
Research Article
A Heuristic Task Scheduling Strategy for Intelligent
Manufacturing in the Big Data-Driven Fog
Computing Environment

Rong Zhou

�e University of Hong Kong, Hong Kong 999077, China

Correspondence should be addressed to Rong Zhou; zhourong2020@gsm.pku.edu.cn

Received 14 June 2022; Revised 23 July 2022; Accepted 29 July 2022; Published 26 August 2022

Academic Editor: Shadi Aljawarneh

Copyright © 2022 Rong Zhou.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A heuristic task scheduling strategy for intelligent manufacturing in the big data-driven fog computing environment is proposed
to address the problem that current resource scheduling and allocation methods in the fog computing environment cannot
comprehensively consider the dynamics and uncertainty of resources, resulting in the prolonged delay and high energy con-
sumption. First, a system model with three computing modes for intelligent manufacturing is constructed based on intelligent
terminal devices, fog nodes, fog servers, fog gateways, and the cloud. �en, the objective function is optimized by jointly
considering the delay matrix, the energy consumption matrix, and the reliability matrix, and corresponding constraints are given
based on the selection of computing modes, the decision variables of fog nodes as well as the constraints about the delay. Finally,
the intervals of crossover-mutation operators are divided according to the �tness value, and individuals of the population are
updated by taking di�erent operations based on the operators in di�erent intervals, so as to achieve an improvement on the
traditional genetic algorithms. Meanwhile, a fog resource scheduling algorithm is proposed based on the improved adaptive
genetic algorithm. Simulation experiments are conducted to compare and analyze the delay, energy consumption, and reliability
of the proposed method with three other methods under the same conditions. �e results show that the proposed method has the
lowest delay and energy consumption and the highest reliability, with values of 361.3 s, 352.4 J, and 94.6%, respectively, when the
number of task requests is 500. �e performance is better than the other three comparison methods.

1. Introduction

With advances in information technology such as the In-
ternet of �ings (IoT) and fog computing, the “smart fac-
tory” controlled by cyber-physical systems (CPS) is also
developing rapidly [1, 2]. �e Intellectualization of infor-
mation and production methods has led to a higher level of
interconnectivity, smarter devices, and more powerful data
processing in intelligent manufacturing. �rough the con-
nected information, statistical data, and dynamic analysis,
intelligent manufacturing makes the production smarter,
leaner, more e�ective, and more energy-e�cient [3–5]. �e
introduction of the IoT technology in intelligent
manufacturing places new and higher demands on data
sensing, collection, consolidation, transmission, and reverse
control in smart factories. At the same time, the spread of

intelligent devices and terminals and the use of various kinds
of sensors will bring about ubiquitous sensing and con-
nectivity, generating a constant ¢ow of industrial data [6–8].

�e e�cient processing of large volumes of data in
traditional manufacturing can be achieved using cloud
computing. However, due to the complexity of networking
in the IoT and the limited computing capacity of devices in
the bottom layer, traditional data processing methods
cannot be used for delay-sensitive applications of intelligent
manufacturing services [9, 10]. Fog computing, as a highly
virtualized platform that locates on the edge of the local
network, can provide computing and storage services near
the underlying network and the Internet. �erefore, it is a
good solution to the problem of rapid response and
bandwidth consumption for delay-sensitive applications
[11, 12]. When terminal devices request services from the

Hindawi
Mobile Information Systems
Volume 2022, Article ID 5830760, 10 pages
https://doi.org/10.1155/2022/5830760

mailto:zhourong2020@gsm.pku.edu.cn
https://orcid.org/0000-0001-6322-4501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5830760

cloud data center, fog computing can first perform data
filtering, data pre-processing, and analysis before delivering
it to the cloud computing system, thus reducing the burden
on the cloud data center. Fog computing resources are
therefore ideal for terminal users today [13]. Due to the
dynamic and uncertainty of resources and the high vari-
ability and unpredictability of the fog computing environ-
ment, rational resource scheduling and allocation are
particularly important, which have become a research
hotspot in the industry [14, 15].

A heuristic task scheduling strategy for intelligent
manufacturing in a big data-driven fog computing envi-
ronment is proposed to address the problems of prolonged
delay, high energy consumption, and low reliability of
current resource scheduling and allocation methods in fog
computing environment. *e basic ideas are: (1) First, a
system model for intelligent manufacturing that can be used
for computing mode selection is constructed. (2) *e cor-
responding objective function and constraints are given in
the consideration of delay, energy consumption, and reli-
ability. (3) *e applicability of the genetic algorithm to the
problem under study is improved by making appropriate
refinements to it. Compared with traditional task scheduling
strategies, the main contributions of the proposed method
can be summarized as follows:

(1) Intelligent devices, fog nodes, fog servers, fog gate-
ways, and the cloud are taken into account when
constructing the system model, greatly improving
the utilization of fog computing resources.

(2) *e objective function is optimized in terms of three
aspects of task scheduling: delay, energy consump-
tion, and the success rate of task execution.

(3) *e traditional genetic algorithm is improved by
dividing the crossover-mutation operators into in-
tervals to further enhance the reliability of task
scheduling.

*e remaining chapters of this paper are arranged as
follows: the second chapter introduces the efficient resource
allocation and task scheduling strategies for intelligent
manufacturing in the fog computing environment, and
some current research results. *e third chapter establishes
the system model. *e fourth chapter introduces the pro-
posed fog resource scheduling method based on a genetic
algorithm. In Chapter 5, experiments are designed to verify
the performance of the proposed algorithm. *e sixth
chapter is the conclusion, which summarizes this study and
puts forward the further improvement direction.

