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Most of the popular translation models are based on encoder-decoder architecture and belong to the autoregressive translation
model. When autoregressive translation models decode, they generate the current sequence according to the sequence generated
before. This process is not parallel. The generalized maximum likelihood ratio detection (GLR) algorithm model cannot effectively
guarantee the overlapping and accurate results of English translation detection. To improve the recognition rate of English phrases
and meanings, this paper proposes an intelligent model for English translation recognition based on embedded machine learning
and an improved GLR algorithm. A corpus of 520000 English phrases is used for training. And we compare and analyze different
corpora and compare GLR algorithm with other traditional algorithms. Words and phrases are based on analytic linear structure.
The syntactic function of the table corrects the ambiguity between English and Chinese structures in some speech recognition
results and finally retains the recognition content. The research shows that the recognition accuracy based on the improved GLR
algorithm is more than 96.58%, which is 23% higher than the classical GLR in semantic recognition. Statistical algorithm and
dynamic storage algorithm make it more suitable for intelligent translation and provide a new model method for intelligent

machine translation.

1. Introduction

Although most of the current translation models are em-
bedded machine learning models, which are also widely used
in many generation tasks, there are also significant short-
comings in the process of the English-Chinese translation of
autoregressive translation models. For example, the fitting
degree of data in regression model is not high, and sentences
cannot be translated completely. Using the current trans-
lation models will easily lead to data sparsity and overfitting
problems, and the lack of semantic information will affect
the dependency of context information; thus, the quality of
English-Chinese translation is not high. The decoding
process of the embedded machine learning model is serial
output, the current sequence depends on the previously
generated sequence, which leads to high generation time
complexity, and it usually takes a long time to generate with
GPU. Therefore, it is necessary to propose an intelligent
English translation model based on embedded machine

learning and improved GLR algorithm to improve trans-
lation efficiency.

Chiang translates the original Hindi documents into
English through a machine translation system and then uses
an interactive system based on English for multi-document
summarization and title generation to realize cross-language
summarization generation [1]. Bai considers that applying
translation regularization to the model can effectively im-
prove the robustness of the model. Therefore, language
constraints are imposed on the RC model through trans-
lation regularization [2]. Ren et al. first use the monolingual
summarization method to generate source language text
summarization and then use machine translation to generate
target language summarization [3]. To avoid the influence of
error accumulation, Su et al. proposed a joint optimization
model of machine translation and summarization and re-
alized the cross-language summarization of zero-shot [4]. Its
core idea is to construct a linear system from translation to
abstract or from abstract to translation. Liu et al. first
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proposed to use the GLR framework to generate cross-
language abstracts. That is, input the original text of the
source language directly to decode the cross-language ab-
stract, and use the cross attention from the encoder to the
decoder to achieve the alignment of the two languages [5].
Sutskever et al. further improve the way of translation in-
tegration by combining neural network model with an
external probabilistic bilingual dictionary to improve the
performance of cross-language summarization [6]. It can be
found that many scholars’ researches only optimize the
framework of translation model, but there is no real algo-
rithm to refine the translation model.

Based on shared machine translation encoder, Vaswani
et al. introduce phrase-based statistical machine translation
(SMT) model which is robust to noise data as translation
regularization to guide the unsupervised NMT model
training in the process of reverse translation; existing
Bayesian models, especially nonparametric Bayesian
methods, rely on special priors and domain knowledge to
discover and improve potential representations [7]. Al-
though a priori can affect the translation distribution
through the Bayesian theorem, it may be more direct to
directly apply the regularization term to the translation
distribution, which is more natural and easier in some cases.
Therefore, Luong et al. proposed a Bayesian translation
regularization reasoning framework with expectation con-
straints [8]. Yoon and Alexander proposed a general con-
strained translation regularization framework, which added
additional knowledge as translation constraints to model
training. Translation regularization separated model com-
plexity from structural constraint complexity and effectively
integrated indirect learning by constraining the translation
distribution of probabilistic models with potential variables,
thus improving the computational efficiency of the model
[9]. In Chris et al.’s model, the super-parameter B is usually
real value, but it is difficult to constrain the feature expec-
tation effectively by specific super-parameters [10]. Al-
though the above research based on machine translation
cross-language summarization method can use monolingual
summarization and machine translation model, it is affected
by the error accumulation of two independent subtasks. The
error of the previous step will affect the performance of the
next step, which restricts the quality of translation.

