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In view of the problems of complex deviation sources in gear machining and low accuracy of empirical prediction, in order to
improve the detection accuracy and the operation speed of gears after machining, the failure sign algorithm of the �re�y neural
network (FSAFNN) is applied to the prediction of the deviation range of gear autonomous machining, and a gear tooth direction
detection method is designed based on this method. e failure sign algorithm of the �re�y neural network is constructed. Taking
the tooth pro�le deviation in the gear machining process as the research target, a prediction model of the gear autonomous
machining deviation is constructed, which can be used to e�ectively obtain the di�erent invalid modes of the gear pro�le
machining. e �re�y neural network is quantitatively analyzed to obtain the main reasons for the tooth pro�le machining
deviation. e �re�y neural network algorithm can be used to take advantage of its advantages in metal and re�ective object
prediction. e �nal research results show that the method used in this paper can meet the requirements of high-precision and
nondestructive detection of gears in industrial design, realize the division of gear accuracy levels, which can be used in the �eld of
high-precision detection of other metal re�ective objects, and is practical in the prediction of the deviation range of gear
autonomous machining.

1. Introduction

Gears are extremely important components of mechanical
transmission systems and are widely used in machine tool
processing, automobile manufacturing, construction ma-
chinery, and aerospace [1]. Because di�erent industries have
di�erent requirements for the accuracy range of gears, the
accuracy of the processed gears is detected in many di�erent
usage scenarios. e detection of gear accuracy is always a
technical problem in the industrial �eld, and the corre-
sponding accuracy detection items also include tooth pro�le,
tooth direction, and circumferential joints [2, 3]. For dif-
ferent types of gear autonomous machining deviation range
risks, due to the defects in the system security of the
computer operation process, there is a huge security risk in
the security, con�dentiality, integrity, and detection
mechanism of the entire computer operating system or data

use and sharing process. erefore, it is very important to
design a prediction and protection system for the deviation
range of gear autonomous machining. By developing and
designing a security protection system that is consistent with
current computer and multi-Internet network technologies,
the security performance associated with the computer
system can be better improved, and the integrity, con�-
dentiality, and availability of the data in the system and the
data application process can be ensured for better use. At
present, the self-processing e�ciency and accuracy of gears
developed in the Chinese market are low. Aiming at the
above problems, the processing data model of the �re�y
neural network data structure is constructed according to
the failure symptom rule of the �re�y neural network for the
gear autonomous processing model. e data model can
search adjacent columns to obtain the �re�y neural network
information of the autonomous processing model and use

Hindawi
Mobile Information Systems
Volume 2022, Article ID 5878748, 8 pages
https://doi.org/10.1155/2022/5878748

mailto:21010042@pxu.edu.cn
https://orcid.org/0000-0003-2358-0768
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5878748


the depth-first traversal method of the slice model to es-
tablish the failure symptom function of the firefly neural
network. Aiming at the “point cut” problem of the model
column in the failure symptom of the firefly neural network,
a high-performance computing method of machining ac-
curacy based on the failure symptom algorithm of the firefly
neural network is proposed [4, 5]. +is algorithm performs
automatic processing of gears through high-performance
computing of failure symptoms of the firefly neural network.
After obtaining the failure symptoms of the firefly neural
network, according to the intersection points obtained by
sorting, the automatic generation of the cross-sectional
profile corresponding to the autonomous processing model
is performed in OpenGL software. +e first firefly neural
network failure symptom data generated by the cutting of
each contour ring can determine the profile direction of the
model section.

In order to ensure the accuracy of the data and meet the
requirements of high-precision gear nondestructive testing,
the application of the firefly swarm neural network algo-
rithm has the advantages of good straightness and anti-
interference. In the gear distance measurement used here,
the main method for measuring the accuracy of the gear
orientation is as follows: combined with the neural network
ranging method based on firefly swarm optimization, the
accurate prediction of the tooth orientation is achieved by
accurately positioning the rotary table and the parallel
moving platform. Mainly combined with the firebug neural
network ranging method, through the correct positioning
movement of the rotary table and the parallel moving table,
the accurate prediction of the direction of the gear teeth is
realized.