2. Related Works

Some scholars have done relevant research and achieved
certain results on resource allocation and task scheduling
strategies for intelligent manufacturing in the fog computing
environment. Li et al. standardized and normalized the
attributes of resources, and combined the fuzzy clustering
method with particle swarm optimization method to reduce
the scale of resource search and divide the resources [16]. It

proposed a new resource scheduling algorithm based on
optimized fuzzy clustering for fog computing. However, the
method only optimizes the processing time and cost of the
tasks without considering the limited computational re-
sources in the smart factory. In Yang et al., aiming at the
multi-objective task scheduling problem in fog computing, a
multi-objective task scheduling model was designed based
on the Pareto optimal solution [17]. However, the method
cannot reduce the overall reliance on large data centers and
the Internet data are distant from the users. Ren et al.
addressed the problem of limited resources inmobile devices
and used fog computing to improve the WAN delay for
delay-sensitive and resource-intensive applications [18]. It
proposed an improved three-layer fog-to-cloud architecture
and the schedule fit algorithm, which can provide compu-
tational resources and transmission delay according to the
delay sensitivity of applications. *e method fails to mini-
mize the processing delay of the task and needs further
improvement. Based on Lyapunov drift and the penalty
function on the queue length, a scheduling strategy for tasks
in the queues was proposed in Reference [19] to decide the
number of tasks to be offloaded to the underloaded fog
nodes to fully utilize the computational resources offered by
all fog nodes in the network. However, this approach does
not consider the service delay. By extending the architecture
of fog computing, Tang et al. proposed a computational
resource allocation scheme based on stable matching for
open fog computing environment [20]. Based on the idea of
stable matching, the allocation problem between tasks and
computing service devices is solved by combining the pri-
ority list of subtasks and the preference lists of subtasks and
computing service devices. However, the fog computing
network is heavily used in this method. Alqahtani et al.
classified requests to real-time, important, and time-tolerant,
and proposed a scheduling method for allocating customers’
requests to the resources of the cloud-fog environment by
considering load balancing among resources while allocating
requests to them [21]. But the algorithm does not take the
cost and energy consumption of resource scheduling into
account. In Reference [22], in order to solve the resource
scheduling and load balancing problems in fog computing,
an optimized fuzzy clustering-based resource scheduling
and dynamic load balancing algorithm was proposed. On
this basis, an enhanced fuzzy C-means and the crow search
optimization algorithm in fog computing were used to solve
the problem. However, the method does not combine the
characteristics of smart factories as a whole to fully optimize
them.

3. System Model

3.1. SystemModelDescription. Different from the traditional
computing mode selection strategies, the proposed com-
puting mode selection strategy is applicable to fog com-
puting platforms with the combination of heterogeneous
computing modes. In the fog computing platform, if the
traditional strategies are still used, not only will the resource
utilization of fog computing be reduced, but also the tasks
which are related to intelligent manufacturing will not be

2 Mobile Information Systems

guaranteed to be real-time, energy-efficient, or reliable. In
order to improve the utilization of resources in fog com-
puting, a system model of computing mode selection for
intelligent manufacturing is established, which is shown in
Figure 1.

As can be seen from Figure 1, the system model of
computing mode selection for intelligent manufacturing
consists mainly of intelligent terminal devices, fog nodes, fog
servers, fog gateways, and the cloud. *e intelligent terminal
devices can either execute tasks locally or transmit the tasks
that they cannot execute to other computing nodes. *e fog
node is the middleware that connects the intelligent terminal
device to the cloud, and using the fog node as well as the
cloud can enhance the computing capacity of the intelligent
terminal devices. *e fog node provides a real-time and
distributed fog computing model for intelligent terminal
devices in task execution. *e cloud provides a remote and
centralized cloud computing model for intelligent terminal
devices in task execution. Different from the traditional
strategies where all of the tasks are transmitted to the cloud
to be executed, each task in the fog computing environment
has a choice of three computing modes.

Intelligent terminal devices forward the tasks through
the fog nodes. Task requests from intelligent terminal de-
vices are transmitted to the fog nodes, and all information of
task requests is gathered at the fog gateway and subsequently
forwarded to the fog server. *e fog server can sense the
global information of the fog nodes, which provides a ref-
erence for the dynamic selection of the computing modes of
the task. *e fog server manages the tasks, calculates the
priority of each task, and adjusts the task queue according to
the priority of the task, and then it formulates the optimal
selection scheme of computing modes for the task. *e fog
server sends the selection scheme of computing modes to the
fog gateway, and the fog gateway then sends the set of al-
located tasks to the corresponding intelligent terminal de-
vices, thus implementing the function of computing mode
selection for the intelligent terminal devices when executing
tasks.

