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With the rapid development of the Industrial Internet of(ings (IIoT) and edge computing techniques, in situ intelligent sensors
are continuously generating increasing and vast amounts of time-series data. In many industrial applications, particularly highly
distributed systems positioned in remote areas, repeated transmission of large amounts of raw data onto the remote server is not
possible.(is poses a significant challenge to the timely processing of these data in IIoT. Analyzing and processing all the raw data
remotely in the cloud server is impractical and has very low efficiency owing to network latency and the limited cloud computing
resources. Failure of detecting abnormal data may result in major production safety problems. (erefore, businesses are moving
machine learning capabilities to the edge to enable real-time actions in the field. In this study, we present a machine-learning-
based edge-cloud framework to solve this problem. First, robust random cut forest and isolation forest algorithms are employed at
the edge gateway to the collected data for the detection of anomalously changing data. Subsequently, these preprocessed time-
series data are transmitted to cloud services for data trend prediction and missing data completion using the long short-term
memory recurrent neural network method feed in conjunction with the original sequence of historical data combined with the
first-order forward difference data. (e experimental results show that the machine-learning-based edge-cloud-assisted oil
production IIoT system can improve substantially the efficiency and accuracy of time-series data analyses.

1. Introduction

In recent years, the increasing development of wireless
communication, sensor networks, and embedded systems
has facilitated the widespread application of the Internet of
(ings (IoT) in industry, thus leading to the industrial IoT
(IIoT). (e vast amounts of time-series data generated
continuously by smart sensors are essential for the real-time
monitoring and intelligent analysis or decision-making of
production [1, 2]. For example, sudden changes in time-
series data suggest anomalies in the actual production line,
and the future trend can be predicted through the periodic
pattern of the data [3, 4]. Moreover, the packet loss of
temporal data, which is common owing to sensor failure or
network congestion, can be monitored and replaced. (e
voluminous time-series data that which are generated

continuously pose a significant challenge to IIoT for efficient
data processing and analysis. Analyzing and processing all
the raw data in the cloud server remotely is impractical and
has very low efficiency owing to the limited network latency
and cloud computing resources. Detection failure of ab-
normal data and potential dangers may cause catastrophic
production safety problems or loss of property.

Edge computing and cloud computing provide an effi-
cient alternative to tackle the aforementioned problems.
Edge computing is a new computing pattern that offloads
computation and storage capacity from the cloud to the edge
and only interacts with the cloud off the critical path. Edge
nodes are close to the sensing objects or data sources and
facilitate data access in a time-efficient manner and improve
field device management to satisfy the requirements of low
latency, massive connections, and anomalous change
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detection [5]. Cloud computing is considered a promising
information technology infrastructure that can organize
significant resources to support on-demand services in re-
mote data centers. A typical method used to improve data
analysis efficiency is to perform the primary processing of
time-series data at the edge while conducting trend pre-
dictions andmissing data completion in the cloud based on a
series of historical data. (e edge-cloud-assisted IIoTsystem
provides a continuum of services for intelligent analysis and
application of time-series data.

(is study presents an edge-cloud-assisted system by
integrating edge computing and cloud computing tech-
nologies in IIoT for efficient time-series data analysis, in-
cluding anomalous data detection, time-series data trend
prediction, and missing data replacement. (e proposed
system consists of three layers: a smart perception layer, an
edge computing layer, and a cloud computing layer to
implement different functions. (e main contributions of
this study are summarized below.

We propose an edge-cloud-assisted IIoTsystem based on
the Aliyun Link-Edge runtime environment that can link in
and connect the registered field devices, collect the time-
series data through the field wireless network, and transmit
the data to remote data centers via a public base station. (e
perceived data by sensors can be cached at the edge, and the
data can be reuploaded in case of network congestion.