2. Methods

2.1. Failure Sign Algorithm of the Firefly Neural Network.
+e failure sign algorithm of the firefly neural network can
be used to effectively predict the deviation of the gear
machining process. Select the best gear fitness for sorting,
and use the input value of the variables in the algorithm to
predict each link of the machining error. +e error pre-
diction step size selected in this paper is mainly determined
by a Gaussian linear function, and then, the optimal fitness
value corresponding to the ith machining process of the gear
can complete the linear mapping between the minimum and
maximum dependencies and is expressed as follows:

ui �Umax − (sizepop− Inderxfitnessgbest(i))∗
Umax − Umin

sizepop− 1
,

uij �ui + 1− ui( ∗rand(j�1, 2, 3, ...,D).

(1)

From the expression, the corresponding membership
function of the ith gear tooth can be known. According to
the formula, the membership degree corresponding to the
gear tooth with the best fitness value can be obtained.

aij � δij

��������

− log uij 



, (2)

where aij represents the prediction step size of δij in the jth
dimension prediction range that can be used by the ith gear
tooth. It can be expressed using a Gaussian membership
function as

δij � H(t)∗ |zbest − 5∗ rands(1, 10)|,

H(t) �
max gen − t

max gen
.

(3)

According to the above expression, it can be known that
zbest represents the global optimum prediction zest.
rands(1, 10) represents a randomly selected value in the
interval [1, 6]. H(t) represents the function that changes
constantly under the weighting function of the tth iteration,
and meanwhile, it satisfies the maximum number of itera-
tions and the number of real-time iterations that can be
obtained at maxgen� 100.

2.1.1. Determination of the Global Prediction Direction.
During the process of determining the global prediction
direction, it is necessary to combine the optimal and overall
optimal conditions of the gear teeth to clarify the com-
parison between the predicted direction and the current gear
teeth:

d
→

i,ego(t) � g
→

i,best − x
→

i(t),

d
→

i,alt(t) � z
→

i,best − x
→

i(t),

d
→

i,pro(t) �
D
→

iFi,best <Fxi

− D
→

iFi,best ≥Fxi

⎧⎪⎨

⎪⎩
.

(4)

In the above expression, x
→

i(t) represents the optimum
position determined after t iterations of the ith tooth, g

→
i,best

represents the previous optimum position of the ith tooth,
z
→

i,best represents the optimum location determined under
the global prediction, Fi,best represents the determined fitness
value obtained at the g

→
i,best position, and Fxi represents the

fitness value obtained at the x
→

i(t) position. +e direction
determined according to the prediction can be based on the
current optimum position and the optimum position ob-
tained when the gear teeth pass through t iterations [7, 8].

+is paper mainly determines the direction of gear
machining according to the corresponding weighted values
in different directions. It can be expressed as

d
→

i(t) � sign W d
→

i,pro + φ1 d
→

i,ego + φ2 d
→

i,alt ,

W � Wmax − t∗
Wmax − Wmin

maxgen
.

(5)

In the formula,W is the inertia weight value and Φ1 and
φ2 are constants whose value range is constant and uni-
formly distributed in [0, 1]. T is the current number of
repetitions, and the value range is an integer between [2,
maxgen], Wmax � 0.9 is the weighted maximum value and
Wmin � 0.1 is the weighted minimum value.
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2.1.2. Location Update. After calculating the direction and
step size of the gear tooth exploration, the position of the
gear tooth needs to be updated. +e updated formula is as
follows:

Δxij(t + 1) � Δxij(t) + aij(t)∗ dij(t). (6)

Definition 1. Given F: Rn⟶ R, there exists an n-dimen-
sional weight vector related to F, wi ∈ [0, 1], 1≤ i≤ n, and


n
i�1 wi � 1, so that

F a1, a2, · · · , an(  � 
n

i�1
wibi, (7)

where bi is the ith largest factor of the array (a1, a2, · · · , an).
+en, F is called as the analysis of the failure symptom
algorithm of the n-dimensional firefly neural network.

+e firefly’s gear teeth are binary encoded, and the
update of the gear tooth position is moving instead of
formula (4). Redefine the displacement mik of firefly in the
kth dimension.

mik � scr xjk − xik . (8)

Among them, c is the learning factor and r is a random
number within [0, 1].