All devices in the system model are described below.*e
system model contains z intelligent terminal devices, n fog
nodes and a cloud server. *e set of intelligent terminal
devices is represented by Z, where Z � E1, E2, E3, . . . , Ez􏼈 􏼉

and the attributes of the intelligent device Ei can be modeled
as a triple (Ci, P0i, P1i). Ci represents the computing capacity
of the intelligent terminal device Ei. P0i represents the
transmission power of the intelligent terminal device Ei. P1i

denotes the computation power of the intelligent terminal
device Ei. N denotes the set of fog nodes, where
N � F1, F2, F3, . . . , Fn􏼈 􏼉. And the computation power of the
fog nodes is denoted as JN. *e computing capacity of the
cloud server is denoted as JC. T is a compound task and can
be partitioned into n subtasks according to certain rules,
which can be represented as T � T1, T2, T3, . . . , Tn􏼈 􏼉. *e
attributes of the task Ti can be modeled as a triple
(Di, ρi, tmax i). Di represents the amount of data of the task
Ti. ρi represents the computational density of the task Ti.
tmax i denotes themaximum tolerance time of the taskTi.*e
system model of computing mode selection shows that each

task can be executed through one of the three computing
modes. *e task can be either executed locally in the in-
telligent terminal device or transmitted to a fog node or a
cloud server for execution. For the task Ti, the delay and
energy consumption in the local execution mode are
recorded as ti1 and ei1, respectively. *e delay and energy
consumption in fog computing mode are recorded as ti2 and
ei2, respectively. And the delay and energy consumption in
cloud computing mode are recorded as ti3 and ei3,
respectively.

3.2. Optimization Objectives. In order to facilitate the de-
scription of the computing mode selection problem and
better formulate the computing mode selection algorithm
proposed in this section, relevant definitions and optimi-
zation objective functions are given to provide a basis for
implementing the selection of computing modes. Based on
the above analysis, the delay of the task Ti can be expressed
as follows:

ti � αi1ti1 + αi2ti2 + αi3ti3, (1)

where αi1, αi2, αi3􏼈 􏼉 represents the set of decision variables
for the selection of the computing mode for the task Ti.
When αi1 � 1, it indicates that the task Ti selects the local
execution mode, which means that the task Ti will be ex-
ecuted by the intelligent terminal device Ei. Otherwise,
αi1 � 0. When αi2 � 1, it indicates that the task Ti selects the
fog computing mode, which means that the task Ti will be
executed by a fog node. Otherwise, αi2 � 0. And when
αi3 � 1, it indicates that the task Ti selects the cloud

Cloud

Fog server

Fog gateway

#1 Fog node

#2 Fog node

#n Fog node

…

Calculation
Mode

Selection

Task
priority

Task
queue

adjustment

Task management

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

…

Figure 1: *e system model of computing mode selection for
intelligent manufacturing.

Mobile Information Systems 3

computing mode, which means that each Ti will be executed
by a cloud server. Otherwise, αi3 � 0. *e task Ti can only
selects one of the computing modes, i.e., αi1, αi2, αi3 ∈ 0, 1{ }.

We define the computing mode selection decision
matrix as A, where the number of tasks being executed
based on (1) is taken as the row and the number of
computing modes that can be selected are taken as col-
umns, as follows:

A �

α11 α12 . . . α1J

α21 α22 . . . α2J

.

αI1 αI2 . . . αIJ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2)

aij denotes the decision variables for the task Ti in the
computing model j, where i � 1, 2, 3, . . . , I and
j � 1, 2, 3, . . . , J.

We define the delay matrix as Tt. According to the
computing mode selection decision matrix A, the delay of
each task in the task set T under three computing modes can
be obtained. *us, the delay matrix Tt for the task set T can
be constructed as

Tt �

t11, t12, . . . , t1J

t21, t22, . . . , t2J

. . . , . . . , . . . , . . .

tI1, tI2, . . . , tIJ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (3)

where tij indicates the delay of the task Ti in the computing
mode j, i � 1, 2, 3, . . . , I, j � 1, 2, 3, . . . , J. For tasks that
select the fog computing mode, they will be allocated to all of
the fog nodes according to the polling algorithm. hin denotes
the selection decision of fog nodes for the task Ti, and hin � 1
denotes that the task Ti selects to be executed by the fog node
lF. Otherwise, hin � 0. Hence, hin ∈ 0, 1{ } and
􏽐

N
n�1 hin � 1, (i � 1, 2, . . . , I).
*e energy consumption matrix is defined as E. Based

on the computing mode selection decision matrix A, the
energy consumption of each task in the task set T

under three computing modes can be calculated. Hence,
the energy consumption matrix E for the task T can be
written as

E �

e11, e12, . . . , e1J

e21, e22, . . . , e2J

. . . , . . . , . . . , . . .

eI1, eI2, . . . , eIJ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (4)

where eij represents the energy consumption of the task
Ti in the computing mode j, i � 1, 2, 3, . . . , I,
j � 1, 2, 3, . . . , J.

*e reliability matrix is defined as K, and it is used to
evaluate the execution performance of each task in the task
set T within its maximum tolerance time. *e reliability
matrix can be expressed as

K �

k11, k12, . . . , k1j

k21, k22, . . . , k2j

. . . , . . . , . . . , . . .

ki1, ki2, . . . , kij

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (5)

where kij represents the execution performance of the task
Ti in the computing mode j, and it should meet the fol-
lowing constraints:

kij �
0, αijtij ≤ tmax i,

1, αijtij > tmax i.