Because of the limited computing and storage resources at
the edge, we initially used the robust random cut forest
(RRCF) and isolation forest algorithms to detect time-series
data anomalies at the edge to determine whether the data are
anomalous by anomaly scores. (ese scores can be used to
monitor a particular event-driven change and make alerts for
predictive maintenance. We use a long short-term memory
(LSTM) recurrent neural network to predict the future trend
of the time-series data and complete the missing data caused
by device failure or communication congestion from the
original two-dimensional sequence of historical data com-
bined with the first-order difference data of the first-di-
mensional data in the cloud. LSTM can reveal dynamic
temporal behavior in a time sequence. (e developed LSTM
neural network model can obtain accurate predictions of
subsequent data trends and exhibit data characteristics.

(e remainder of this study is organized as follows.
Related work is briefed in the following section. (e overall
design of the collaborative edge-cloud IIoT system is then
developed. (e subsequent section describes the time-series
data anomaly detection at the edge. Subsequently, the trend
prediction based on historical data using the LSTM method
and performance evaluations is discussed. Finally, we
summarize our work in the conclusion.

2. Related Works

In this section, we review some existing research works
relevant to our study. (e architecture and functionalities of
edge-cloud collaboration have been addressed in several
prior studies but in different application scenarios, wherein
the specific functions of the edge layer and the cloud layer
were implemented differently.

Initially, the difficulties of traditional centralized cloud
computation and storage in remote data centers with the
emergence of IoT systems were analyzed for the existing
edge-end collaboration IIoT system schemes [6]. Moreover,
the edge advantages of a series of latest technologies, such as
fog computing and mobile edge computing, were compared
to provide a reference for possible future research directions
and applications. A mobility-driven cloud-fog/edge col-
laborative framework was proposed [7], which has a device,
edge/fog, and cloud layers, and which employs machine
learning in the cloud layer to predict the location of moving
agents based on spatial-temporal mobility data. A flexible
framework has been designed by integrating fog and cloud
computing for data processing and storage [3]. Moreover, a
novel architecture incorporating a device’s trust evaluation
mechanism and edge network service template with cloud
and edge computing to improve system security was pre-
sented [8]. Other related studies have mostly focused on how
to balance computing loads at the edge and in the cloud,
taking full advantage of their computing strengths and
adapting to connected devices and network security [9, 10].

From this retrospective analysis, it is clear that the
particular function at different layers needs to be considered
for different collaborative edge-cloud application scenarios.
IIoT systems must be able to detect changes in the collected
data timely at the edge for monitoring device status. Various
researchers have explored different machine learning al-
gorithms to detect anomalies and discover hidden patterns
in time-series data [11]. Previous research has shown that
ECHAD, an embedding-based, one-class learning, and dy-
namic change detection algorithm, can detect anomalous
changes in time-series data generated by smart grids [12].
Several studies have been reported to diagnose sensory
anomalies based on convolutional neural networks com-
bined with long- and short-term memory network or me-
dian filter stacked long and short-term memory-
exponentially weighted moving average [13, 14].

Some studies have been devoted to forecasting future
trends and completing missing data based on historical data
using deep learning methods. As a big data-driven analytics
method, deep learning has exhibited considerable potential
in several areas, including the formulation of predictions and
the learning of temporal contextual information. However,
as deep learning requires high-computation capability and
storage capacity to analyze datasets, it is generally deployed
in cloud servers [15–17]. Some related work on edge-cloud
assisted computing is summarized in Table 1. (ese existing
publications provide an in-depth discussion on different
computing tasks in edge and cloud layer from different
perspectives and use different computing methods for
anomaly detection and future trend prediction.

In this study, a collaborative edge-cloud system with
machine learning and deep learning is proposed to tackle the
problems mentioned above. First, we concentrate on off-
loading the computation capabilities to the edge node and
executing a machine-learning algorithm to detect anoma-
lous data points, thereby reducing the possibility of network
congestion andmitigation of computational overloads in the
cloud. Second, we use deep learning to predict future data
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trends in stream data and present a feasible means for
completing missing data. Finally, we select a real industry
dataset to validate the effectiveness of our methods. As far as
we know, this is the first time that RRCF and isolation forest
algorithms have been used at the edge to monitor anomalies
in a real-time industrial dataset.