Based on embedded machine learning and an improved
GLR algorithm, this paper proposes an intelligent model to
recognize English translation. A corpus of 520000 English
phrases is used for training. The innovations of this paper are
as follows: (1) this paper proposes a method of Chinese-
English cross-language translation generation for embedded
machine learning based on word alignment; (2) based on the
embedded machine learning method of the Chinese-English
bilingual dictionary, bilingual word vectors are aligned in the
same semantic space; (3) the target language translation is
obtained by decoding the bilingual context vector based on
the attention mechanism. Words and phrases are based on
analytic linear structure. The syntactic function of the table
corrects the ambiguity between English and Chinese
structures in some speech recognition results and finally
retains the recognition content.
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2. Experiment and Method

2.1. Experimental Environment and Settings. This experi-
ment uses CentOS 7.4 operating system, 16 GB memory, i7
8700k processor, and two NVIDIA P40 graphics cards.
CentOS Linux distribution is a stable, predictable, man-
ageable, and reproducible platform, which is compiled from
the source code released by Red Hat Enterprise Linux
(RHEL) according to the open-source code (mostly GPL
open-source protocol). This article uses Tensor2Tensor
which is open source of Google. The tool trains the model
and rewrites the data processing part of the model. For the
comparability of experimental results, GLR is used in all
systems_Base parameters; using a single GPU training,
benchmark model training iterations are 200000 steps, and
other subsystem training iterations are 100000 steps. At the
end of the training, the last 30 rounds of training model
parameters are averaged. The settings of the parameters in
the experiment are those commonly used in previous
studies. For the samples in this experiment, such parameters
can be optimized more effectively.

2.2. Embedded Machine Learning Parallel Translation.
The parallel translation is a bilingual or multilingual corpus
composed of the source text and target text. Parallel
translation can be divided into vocabulary level, phrase level,
sentence level, paragraph level, and text level. Parallel
translation contains rich linguistic knowledge, which can
provide data support for many natural language processing
(NLP) tasks, such as machine translation, bilingual dictio-
nary construction, word sense disambiguation, and cross-
language information retrieval. Large-scale and high-quality
parallel translation can greatly improve the performance of
these NLP tasks. Manual construction of a parallel trans-
lation library can ensure the quality of data, but the data are
not easy to form scale and expensive, so people often use
computer technology to collect parallel translation, which
can save time and effort and ensure large-scale production
[11]. In addition, the emergence of neural machine trans-
lation makes the translation quality of machine translation
reach a new height. Extracting features from machine
translation and building a parallel translation library based
on multi-translation engines are also the development trend
of the construction of parallel translation libraries [12].
Sentence alignment refers to the process of finding the best
mapping relationship by using the characteristics of sen-
tences from texts with the same or comparable content
expressed in different languages, to find out the mutual
translation sentence pairs [13]. In the construction process
of parallel translation library, parallel translation at the next
level or paragraph level is relatively easy to obtain. The
source language end and target language end of a text or
paragraph are divided into sentences, respectively, then the
parallel sentence pairs can be obtained by using the sentence
alignment technology, and then the parallel translation at
the lexical level or phrase level can be obtained by using the
word alignment technology [14]. The performance of sen-
tence alignment determines the quality and scale of the
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sentence-level parallel translation library [15]. Therefore,
sentence alignment has important application value and is of
great help to the research of corpus-based NLP tasks [16].

2.3. Improved GLR Algorithm for English Sentence Alignment

2.3.1. Length-Based Method. The length-based method is an
earlier and more widely used method, and its calculation
principle is mature. This method calculates the similarity of
bilingual sentence pairs according to the length of charac-
ters, the number of words, or the number of bytes in the
sentence. The feature extraction is simple, and the alignment
performance is good on the language pairs of the same
language family, but other semantic features are ignored.
Here, it is defined according to the constraint feature f (x, )
and its expectation [17]. Here, it should be noted that
constraint features never appear in the model. Consider a
specific example; in the process of natural language learning,
we hope that the model can be biased learning; that is, each
sentence is marked with at least one verb. Therefore, the
information is encoded, the constraint feature is defined, and
the expectation of the feature is at least R [18]. Here, to keep
consistent with other discussion and standard optimization
literature, the equivalent representation is used here.