⎧⎨

⎩ (6)

If the task Ti can be completed within its maximum
tolerance time, the task Ti will be executed successfully.
Otherwise, the task Ti fails. *e number of successfully
executed tasks is counted as zC and the higher the value of
zC, the better the reliability of the task. *e success rate of a
task is given by p, which can be calculated as

p �
zC

z
× 100%. (7)

*e energy consumption of all tasks in the task set T can
be described as

eS � 􏽘
I

i

αi1ei1 + αi2ei2 + αi3ei3(􏼁. (8)

*e optimization objective of the computing mode se-
lection strategy is to minimize the task delay and energy
consumption, which can be formulated as

fo � min

max
1<i<I

αi1ti1(􏼁

max
1<n<N

􏽘

I

i�1
αi2hnitn2,i

⎛⎝ ⎞⎠

max 􏽘
I

i�1
αi3ti3

⎛⎝ ⎞⎠, eS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

*e constraints are shown as

αi1, αi2, αi3 ∈ 0, 1{ }, i � 1, 2, 3, . . . , I,

αi1 + αi2 + αi3 � 1, i � 1, 2, 3, . . . , I,

hi1, hi2, hi3, . . . , hin ∈ 0, 1{ }, i � 1, 2, 3, . . . , I,

􏽘

N

n�1
hin � 1, (i � 1, 2, . . . , I), i � 1, 2, 3, . . . , I,

ti ≤ tmax i, i � 1, 2, 3, . . . , I,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where the first and second constraints are about the decision
variables of the computing mode selection, ensuring that
only one computing mode can be selected for each task. *e
third and fourth constraints are about the decision variables
of the fog node selection, which guarantee that only one fog
node can be selected for each task. *e last inequality in-
dicates the constraint about the delay for each task.

4 Mobile Information Systems

4. Fog Computing Task Scheduling Algorithm

4.1.Overviewof theAlgorithm. Based on the aforementioned
analysis, a fog resource schedulingmethod is proposed based
on an adaptive bi-adaptive genetic algorithm. Population
optimization is carried out by drawing on biological phe-
nomena such as heredity, mutation, natural selection, and
hybridization in the theory of biological evolution to find the
optimal individual. *e algorithm takes the individual in the
population as a solution and evaluates the performance of
the individual by the dual fitness function. *e genetic
operations can be divided into three main operators, which
are selection, crossover, and mutation. *e roulette wheel
method is used in the selection operation tomaintain genetic
diversity in the survival of the fittest. However, as the
mutation of chromosomal genes is random, the chromo-
somal solutions generated may not be feasible solutions,
which mean that they do not satisfy the constraint between
tasks. *erefore, in the selection operation, a repair strategy
is also required for the selected individuals, which allows
maximizing the maintenance of genes while changing in-
feasible solutions into feasible ones. Traditional single-point
crossover and partial mapping crossover are combined in
the crossover operation. *e partial mapping crossover is
used for scheduling sequences, and the traditional single-
point crossover is used for fog node allocation sequences.

4.2. Improved Genetic Algorithm

4.2.1. Encoding. Initialization of the adaptive genetic algo-
rithm: set the termination conditions of the population it-
eration as the number of iterations reaching the maximum,
the appearance of the optimal solution, or the iteration time
reaching the constraint time. Set the optimization weights of
delay and communication load as c1 and c2, respectively.

By encoding chromosomes, genetic algorithms make a
chromosome correspond to a solution of the optimization
problem.*e general encoding methods are direct encoding
and indirect encoding. In this paper, indirect encoding is
used. *us, the mapping relationship between task requests
and fog nodes is represented by a set of sequences (S, A),
where S represents the scheduling ordered sequence and A

represents the fog node allocation sequence. Each task re-
quest is mapped into a fog resource. A single task request
corresponds to a single fog resource, and a single fog re-
source can correspond to multiple task requests. Each bit in
the sequence S and the sequence A represents the number of
task requests and the fog resource, and all of them are
positive integers. *e length of the sequence S and the se-
quence A is equal to the total number of task requests, which
is denoted as k. And the gene value represented in the se-
quence A corresponds to the number of fog resources al-
located to the task. *e total number of fog nodes in a fog
cluster is l, the total number of task requests is k and a set of
sequences (S, A) is called a chromosome.

Chromosome decoding strategy: *e fog resource allo-
cation strategy can be derived from the chromosome
encoding rules. For example, a chromosome
(9, 5, 1, 7, 3, 8, 4, 6, 10, 2), (1, 2, 3, 3, 2, 1, 3, 2, 1, 2){ } means
that 10 tasks will be allocated to 3 fog nodes for execution.
First, the task T9 will be allocated to the fog node F1 for
execution, then the task T5 will be allocated to the fog node
F2 for execution, and so on. Finally, the allocation strategy
can be obtained, where the task T9, T8, and T10 will be
executed in the fog node F1 in turn. Also, the task T5, T3, T6,
and T2 will be executed in the fog node F2 in turn, and the
task T1, T7, and T4 will be executed in the fog node F3 in
turn.

4.2.2. Populations Initialization. Population initialization is
quite important for scheduling terminal user tasks in a fog
computing architecture. *e initial population is generated
randomly and invalid solutions are excluded based on
constraints. Let the size of the initial population beP, and the
number of iterations is initialized as i � 0. *e constraints
ask that the time-critical requests from the terminal user
must be scheduled to the fog that is close to the user for
execution, while requests which are not so urgent should be
allocated to the cloud for execution. Meanwhile, in order to
avoid severe load disparity, all requests from users cannot be
placed on the same resource simultaneously.