In order to make the value of displacement to be used to
represent the probability that the binary bit takes 1, a
Gaussian variogram is introduced. In order to express the
probability that the binary bit obtains 1, the Gaussian
variogram is imported, and in the displacement value [0, 1],
the Gaussian variation function is

G mik(  � exp −
m

2
ik

2
 . (9)

Among them, the probability xik that the firefly’s tooth
G(mik) passes through is 1 for moving.

xik �
1, rand≤G mik( 

0, others
 . (10)

Its own value is modified, and rand () is a random value
in [0, 1]. According to rand (), the value of xik is determined
after comparing G(mik). Reference [9] specifies the maxi-
mum displacement value Mmax to limit the range of mik.
Usually, the value range of mik is [− 7, 7], and the probability
of 0 or 1 for the limit binary bit of the displacement is
controlled within [0.0028, 0.9865]. Figure 1.

+e main steps of the failure symptoms of the firefly
neural network are as follows [10, 11]:

(1) Initialize the cluster size, the maximum times of
iterations, the spatial dimension, the minimum and
maximum dependencies, and the minimum and
maximum weights, initialize the cluster gear teeth,
and calculate the adaptability of each gear.

(2) Find the gear teeth with the best fitness, find out the
global best, usually the best gear tooth fitness value
and the global best fitness value, and the most

important thing in this step is the design of the
adaptive function. In this experiment, the error
obtained by the ensemble neural network training
group is taken as the fitness value.

(3) Iterative optimization: first, the parameters of the
empirical gradient direction, prediction step size,
direction, and Gaussian function are initialized.
+en, the iteration cycle is entered, and the end of the
cycle depends on the two-layer cycle of the maxi-
mum number of iterations and the size of the cluster.
+e empirical gradient calculation is determined
based on the formula. Update the position according

Start

Determine the BP network structure

Initialization of BP network weight and threshold

Initialize the searcher’s location

Determine search strategy

Determine the empirical gradient direction

Determine the search step size

Location Updates

Calculate fitness value

Obtain optimal weights and thresholds

Calculation error

Update the weight and threshold

Meet the end condition

Simulation prediction, to obtain the result

N

Y

Figure 1: Flowchart of prediction of the deviation range of gear
autonomous machining.
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to the calculation steps and direction calculation
formula δij} (l0), and click “Update the best value
and best fitness value of teeth” to update the global
best value and fitness value. Repeat the loop until the
end condition is met, and output the global best
fitness value

(4) +e optimal network weight value and threshold can
be obtained. Train optimal weights and thresholds
for a random initial value specifying a range of gear
automachining deviations

(5) Ensemble neural network training: initialize the
network parameters, create a neural network, call the
trainingdm algorithm to train the network, use the
ensemble neural network for simulation prediction,
calculate the error, and analyze the results [6].
Figure 1 shows the flowchart of the failure symptoms
of the firefly neural network

2.2. Prediction Process of the Deviation Range of Gear Au-
tonomous Machining. During gear measurement, by
properly adjusting the distance between objects and the
intensity of the light source, as shown in Figure 2, a clearer
image of the gear can be obtained. After the image is col-
lected and transmitted, some noise is usually generated,
which has a great impact on the subsequent processing
results.+erefore, the acquired gear image is preprocessed to
remove noise. +e image generally has Gaussian noise, but
the Gaussian filter can be used to remove the Gaussian noise
appropriately. +erefore, the 5 × 5 Gaussian filter processes
the image to ensure that the noise is filtered while the image
edge information is effectively preserved.

+e prediction system uses the displacement sensor of
the firefly neural network as the main prediction tool,
making the vibration accuracy in the force direction 0.12.
+e displacement sensors of the neural network of the two
fireflies are, respectively, fixed with a universal rotating
bracket and installed on the platform of the electronically
controlled lifting platform [12, 13]. +e positional rela-
tionship between the displacement sensor and gear of the
firefly neural network is predicted, and the mathematical
model is completed. +rough the software system, the pa-
rameters of the table are set, and the action command is
issued.+e computer receives the command, issues the drive
control command, and drives the servo motor control
system. +e gear center is the benchmark for processing
gears and the basis for calculating the total deviation of gear
teeth, which directly affects the measurement accuracy of
gear parameters. +erefore, it is particularly important to
determine the center position of the gear before establishing
the mathematical model of the total deviation of the gear. In
order to achieve the high-precision fit of the gear center, the
index pad that meets the precision requirements is ma-
chined, and a plurality of circular holes are machined on the
disc with the same diameter direction. +e process of de-
termining the center position of the gear through the cal-
ibration plate is shown in Figure 3.