1
R:—Tln(l+/3). (1)

The expected value is less than k, and the specific ex-
pression is as follows:

k,[i] = Z cos(wil, w?) 2)
i

In practice, applying this constraint to the model will
break the first-order Markov property of the distribution.
Therefore, each sentence is required to contain at least one
noun, so additional constraints are usually imposed in the
model [19]. To ensure the efficiency of the algorithm, the
constraint feature u is usually required as the sum
decomposition.
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2.3.2. Method Based on Mutual Translation Information.
This method focuses on the mutual translation information
of words in the dictionary or the mutual translation in-
formation of sentences obtained by the machine translation
engine for sentence alignment. Although the accuracy is
high, the alignment speed is slow, and the alignment effect
depends heavily on the scale and quality of the bilingual
dictionary or the performance of the translation engine.
Although the GLR model achieves the parallel output of the
decoder by improving the encoder structure, which greatly

improves the speed of machine translation, the decoding
stage is completely independent, and in the actual transla-
tion, the final translation sentence is not conditional inde-
pendent. The conditional independence hypothesis stops the
translation model from correctly capturing the highly
multimodal distribution of the target translation. Ignoring
the context information of the target language in the model
will lead to insufficient semantic information of the target
language and reduced translation effect [20]. Knowledge
machine learning methods can solve this problem to a
certain extent. Knowledge machine learning processing of
data sets can maintain the original generation rate and
further improve the effect of translation [21]. Therefore, we
apply the knowledge machine learning method to improve
the defects of the GLR model. The specific process is as
follows: first, we need to train an autoregressive machine
translation model as a GLR model. To set up conveniently,
we use the GLR model as a GLR model; next, with the help of
the GLR model, cluster search is carried out on the training
set to build a new corpus, namely, machine learning data set;
finally, the machine learning data set is applied to the GLR
model, and the negative log-likelihood function is used for
training to improve the GLR model translation effect [22].
The implementation process is shown in

pltls) =a+BInT,-1+v,+S,, (4)

qtls) =a+BIn T, -1+¢X, - 1+v,+1, (5)

where p(ts) is the sequence-level distribution, g(#|s) is the
sequence distribution of GLR model on the possible samples
and takes the approximate value, and Uy is the machine
learning data set generated by cluster search with GLR
model [23]. This paper analyzes the role of the knowledge
machine learning method in machine translation and the
reasons why knowledge machine learning can promote it.
Understanding the principle of knowledge machine learning
has a great positive effect on this experiment. With the help
of cluster search of GLR model, knowledge machine learning
of data sets can reduce the complexity of data sets and the
dependence of target end on context, better help GLR
translation model simulate the change of output data, and
then improve the translation effect of GLR model [24].