4.2.3. Fitness Function. *e fitness function is the key to
assessing the direction of population evolution when
scheduling the terminal user tasks in a fog computing ar-
chitecture. In order to make the fitness function remain
meaningful when the total cost of the service provider is
zero, it is defined as

f(W) � e
− W

. (11)

W represents the total cost of the service provider.

4.2.4. Genetic Manipulation. Once traditional genetic al-
gorithms have selected suitable individuals using the roulette
wheel operator, they take crossover and mutation operations
to obtain the next generation of individuals. However,
traditional genetic algorithms adopt a uniform crossover
variation operator for the evolution of populations, which is
not conducive to either the retention of good individuals or
the generation of even better individuals. *erefore, in this
paper, the interval division of crossover-mutation operators
is adopted. After the fitness value of individuals in the
population is calculated based on the fitness function, all
individuals are divided into different intervals according to
the fitness value, which are the mutation interval with low
fitness value, the retention interval with high fitness value,
and the asymptotic interval with moderate fitness value. *e
population is then updated by applying different crossover-

Mobile Information Systems 5

mutation operators to the individuals in the different
intervals.

Individuals with high fitness values are retained directly,
ensuring that the best individuals are preserved at each it-
eration. For individuals with low fitness values, mutation
operation is taken to change their chromosomes. By doing
this, it gives the opportunity to mutate individuals with low
fitness values into individuals with high fitness values,
allowing the population to jump out of the local optimum
and avoid premature convergence during the iteration, so as
to improve the performance of global searching. For indi-
viduals with moderate fitness values, the custom interval
division operator is used to select the parent individuals and
then retain the better individuals by crossover operations.
*e main idea of the interval division crossover-mutation
operator is shown in Figure 2.

*e crossover operator, which is a search operator in
genetic algorithms, is mainly used when generating new
individuals by crossing over the chromosomal genes of the
current parent individuals. In this paper, a combination of
traditional single-point crossover and partial mapping
crossover is used. Specifically, the partial mapping
crossover operation is used for the scheduling sequence S

and the traditional single-point crossover operation is
used for the fog node allocation sequence A. In addition, a
mechanism of individual self-adaptation is introduced,
which means that the crossover rate changes with the
fitness value.

In the partial mapping crossover operation, a crossover
selection position is set between any two adjacent genes in
each chromosome subsequence S, where the indexes are 1,
2,. . ., k+ 1 from left to right. *ere are k+ 1 different
crossover selection positions in total. A partial mapping
crossover is a random selection of two positions from k+ 1
crossover selection positions, and the two parent chromo-
somes will produce a corresponding pair of genes between
these two crossover selection positions. *is pair is used to
replace the genes of two parent chromosomes, respectively,
resulting in two new children chromosomes. For example, if
there are two parent sequences {8, 5, 9, 2, 7, 1, 3, 6, 4} and {1,
3, 7, 4, 6, 8, 2, 9, 5}, and the crossover selection positions are
randomly generated to be 5 and 8, then the corresponding
pair will be {7 : 6, 1 : 8, 3 : 2} and the two children chro-
mosomes resulting from the partial mapping crossover
operation will be {1, 5, 9, 3, 6, 8, 2, 7, 4} and {8, 2, 6, 4, 7, 1, 3,
9, 5}. In the single-point crossover operation, a crossover
position is set between any two adjacent genes in each
chromosome subsequence A, where the indexes are 1, 2,. . .,
k− 1 from left to right. *ere are k− 1 different crossover
positions in total. In the single-point crossover operation, a
crossover position is randomly selected among k− 1
crossover positions, and all genes in those two chromosomes
are exchanged from the positions onwards. For example, if
the parent sequences are {3, 1, 1, 2, 3, 2, 1, 3, 2} and {1, 2, 3, 2,
2, 3, 3, 1, 1}, and the randomly generated crossover position
is 5, then the two children chromosomes resulting from the
single-point crossover operation will be {3, 1, 1, 2, 3, 3, 3, 1,
1} and {1, 2, 3, 2, 2, 2, 1, 3, 2}.

*e adaptive crossover rate can be obtained as

ft �
􏽐

M
m�1 ft(m)

M
,

fc �
􏽐

M
m�1 fc(m)

M
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

PI �

β1
fmax − f0

fmax − f
, f0 ≥f,

β2, f0 ≥f,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where ft and fc denote the average fitness values for the
maximum time span and communication overhead, re-
spectively. PI is the crossover rate of the two individuals. β1
and β2 are constant coefficients of the crossover rate and
satisfy the constraints of 0< β1 < 1 and 0< β2 < 1. Two
crossed individuals will generate two fitness values each.*e
fitness function, which can generate the smallest fitness value
among the four fitness values, is chosen as the criterion for
crossover, i.e., one of ft(m) and fc(m) is chosen as the
criterion f(m), where f(m) � [ft(m) | fc(m)] and
f � [ft | fc]. f0 is the larger fitness value of the two indi-
viduals f(m) and fmax is the largest fitness value of the
current population f(m).

*e mutation operator combines the methods of basic
bit mutation and inversion mutation. Heuristic mutation is
applied for the scheduling sequence S and basic bit mutation
is applied for the fog node allocation sequence A. *e in-
version mutation is applied for the chromosome subse-
quence S. In the inversion mutation, two gene bits are
randomly selected from the k gene bits and the values of
genes at these two bits are exchanged. For example, there is

Population initialization

Fitness function

Interval division and
selection operator

Mutation creates new
individuals

individual retentionHigh fitness?

Low fitness?