In order to obtain the high precision of the gear ma-
chining process, the method adopted is based on the

principle of diffuse reflection, and the displacement sensor of
the KEYNCEI-065model is selected.+e thread of the sensor
is ±0.99%, the error accuracy can reach 2.6 μm, the reference
distance is 76mm, and ranging wavelength of the sensor is
686 nm.+e distance test principle used is shown in Figure 4.
According to the constructed firefly neural network, the
beam processed by the gear can be corrected. Using the
focusing lens to adjust the focus, it can be perpendicular to
the surface of the object to be tested to realize the continuous
movement of the incident object or to ensure that the in-
cident light point collected by the test moves according to the
incident optical axis according to its surface change. +e
sensor ranging process obtains scattered light from the in-
cident light point by using the receiving lens, which can be
imaged on the photoelectric receiving sensitivity surface. If
the position of the test target surface is changed, the dis-
placement d of the acquired image will also change.

D �
bd

a sin θ − d cosθ
. (11)

Before the prediction, the system predicts the gear, and
the prediction accuracy, the linearity of the jig, and the
concentricity of the jig and the rotary table have a great
impact on the prediction result [9, 14].

In Figure 5, La is the displacement sensor of the firefly
neural network and G is the grinding cylinder. PQ is the
distance from the sensor to the top circle of the gear, and NQ
is the distance from the sensor to the bottom circle of the
gear. Let OQ � l, PQ � d1, NQ � d2, MN � a, OM � b,
OP � ra, and ON � rf. It can be obtained with the diagram

b
2

+ a
2

� r
2
f, (12)

r
2
a � b

2
+ a + d2 − d1( ( 

2
. (13)

From formula (12), formula (13) can be obtained:

b �

������

r
2
f − a

2


,

a �
r
2
f − r

2
a − d2 − d1( 

2

2 d2 − d1( 
.

(14)

It can be seen from the above formula that

l �

�����������

b
2

+ a + d2( 
2



. (15)

Figure 2: Gear image.
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From the triangle relation, we know

θ � arcsin
b

l
 . (16)

It is found that the position of the sensor does not change
during the detection process. +erefore, the relationship
between the distance d of any position detected by the sensor
and the fractal circle radius r of the gear can be derived by the
cosine law:

r �

���������������

l
2

+ d
2

− 2ld cos θ


. (17)

+e purpose of making this mathematical model is to
find the circumference of the gear. Because the pitch circle

has no definite geometric position on the gear, the bifur-
cation circle can only be found according to the relative
positional relationship between the bottom circle, the top
circle, and the sensor of the gear. +erefore, the above
calculation method can be obtained. As experimentally
demonstrated, the method can be used to easily find the
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Figure 3: Establishing the gear position.

Laser

Laser 2

Laser 1

CCD

Surface measured

a

b

D

d

θ

Figure 4: +e schematic diagram of firefly neural network ranging.
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Figure 5: +e relationship between the sensor and the gear position.

Table 1: Parameters of the helical gear pair.

Number of teeth Module (mm) Pressure angle (°) Helix angle (°) Tooth width (mm)
18/48 7 25 9.89 80

Table 2: Prediction curve optimization parameters of the high-
order transmission error and the tooth profile autonomous ma-
chining deviation range.

σ (“) ε (“) q1/μm q2/μm

− 3.5 − 27 25 25
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circumference of the gear and predicts well. After the spatial
position prediction of the system is completed, the pre-
diction of the tooth orientation of the gear begins.

3. Analysis of Experiment and Results

Taking the standard installation gear pair in Table 1 as an
example, the rated torque of the bull wheel is 250Nm. K1 �
K2 � 0. Table 2 shows prediction curve optimization pa-
rameters of the high-order transmission error and the tooth
pro�le autonomousmachining deviation range. 6 is the result
of TCA, LCA, and 5-axis linkage CNC gear paste simulation.