2.3.3. Hybrid Method. This method combines the length
method and the mutual translation information method.
Firstly, several candidates’ bilingual sentence pairs are
obtained by using the sentence length method. Then, the
mutual translation information method is used to test the
similarity of the candidate bilingual sentence pairs, and
the highest score is selected as the optimal sentence.
Indirect learning is realized by constraining the transla-
tion distribution of the structure. The basic idea of the
model is to use the KL deviation between the expected
distribution containing prior knowledge and model
translation to punish the log-likelihood of the neural
translation model. The translation regularization likeli-
hood is defined as
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where x and H are the super-parameters of the model to
balance the differences between the likelihood function and
the translation regularization. Q is the set of constrained
translations.
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where (x, y) is the constraint feature and B is the expected
bound of the constraint feature. In this paper, constraint
features are used to encode structural deviation, a set of
effective distributions are defined according to the expec-
tation of constraint features, and then effective reasoning is
carried out. However, the main difficulty in applying
translation regularization directly to neural machine
translation is that in machine translation, the super-pa-
rameter B is usually real value, but it is difficult for specific
super-parameters to effectively constrain feature expectation
[25]. It is difficult to set an appropriate threshold NMT for all
sentences in the training data because the penalty values of
different sentences are quite different.
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In addition, the proposed min-max algorithm contains
an additional step to calculate QT, which significantly in-
creases the training time compared with the standard NMT,
and any prior knowledge is still challenging. Suppose there is
an X satisfying
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2.3.4. Method Based on Neural Network. This kind of
method is mainstreamed at present. Firstly, the source
language sentence and the target language sentence are
mapped into a fixed-length vector representation at the
sentence level, and then the similarity of the vector is cal-
culated to determine whether the source language sentence
and the target language sentence are aligned. This method
benefits from the strong representation ability of neural
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networks, and the accuracy and efficiency of sentence
alignment are better than traditional methods, but the vector
representation of sentences depends on the pretraining
model [26, 27]. In this paper, the best pretraining is in-
troduced into the sentence alignment method, and features
are extracted by bidirectional GLR. Each word is composed
of three vectors: position information vector, word infor-
mation vector, and sentence information vector. These three
vectors are superimposed as the final word vector to rep-
resent the semantic information of words and then imple-
ment two-way measurement between the source language
sentence and the target language sentence, and integrate
BLEU score, cosine similarity, and Manhattan distance for
sentence alignment [28]. Experimental results show that the
proposed method can achieve better sentence alignment and
high-quality parallel translation. Make XW the closest to Z,
and use Euclidean distance to evaluate as follows:

XW, = tanh (w.x, + u.(r,®h,_,) + Z,),

B, =2,0h,_; + (1 - z,)®h,,
(10)
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Because each word consists of three vectors: position
information vector, word information vector, and sentence
information vector, it is necessary to normalize the maxi-
mum cosine length of word vector.

“1-p (11)
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Through the above operation, the matrix W is obtained
to embed and map the two languages, and the cross-lan-
guage word vector is obtained, which reduces the reasoning
distance between the two languages and improves the effect
of machine translation. Among them, the inference distance
of translation indicates the difficulty and task of translation.
Reducing the inference distance can improve the effect of
machine translation.

3. Results and Analysis

3.1. Machine Learning English Translation Recognition
Analysis. As shown in Figure 1, the complexity of the model
is reflected in many aspects, and there are more connections
in content, while in structure, it is more on the translation
model of words, as follows: the translation regularization
framework can add additional knowledge to the model
training as the translation constraints of the model and
separate the model complexity from the structural constraint
complexity in this way. Through decomposable regulari-
zation of translation moments of potential variables in the
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FIGURE 1: Model complexity and structural constraint complexity.

learning process, the computational efficiency of the un-
constrained model is maintained under the premise of ex-
pectation constraints. Since the application of translation
regularization is usually more direct, it is also more natural
and easier in some cases. The structured and weak machine
learning probabilistic translation regularization framework
effectively integrates indirect learning by constraining the
translation distribution of probabilistic models with po-
tential variables. The improved method based on this
method, unsupervised translation regularization, and
Bayesian-based translation regularization are proposed one
after another, and several kinds of algorithms are summa-
rized in detail in the following.

As can be seen from Figure 2, the F1 value and recall rate
of natural language processing methods are kept in a good
level range, which also indicates that supervised machine
learning technology has achieved great success in the fields
of natural language processing, computer vision, and
computational biology. Unfortunately, they often need to
create large problem-specific training corpora and make the
application of these methods expensive. In addition, it is
often necessary to access some external problem-specific
information that is not easy to use directly, such as training
data with noise for different languages. Or there may be a
domain expert to guide human learners, rather than simply
creating an IID training corpus. A key challenge for weak
machine learning is how to integrate the auxiliary infor-
mation generated by indirect supervision effectively. It is
very important to develop a new framework that can ef-
fectively integrate any prior knowledge into neural machine
translation (NMT).