Crossover to generate new
individuals

Start

End

Yes

No
Yes

No

Figure 2: *e process of interval division of crossover-mutation
operators.

6 Mobile Information Systems

the parent sequence {3, 6, 1, 5, 2, 9, 7, 4, 8}, and if the two
randomly generated gene bits are 2 and 6, a subsequence {3,
9, 1, 5, 2, 6, 7, 4, 8} will be generated after the inversion
mutation. *e basic bit mutation is applied for chromosome
subsequence A. In the basic bit mutation, a gene bit is
randomly selected from the k gene bits and a number from
{1, 2, 3,...,n} is randomly selected to replace the gene at the
current gene bit, which means that a new fog resource is
randomly selected to replace the original fog resource. For
example, if the parent sequence is {3, 1 ,1, 2, 3, 2, 1, 3, 2}, and
the index of randomly generated gene bit for mutation is 3
and the random gene value selected for replacement is 2,
then a child sequence {3, 1, 2, 2, 3, 2, 1, 3, 2} will be generated
by the basic bit mutation. Mutation generates new genes and
provides the diversity of the population. Like the crossover
operator, the mutation operator introduces a mechanism of
individual adaption, thus the mutation rate varies with the
fitness value.

*e adaptive mutation rate can be written as

PV �

λ1
fmax − f0

fmax − f
, f0 ≥f,

λ2, f0 ≥f,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where PV is the mutation rate for an individual. λ1 and λ2 are
constant coefficients of the crossover rate and they satisfy the
constraints of 0< λ1 < 1 and 0< λ2 < 1. *e fitness function
which can generate the smaller fitness value of the current
individual is used as the criterion for mutation, which means
that one of ft(m) and fc(m) is chosen as the criterion
f(m), where f(m) � [ft(m) | fc(m)] and f � [ft | fc].
fmax is the largest fitness value in the current population
f(m).

Genes are constantly evolving in each generation by
operations such as selection, crossover, and mutation.
*erefore, in order to keep each generation of individuals as
feasible solutions, gene repair is required for individuals
after the mutation operation.

4.3. Steps for Scheduling Fog Computation Tasks. *e flow of
the task scheduling algorithm in the fog computing envi-
ronment for intelligent manufacturing is shown in Figure 3.

*e specific process of the algorithm is given as follows:

(1) Population initialization: the users submit the ter-
minal request and the initial population is randomly
set based on the request. A counter for the number of
iterations is initialized as well.

(2) Fitness value calculation: the fitness values of indi-
viduals are calculated according to the fitness
function.

(3) Judgment of termination conditions: when the number
of evolutionary generations reaches the specified
number of iterations, the result is output and a better
solution for fog computing task scheduling should be
obtained. Otherwise, go to step (4).

(4) Selection operation: a roulette wheel method is used
to perform selection operations on the population.

(5) Crossover operation: according to the crossover
method in the improved genetic algorithm, two
individuals are randomly selected among those
produced by the selection operation and then op-
erated according to the crossover rate to generate
new individuals.

(6) Mutation operation: according to the mutation
method in the improved genetic algorithm, some
individuals are selected from the new individuals
generated by crossover operation and then operated
according to the mutation rate to generate new
individuals.

(7) Judgment of fitness value: the fitness value of the
mutated individuals is judged, and if the fitness value
is smaller than that of the parent, the parent is
retained; if it is greater than or equal to that of the
parent, the parent is replaced.

(8) Update the iteration counter: add 1 to the iteration
counter and go to step (2).

5. Experiments and Analysis

5.1. Simulation Environment and Parameter Settings. *e
simulation platform is configured with an Intel i5 processor
with a CPU of 3.3GHz and 4GB of memory. A simulation

Encoding and initial
population generation

Calculate the fitness value
of an individual

Are termination
conditions met?

Selection, crossover and mutation
operations

Fitness value of
New individual ≥ parent?

�e new generation of individuals
replaces the parent

New generation of individuals

Start

End

Yes

NoRetain
parent

No

Yes

Figure 3: *e flow of task scheduling algorithm in fog computing
environment.

Mobile Information Systems 7

environment for the selection of computing models for
intelligent manufacturing is set up in MATLAB R2020a. A
scenario of the intelligent production line is established in
the simulation environment, the production object is the
personalized candy packaging, and the production link,
which is the manufacturing task, is the identification of
multiple categories of candy. *e size of task data is ran-
domly selected between 1 and 10Mb, and the number of
tasks is taken as 10, 30, 40, 50, 90, 100, 300, 500, 700, and 900,
respectively. *e parameter set in the simulation is shown in
Table 1.

5.2. SimulationAnalysis. *e delay and energy consumption
of the method under the different number of task requests
and the reliability of the method for task execution are
important evaluation metrics for the performance of the task
scheduling method. In the following, the heuristic task
scheduling strategy for intelligent manufacturing in big
data-driven fog computing environment proposed in this
paper is compared and analyzed with the methods proposed
in References [16, 17, 20] under the same conditions in terms
of three evaluation metrics.

First, the comparative analysis for the delay of the
methods is conducted under the different number of task
requests. *e performance of delay in different methods is
simulated in two different cases with a small number of task
requests and a large number of task requests. *e results are
shown in Figures 4 and 5, respectively.

