet neural network
CNN-LSTM: Convolutional and long short-term

memory neural network
CNN-
BiLSTM:

Convolutional and bidirectional long short-
term memory neural network

CNN-ATT-
LSTM:

Convolutional and LSTM with attention
mechanism neural network

CNN-ATT-
BiLSTM:

Convolutional and bidirectional LSTM
with attention mechanism neural network.
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