As shown in Figure 3, the corpus is preprocessed, the
vector is generated by the encoder, the vector and the source
language information are processed by the decoder, and the
translation result of the target language is obtained. Tra-
ditional NMT models, whether based on recurrent neural
network (RNN) or GLR, can be classified as embedded
machine learning models. The autoregression here means
that the model is translated word for word from left to right
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FIGURE 2: The cost of natural language processing methods.

when the target statement is translated, and the current
submodel needs to rely on the last generated word, which
leads to the fact that the encoder-decoder model can only
translate word for word and the decoder cannot output in
parallel. Compared with the autoregressive translation
model, the non-autoregressive translation model overcomes
the defect that the embedded machine learning model relies
on context output. With the improvement of an encoder, the
parallel output is realized, which greatly improves the
generation rate.

As shown in Figure 4, with the help of crossword em-
bedding and knowledge machine learning technology, En-
glish and Chinese corpora are processed accordingly to
alleviate the dependence between source and target, data
sparsity, and overfitting problems. The non-autoregressive
translation model has both high accuracy and a high gen-
eration rate. Based on the improvement of the GLR
translation model, this paper proposes the application of the
non-autoregressive GLR model (GLR) in machine transla-
tion. Under the same conditions, compared with the GLR
model, the GLR translation model is much faster than the
GLR model in terms of generation rate. This is because the
encoder is improved and a fertility module is added to count
the occurrence times of each word in the source sentence,
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then the length of the target sentence is obtained, and the
translation parallel output is realized by taking the fertility
and the copy of the source sentence as the input of the
decoder. However, it will also lead to the decline of trans-
lation accuracy. With the help of knowledge machine
learning, the dependence between the source language and
the target language will be reduced, and the translation effect
and generation rate will be improved simultaneously.

As shown in Figure 5, we have 1.2 million English-
Chinese parallel translations as experimental data and do a
comparative experiment on general BPE processing and
knowledge machine learning processing of English-Chinese
corpus. It makes word vectors with similar meaning but
from different languages has similar word vector repre-
sentation, and narrows the representation gap between the
two languages. The model can infer the meaning of words
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of them and then train them to get a kind of linear mapping,
minimize the distance between the equivalents listed in the
bilingual dictionary, and get the general vector space.

As shown in Figure 6, the self-attention layer encoder-
decoder model needs to generate an embedding vector for
the input data. After the embedding vector is obtained, it is
input to the coding layer. After the self-attention layer
processes the data, it inputs the data into the feedforward
neural network. The calculation process can be processed in
parallel, and the output will be input to the next encoder.
After the final encoding is completed, it is input into the
decoding layer. After all the decoding layers are executed, a
full connection layer and softmax layer are used at the end to
get the corresponding word with the maximum probability
value, which is our translation result.

As shown in Figure 7, all models are trained according to
the environment and parameters, and the loss and BLEU
values of the training set and verification sets are visualized.
Although the loss of the baseline system decreases from 6 to
2 with the training of the model, the overall loss range is still
greater than 2. After using the partition strategy, the loss
effect of the interval submodel is the same, and the training
loss of the interval submodel is the smallest. The training loss
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of each submodel after the partition strategy is less than that
of the benchmark system, which shows that the training of
each submodel is better than that of the benchmark system.

3.2. GLR Translation Training. Training loss represents the
training situation of the model, while BLEU value represents
the efficiency and effect of training. As shown in Table 1, the
training loss and BLEU value of the interval submodel
fluctuates greatly, because the interval submodel generally
contains a large number of short sentence, and with the
increase of training times, the loss increases greatly, and the
large attenuation of BLEU means that the interval submodel
has the problem of overfitting. Although the submodel of
interval does not change as much as the submodel of an
interval, it can be observed that the BLEU value decays with
the increase of training times. However, the two submodels
of long sentence intervals show a better effect, and the
submodel of the interval is better than other models in terms
of loss and BLEU value.

Sentence length is reflected in the number of words in
the data set. As shown in Table 2, sentence length does have a
certain impact on training and testing. In the training set, the
interval submodel with a large number of short sentences
has a prominent effect, while in the verification set, the short
sentence model will be overfitted due to too many training
times, and the effect will decay seriously. The submodel with
a large number of long sentence intervals has a good
translation. In this paper, we use different sentence lengths
to test different model translations, to improve the trans-
lation effect.