As can be seen from Figures 4 and 5, the delay of all task
scheduling strategies tends to rise as the number of tasks
increases. However, compared to the other three methods,
the heuristic task scheduling strategy proposed in this paper
is more advantageous in terms of delay, as it has a smaller
delay both in the case of a smaller number of task requests
and in the case of a larger number of task requests. *e delay
is 123.4 s and 361.3 s, respectively when the number of task
requests is 100 and 500.*is is because the proposed method
can better allocate the time-critical task requests to the fog
computing resource nodes for execution. Compared with
the traditional methods that all of the tasks are executed on
the cloud, it can more effectively reduce the delay.

*e energy consumption of the methods under the same
conditions when there are different numbers of task requests
is compared, and the results are shown in Figure 6.

It is shown in Figure 6 that the energy consumption of
the system all shows an increasing trend with more task
requests. However, the energy consumption of the proposed
strategy is always the smallest and the most energy efficient
compared to the other three comparisonmethods.When the
number of task requests is 100 and 500, the energy con-
sumption is 205.2 J and 352.4 J, respectively. *e energy
consumption of the task is determined by the delay of the
task and the power of the computing node. In addition, the
power of the computing node is a fixed value, and the delay
of the task is the main factor that affects the performance of
energy consumption of the task. As the delay of the proposed
method is small, its energy consumption is also relatively
small.

*en, the success rate of task execution is calculated for
the different number of task requests under the same
conditions to verify the reliability of the respective methods.
*e results of success rates of task execution are shown in
Figure 7.

As shown in Figure 7, the reliability of all four methods
decreases as the number of tasks increases, but the reliability
of the proposed method decreases the least and it remains
the highest as the number of task requests changes. *e task
execution success rates of 95.3% and 94.6% are achieved for
100 and 500 task requests, respectively. *is is because the
proposed method takes into account the delay matrix, the
energy consumption matrix and the reliability matrix in the
process of objective optimization. *e traditional genetic
algorithm is improved in the calculation process. In the
proposedmethod, the fitness function is used to calculate the

Table 1: Simulation experiment parameters.

Parameter Value
Number of intelligent terminal devices 200
Number of fog nodes 15
*e size of task data (Mb) 1–10
Maximum tolerance time for task 1–3 s
Computing capacity of cloud server (Gcycles/s) 10
Computing capacity of cloud server (W) 50
Computing capacity of fog nodes (Mcycles/s) 300–500
Computational density of tasks (cycles/bit) 300
Transmission power of smart device (M) 3–6
Computational power of smart device (M) 3–6
Network bandwidth of smart device (M) 150
Fog node network bandwidth (M) 120
Cloud server network bandwidth (M) 5
Real-time intensity weight for tasks 0.8
Complex intensity weight for tasks 0.3
Crossover rate 0.8
Mutation rate 0.1
*e maximum number of iterations 150
Number of species 100

10

20

30

40

50

60

70

80

10 30 50 70 90

Number of task requests

D
el

ay
 (s

)

Proposed method Ref. [16]

Ref. [17] Ref. [20]

Figure 4: Delay of different methods in the case of a small number
of task requests.

8 Mobile Information Systems

fitness value of individuals in the population, and all indi-
viduals are divided into different intervals according to their
fitness values. Also, the crossover-mutation operators are
divided by intervals. *erefore, it can generate better in-
dividuals in the global scope, which improves the success
rate and reliability of the proposed method in task execution.

6. Conclusion

A heuristic task scheduling strategy for intelligent
manufacturing in the big data-driven fog computing envi-
ronment is proposed to address the problems of prolonged
delay, high energy consumption, and low reliability of re-
source scheduling and allocation methods in the fog com-
puting environment. *e proposed method and three other
comparative methods are compared and analyzed through

simulation experiments. *e results show that the com-
prehensive consideration of fog nodes, fog servers, and fog
gateways on the basis of intelligent terminal devices and the
cloud can significantly improve the utilization of fog
computing resources. Optimization of the objective function
with the constraints of delay, energy consumption, and
success rate can improve the overall performance of the
algorithm. By dividing the crossover-mutation operators
into intervals, the genetic algorithm can generate better
individuals and thus improve the reliability of task sched-
uling. Future work will delve into the impact of the dynamic
characteristics of network and storage resources on fog
computing and the improvement method.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] S. D. Wang, T. Y. Zhao, and S. C. Pang, “Task scheduling
algorithm based on improved firework algorithm in fog
computing,” IEEE Access, vol. 8, no. 15, Article ID 32385,
2020.

[2] K. Matrouk and K. Alatoun, “Scheduling algorithms in fog
computing: a survey,” International Journal Of Networked
And Distributed Computing, vol. 9, no. 1, pp. 59–74, 2021.

[3] M. Kazemi, S. Ghanbari, and M. Kazemi, “Divisible load
framework and close form for scheduling in fog computing
systems,” in Proceedings of the 4th International Conference on
Soft Computing and Data Mining (SCDM), pp. 323–333,
Melaka, Malaysia, January 2020.

100 200 300 400 500

Number of task requests

En
er

gy
 co

ns
um

pt
io

n
/ J

200

300

400

500

600

700

800

900

100
50 150 250 350 450

Proposed method Ref. [16]

Ref. [17] Ref. [20]

10

Figure 6: Energy consumption of different methods under dif-
ferent number of task requests.

100 200 300 400 500

Number of task requests

86

88

90

92

94

96

98

100

84
50 150 250 350 450

Proposed method

Ref. [16]

Ref. [17]

Ref. [20]

10

Su
cc

es
s r

at
e o

f t
as

k
ex

ec
ut

io
n

/ %

Figure 7: Success rate of task execution of different methods under
the different number of task requests.