(1) e theoretical overlap value of the gear pair used in
this experiment is 2.19. According to the simulation
steps of the algorithm, 1/9 of the gear meshing period
is selected, and the number of contact points in this
process is set to 22, so the obtained overlap value is
2.18, which is close to the theoretically predicted
value. e bottom of the gear enters, which can
quickly make the top of the gear teeth fall o�, causing
a large transmission error during the use of the gear.
e tooth top of the gear bottom has an autonomous
machining deviation range, which can e�ectively
avoid the contact of the gear edge [15]. e tooth
pro�le adopts a tangential connection at the tran-
sition point, the t tooth pro�le corresponding to the
3rd and 21st contact points is − 27”, and the tooth
pro�le corresponding to the 9th contact point is − 5.”

(2) In order to complete the prediction results of the gear
machining deviation of the algorithm in this paper,
using the helix angle and horizontal displacement
corresponding to the rack cutter, there is a huge
movement change at the gear end. e main change
is that the input end and the output end of the gear
are beyond the tolerance range of the automatic
processing of the gear.

(3) e motion and grinding wheel shape curve is used
for the automatic machining deviation range of the
gear, in which the value of 0 or 1 is used to represent
the change. Prediction results of grinding errors of
each axis of the machine tool.

It can be seen from Figure 6 that the total error of the left
tooth surface is FLβ � 28 μm, and the total error of the right
tooth surface is FRβ � 26 μm. It can be analyzed that the
deviation of the helix of the gear is 29 μm, and the theoretical

accuracy of the gear is grade 9 [16]. e accuracy is grade 10,
and the di�erence between the actual measurement result
and the helical line deviation measured by the global pre-
diction system is 30 μm, with the di�erence of 2 μm.

Figure 7 shows the comparison chart of the algorithm
experimental results of PSO optimization, GA optimization,
and the algorithm in this paper. e di�erence between the
actual and predicted values of each optimization algorithm is
evident from the graph.

According to the experimental test results in Figure 7, it
in this paper, the neural network algorithm is used to cal-
culate the predicted and measured values of gear machining
errors. Compared with the PSO optimization algorithm and
the GA optimization algorithm, the prediction error of this
algorithm is smaller. In addition, although the error between
the �rst predicted value and the actual value of the gear
obtained by using the failure sign algorithm of the �re�y
neural network is relatively large, the error of the subsequent
predicted value is gradually stable, which is close to the
actual measured value, and the �uctuation of the obtained
curve is relatively small. It can be seen that the datameasured
by this algorithm are more accurate and stable than those
measured by the other two algorithms.
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Table 3 shows the absolute errors between the 10 tested
and true values obtained by three different optimization
algorithms. +e accuracy of the FSAFNN algorithm in
Table 2 is higher.

Table 4 calculates the mean square errors of the three
algorithms, respectively. For the macroinformation starting
from Table 4, the mean square error of the predicted and
actual values obtained with FSAFNN is the smallest. +is
also shows that the FSAFNN algorithm has higher accuracy
and constant advantage.

4. Conclusions

Since the deviation of gears in the machining process will
seriously affect the service life of the machine, this paper
builds a tooth profile deviation prediction model for gear
hobbing by using the failure sign algorithm of the firefly
neural network. +e proposed method mainly uses the firefly
neural network to correct the errors in gear tooth profile
processing in time, which can enable the operator to correct
the problems found and can provide the processing operator
with a reference basis for correction.+e gear data collected in
this paper are mainly based on the accurate values obtained in
the actual production process, which can effectively reduce
the influence of human subjective factors on the evaluation
results of gear processing, effectively solve the detection
problem in gear processing, and accomplish the purpose of
gear grading after rapidmachining.+e experimental analysis
results show that compared with the traditional algorithm, the
failure sign algorithm of the firefly neural network proposed
in this paper can reduce the systematic deviation and the
random error caused by the prediction accuracy in the
process of high-precision prediction so as to realize the
nondamage deviation prediction of the gear surface. +is
algorithm has many advantages, such as fast prediction speed,
high efficiency, and strong anti-interference ability.
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