As shown in Figure 8, most of the translation models
have high computational costs, and the time consumption
increases rapidly while obtaining a high translation effect.
The non-autoregressive GLR translation model can effec-
tively solve this problem and shorten the time consumption,
but it will lead to the decline of the translation effect.
Therefore, this paper focuses on the GLR translation model,
studies the role of cross-language word embedding and
knowledge machine learning in the translation process, and
makes a comparative analysis of the experimental results of
each method. The experimental results show that the GLR
translation model with knowledge machine learning pro-
cessing can improve the effect of English translation com-
pared with the GLR translation model while maintaining low
time consumption. However, knowledge machine learning
also has some shortcomings. Knowledge machine learning
reduces the dependence between the source language and
target language, which may cause the problem of insufficient
semantic information in translation generation. Therefore,
in the next study, we consider whether unsupervised
knowledge machine learning method and source-target
corpus alignment can be added to model training, and in-
tegrating more semantic information to further improve the
effectiveness of the English translation is the focus of future
work.

As shown in Figure 9, the characteristics of machine
learning technology make it difficult to explain the result,
which leads to the “trust” problem, which is contradictory to
the high-reliability operation requirements of the GLR
system. With the complexity of the current neural network
architecture, the problem becomes more and more
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prominent. For this reason, some classical machine learning
techniques (such as decision tree and regression analysis) are
still widely used in engineering practice. This is because the
maturity, stability, and interpretability of these technologies
are relatively high. Compared with the “black box” deep
network, these technologies are friendly to operators, which
is also one of the important differences between engineering
practice and theoretical research. Therefore, in engineering
practice, we should not blindly pursue the complexity of the
model, we should consider the complexity of practical
problems, the availability of data, and other factors, and
reasonably select the machine learning model.

As shown in Figure 10, in addition to the interpretability
problem, reinforcement learning technology continuously
interacts with the environment to learn knowledge, which
may bring large trial and error costs in the GLR system. In
addition, the model training of reinforcement learning is
time-consuming, parameter adjustment is difficult, and the
generalization ability of the model is weak, which restricts its
engineering application in the GLR system to a certain
extent. At present, reinforcement learning technology is
mainly used in the scenario of a high fault tolerance rate at
the end of the power grid; even if there is a wrong decision, it

will not cause significant economic losses. But at the same
time, it should be noted that compared with the traditional
physical model, the reinforcement learning model has
stronger adaptability to environmental changes, and it still
has in-depth research value in the field of power distribution
and consumption.

As shown in Figure 11, the GLR system operates in a
stable state in most cases, with fewer fault states and cor-
responding fault sample data. And these few fault samples
are often more valuable for research. On the contrary,
machine learning technology usually needs a large number
of sample data for training to learn the rules, which leads to
the challenge of dealing with these “outliers.” Therefore, it is
of great significance to study the technology of small samples
and data enhancement. In addition to prediction technology,
machine learning technology in the field of power distri-
bution planning theoretical research and engineering ap-
plications are relatively small. Part of the reason is that the
real-time requirement of the planning problem is low, the
planners have enough time to carry out detailed simulation
analysis and optimization model solving, and the depen-
dence on machine learning technology is low. In addition,
the planning problem requires the results to be strongly
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FIGURE 7: Model training and its loss value.
TaBLE 1: Training loss and BLEU value.
Item Accuracy Precision Recall rate F1 score Filter task Regularization
Sentence 491 5.41 0.9 1.87 6.43 9.53
Referential 6.42 6.78 2.97 3.48 6.75 14.72
List mode 7.83 9.03 3.45 4.02 6.9 9.38
Global label 8.19 8.22 3.15 5.76 8.41 8.12
Translation 8.21 10.21 4.76 8.18 9.47 10.9
Return 9.14 12.65 6.87 7.78 8.78 8.22
TaBLE 2: The impact of sentence length on training and testing.
Data set Conjunction Discourse connectives Vocabulary Neutral emotion Global
1000 4.19 5.78 4.97 4.03 3.78
2000 6.57 8.6 4.98 6.88 6.41
5000 6.4 10.49 5.43 8.2 7.07
10000 7.08 10.32 8.37 11.16 6.15
20000 7.08 11.49 10.9 12.43 7.75
30000 6.74 11.25 10.24 15.14 9.62

interpretable, which also conflicts with the “black box”
feature of machine learning. However, a small number of
researchers have begun to focus on generating feasible feeder
topology through machine learning technology to improve
the efficiency of planning. This provides a new idea for
research in the field of planning.