80

160

240

320

400

480

560

720

100 300 500 700 900

Number of task requests

D
el

ay
 /

s

Proposed method Ref. [16]

Ref. [17] Ref. [20]

Figure 5: Delay of different methods in the case of a large number
of task requests.

Mobile Information Systems 9

[4] Z. N. Liu, X. M. Yang, Y. Yang, K.Wang, and G.Mao, “DATS:
dispersive stable task scheduling in heterogeneous fog net-
works,” IEEE Internet of �ings Journal, vol. 6, no. 2,
pp. 3423–3436, 2019.

[5] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and
C. Maple, “A novel bio-inspired hybrid algorithm (NBIHA)
for efficient resource management in fog computing,” IEEE
Access, vol. 7, no. 6, Article ID 115760, 2019.

[6] P. Varshney and Y. Simmhan, “Characterizing application
scheduling on edge, fog, and cloud computing resources,”
Software: Practice and Experience, vol. 50, no. 5, pp. 558–595,
2020.

[7] H. E. Refaat and M. A. Mead, “DLBS: decentralize load-
balance scheduling algorithm for real-time IoT services in
mist computing,” International Journal of Advanced Com-
puter Science and Applications, vol. 10, no. 9, pp. 92–100, 2019.

[8] M. R. Hossain, M. Whaiduzzaman, A. Barros et al., “A
scheduling-based dynamic fog computing framework for
augmenting resource utilization,” Simulation Modelling
Practice and �eory, vol. 111, no. 37, pp. 201–209, 2021.

[9] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, and K. Munir, “A
job scheduling algorithm for delay and performance opti-
mization in fog computing,” Concurrency and Computation:
Practice and Experience, vol. 32, no. 7, pp. 323–330, 2019.

[10] S. Ghanavati, J. Abawajy, and D. Izadi, “Automata-based
dynamic fault tolerant task scheduling approach in fog
computing,” Ieee Transactions On Emerging Topics In Com-
puting, vol. 10, no. 1, pp. 488–499, 2022.

[11] R. M. Ding, X. J. Li, X. Liu, and J. Xu, “A cost-effective time-
constrained multi-workflow scheduling strategy in fog
computing,” in Proceedings of the 16th International Con-
ference on Service-Oriented Computing (ICSOC), pp. 194–207,
Hangzhou, China, November 2019.

[12] R. Vijayalakshmi, V. Vasudevan, S. Kadry, and
L. K. Ramasamy, “Optimization of makespan and resource
utilization in the fog computing environment through task
scheduling algorithm,” International Journal of Wavelets,
Multiresolution and Information Processing, vol. 18, no. 1,
pp. 37–35, 2020.

[13] J. H. Sun, S. Choudhury, and K. Salomaa, “An online fair
resource allocation solution for fog computing,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 3,
no. 2, pp. 105–113, 2022.

[14] H. Y. Sun, H. Q. Yu, and G. S. Fan, “Towards energy and time
efficient resource allocation in IoT-fog-cloud environment,”
in Proceedings of the 16th International Conference on Service-
Oriented Computing (ICSOC), pp. 387–393, Hangzhou,
China, November 2019.

[15] O. H. Ahmed, J. Lu, A. M. Ahmed, A. M. Rahmani,
M. Hosseinzadeh, and M. Masdari, “Scheduling of scientific
workflows in multi-fog environments using markov models
and a hybrid salp swarm algorithm,” IEEE Access, vol. 8,
no. 51, Article ID 189404, 2020.

[16] G. S. Li, Y. C. Liu, J. H. Wu, D. Lin, and S. Zhao, “Methods of
resource scheduling based on optimized fuzzy clustering in
fog computing,” Sensors, vol. 19, no. 9, pp. 352–360, 2019.

[17] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, and Y. Hu, “A
multi-objective task scheduling method for fog computing in
cyber-physical-social services,” IEEE Access, vol. 8, no. 12,
Article ID 65085, 2020.

[18] Z. B. Ren, T. Lu, X. Wang, W. Guo, G. Liu, and S. Chang,
“Resource scheduling for delay-sensitive application in three-
layer fog-to-cloud architecture,” Peer-To-Peer Networking
And Applications, vol. 13, no. 5, pp. 1474–1485, 2020.

[19] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang,
“Deadline-aware fair scheduling for offloaded tasks in fog
computing with inter-fog dependency,” IEEE Communica-
tions Letters, vol. 24, no. 2, pp. 307–311, 2020.

[20] L. Tang, J. Jiang, and K. Gu, “Computing resource allocation
scheme based on fog computing,” Computer Engineering and
Application, vol. 55, no. 19, pp. 96–104, 2019.

[21] F. Alqahtani, M. Amoon, and A. A. Nasr, “Reliable scheduling
and load balancing for requests in cloud-fog computing,”
Peer-To-Peer Networking And Applications, vol. 14, no. 4,
pp. 1905–1916, 2021.

[22] B. Sarma, R. Kumar, and T. Tuithung, “Optimised fuzzy
clustering-based resource scheduling and dynamic load bal-
ancing algorithm for fog computing environment,” Interna-
tional Journal of Computational Science and Engineering,
vol. 24, no. 4, pp. 343–353, 2021.

10 Mobile Information Systems