As shown in Table 3, when the fusion weight and
threshold of BLEU value and cosine similarity are fixed, the
accuracy rate, recall rate, and F1 value of Manhattan distance
are in the fusion weight y1, so the fusion weight parameter

value of Manhattan distance is 0.1. When the fusion weights
of BLEU value, cosine similarity, and Manhattan distance
are fixed, the accuracy rate, recall rate, and F1 value of the
threshold intersect when the threshold tends to 0.9, and the
accuracy rate and F1 value show an upward trend with the
increase of the threshold, so the final threshold is set as 0.9.
Among the three similarities, cosine similarity has the
greatest impact on the quality of sentence alignment, fol-
lowed by BLEU similarity, and Manhattan distance has the
least impact.
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As shown in Figure 12, this paper combines BLEU
similarity, cosine similarity, and Manhattan distance to
maximize the advantages of these three similarity mea-
surement methods. For each similarity, the fusion weight of
this paper is between 0.1 and 0.9.90% noise data are added
into 1000 English-Chinese parallel sentence pairs to con-
struct a comparable corpus set. The proposed method is used
to align sentences, and the optimal fusion weight and

filtering threshold of each similarity are compared. The noise
data come from an English-Chinese data set.

As shown in Table 4, when the fusion weight and
threshold of cosine similarity and Manhattan distance are
fixed, the accuracy rate, recall rate, and F1 value of BLEU
value similarity are in the fusion weight a7, and F1 value
reaches the maximum value at this point, so the fusion
weight parameter value of similarity is 0.7. When the fusion
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TaBLE 3: Cosine similarity and Manhattan distance fusion value.
Item Vocabulary module Sentence conjunction Clause Vocabulary Filter task
Accuracy 8.28 9.84 6.73 7.92 1.41
Precision 7.66 7.4 6.09 8.63 4.14
Recall rate 4.99 6.46 5.18 6.29 3.98
F1 score 3.14 6.1 3.78 4.39 4.53

weight and threshold of BLEU value and Manhattan dis-  between 0.8 and 0.9 39, so the fusion weight parameter value
tance are fixed, the accuracy rate, recall rate, and F1 value of  of cosine similarity is 0.9.

cosine similarity are higher in the fusion weight 8. When it is Using any one or two methods of BLEU similarity,
between 0.8 and 0.9, it intersects, and the recall rate is  cosine similarity, and Manhattan distance, the experimental
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TaBLE 4: Similarity and Manhattan distance fusion weight and threshold.
Data set Neutral Conjunction Sentence Referential List mode Global
1000 1 2.74 4.98 6.57 8.89 8.6
2000 0.56 5.37 5.84 6.4 8.64 10.49
5000 2.76 6.57 7.66 7.08 8.46 10.32
10000 5.05 9.28 6.77 7.08 8.47 11.49
20000 4.83 8.79 6.55 6.74 11.01 11.25
30000 6.3 11.16 7.88 8.62 11.72 10.36

results are not as good as the three similarity methods based
on Bert bidirectional fusion proposed in this paper, and the
accuracy and F1 value of this method are higher than other
similarity fusion methods. Experimental results show that
compared with the single similarity calculation method
between vectors, the proposed method effectively combines
the advantages of three kinds of similarity. To evaluate the
performance of the proposed method in filtering sentence
pairs in the parallel translation library, a parallel translation
filtering experiment is carried out in 1000 parallel sentence
pairs through the proposed sentence alignment method and
the classical sentence alignment method.

4. Discussion

This paper selects the two most classic sentence alignment
methods as a baseline for comparison. Because the exper-
iment is the filtering task of a parallel translation library, the
accuracy rate is 100%, only the recall and F1 values are
analyzed. The recall rate and F1 value of the BLEU align
method are almost equal to the champion method. The recall
rate and F1 value of the proposed method are 97.84% and
98.91%, respectively, in the parallel translation library fil-
tering task because of the integration of multiple similarities
and complementary advantages. The alignment effect of the
proposed method is much better than that of the two
baseline methods. The experimental results show that the
proposed method calculates the similarity between sentence
vectors from different perspectives so that more word-level
information can be fully utilized in the calculation of

sentence pair similarity, and more high-quality bilingual
parallel sentence pairs can be extracted from a large number
of bilingual parallel translation. To evaluate the performance
of the proposed method in filtering sentence pairs in
comparable corpora, this experiment adds noise sentence
pairs to 1000 parallel sentence pairs, so that the noise ratio is
20%, 50%, and 90%, respectively. The noise data come from
Enzo sentence pair each. The proposed method is compared
with the classical method in corpus filtering. In the com-
parable corpus filtering task, when the noise ratio is 20%,
50%, and 90%, the accuracy of the proposed method is
higher than the BLEU align method and champion method.
The alignment effect of our method is much better than that
of the baseline method in the comparable corpus filtering
task. Mining parallel sentence pairs from the large-scale
comparable corpus and considering sentence similarity
information from multiple perspectives and granularity can
also extract high-quality bilingual parallel sentence pairs
from a large number of the bilingual comparable corpus.

In this paper, the bilingual dictionary is used to improve
the learning ability of the model for two languages, and the
bilingual word vector is introduced for antagonistic learning
to achieve bilingual alignment in the same semantic space.
The experimental results show that this method can improve
the effect of low resource cross-language translation. In the
future research, we will continue to explore better alignment
methods between Chinese and English bilinguals, combine
multi-language Bert and multi-language Bart models to
achieve cross-language translation tasks, and improve cross-
language translation performance.
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For example, reasonable initialization and complex data
transformation are often used to affect the potential
translation distribution of the model. A key challenge of
structured and weak machine learning is to develop a flexible
and declarative framework to express the structural con-
straints of potential variables generated by prior knowledge
and indirect supervision. A structured model can capture a
very rich array of possible relationships, which usually leads
to inference problems that are difficult to deal with. In recent
years, Bayesian nonparametric methods have relaxed some
unrealistic assumptions about data, such as homogeneity
and exchangeability. For example, to deal with heteroge-
neous observations, a prediction-dependent process is
proposed; to relax the interchangeability hypothesis, sto-
chastic processes with various related structures have been
successfully proposed, such as hierarchical structure, time or
space dependence, and random sequence dependence. The
common feature of all these methods is that they rely on
definitions or in some cases encode some special structures
to learn nonparametric Bayesian priors. According to
Bayesian rules, this method will indirectly affect the trans-
lation distribution of the model through the interaction of
likelihood models. The translation regularization framework
separates the model from the complex structural constraints.
However, different from the parameter regularization in the
Bayesian framework, this method also restricts the corre-
lation of the data. These constraints are easy to be used as the
model translation information coding on the observation
data, but it is difficult to be used as the model parameter
information coding through Bayesian prior. Through de-
composable regularization of translation moments of po-
tential variables in the learning process, the computational
efficiency of the unconstrained model is maintained under
the premise of expectation constraints.

5. Conclusions

In this paper, in machine-free learning problems, data have
the structure of order, recursion, space, relation, and other
types. We often use the structural statistical model with
potential variables to obtain the potential dependence and
realize the recognition and induction of semantic categories.
Unsupervised part of speech and grammar induction, and
word and phrase alignment of statistical machine translation
in natural language processing are examples. Usually, the
hidden variables are first marginalized, and then the ob-
servation data are estimated by the expectation-maximiza-
tion algorithm. Considering the computational and
statistical factors, the generative model used in practice is
usually a very simple model to estimate the potential
structure, such as the syntactic structure of a language or the
process of language translation. However, a fatal problem of
this kind of model is that marginal likelihood may not guide
the model toward the expected results of potential variables,
but focus on explaining the correlation in the data. Since the
model mainly focuses on learning the distribution of po-
tential variables, it is hoped that they can capture the ex-
pected rules without direct learning. Therefore, how to
control the potential distribution is very important.
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