3. Edge-Cloud-Assisted IIoT System Design

Edge computing is a new computing paradigm that offloads
computing and storage resources from the cloud to the edge,
which is close to the data source, enabling sensor access
management and data preprocessing at the edge to satisfy
the requirements of low latency and massive connectivity.
Unlike the traditional cloud-based system, the raw data
collected by the devices must be transmitted to the cloud for
data processing and analysis. (erefore, exploring a col-
laborative edge-cloud mode that can both efficiently detect
data anomalies at the edge and predict data trends in the
cloud is necessary [18, 19, 22–24].

An overview of the three-tier collaborative edge-cloud
system with machine learning and deep learning based on
the link-edge environment is given in Figure 1. (e archi-
tecture and its tiers are then described. (e edge computing
layer is located between the cloud and the smart perception
layer and supports field devices access management and
collaboration with the cloud. A private communication
protocol driver for device access and two machine learning

algorithms for time-series data anomaly analysis were
deployed at the edge layer. Moreover, the LSTM recurrent
neural network algorithm was embedded in the cloud
computing layer for future trend prediction.

An edge computing node carries device access and data
preprocessing functions. It usually refers to a small device
with computing and storage capabilities, which can be an
edge gateway or a miniaturized embedded industrial com-
puter. (e core function of an edge node is to enable device
registration and device management at the edge; it has
limited local resources to perform real-time data pre-
processing, while publishing data to the cloud for future in-
depth analysis. A functional view of edge computing is
shown in Figure 2.

4. Time-Series Data Anomaly Detection

IIoT has been extensively used and researched for many
applications; this is mainly because the frequency and
efficiency of data collection in these devices have in-
creased, thus generating a large amount of time-series
data, which can monitor the status of a specific equipment
over time. It is often necessary to identify anomalous
changes or unusual states within a system being moni-
tored by the sensors. (is process is often referred to as an
anomalous detection or outlier detection and is designed
to discover the value of the changed data, identify de-
fective equipment, spot quality issues, and alert

Table 1: Summary of the differences of related works.

Aspects Survey
papers Differences

Edge-cloud
computing

[6] Draw an overall picture of the ongoing research efforts and future research directions on edge and
cloud computing

[7] A framework of edge, fog, and cloud computing system for spatial-temporal mobility data prediction

[3] A flexible framework used to solve data collection, processing, and secure storage by integrating fog
computing and cloud computing

[8] A novel architecture that incorporates a trust evaluation mechanism and edge-cloud network service
to improve system security

[9, 10, 16] Balance computing loads at the edge and in the cloud and take full advantage of the computing
strengths and network security

[17–19] Rethinking deep learning requires a high-computation capability and storage capacity to analyze
time-series data

Anomaly data
detection

[11] A comprehensive survey of the background and challenges of anomaly detection techniques,
examples of applications for anomaly detection

[12] A novel change detection method, leverage embedding techniques, one-class learning, and a dynamic
detection approach on real data, thus avoiding false positive detections

[13, 14]
A new algorithm for recognizing sensory anomalies based on computational neural networks (CNN)
combined with long short-term memory (LSTM) or median filter stacked LSTM-exponentially

weighted moving average

Predicting future
trends

[15] Study collective contextual anomalies based on semisupervised deep learning, time-series modeling,
and graph analysis for contextual anomaly prediction

[20] A novel least absolute shrinkage and selection operator and LSTM integrated forecasting model for
predictions

[21] A new sequence-to-sequence deep learning model and LSTM can be used to utilize both the past and
future information for recovering missing data in wireless sensor networks

(is article

A collaborative edge-cloud system with machine learning can be used to tackle anomaly data
detection, future data trend prediction, and missing data replacement. Concentrating on offloading
the computation capabilities to the edge node, thereby reducing the possibility of network congestion

in the cloud
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supervisors to focus on abnormal changes. Time-series
data anomalies can be point, contextual, or pattern
anomalies. Because of the massive and real-time nature of
time-series data, single-point detection needs to be per-
formed at the edge and detection accuracy needs to be
improved to avoid incorrect information alarms. (ere-
fore, we apply two machine learning methods for anomaly
data detection at the edge and compare their advantages
and disadvantages separately.

4.1. RRCF Method. RRCF is an unsupervised method used
for the detection of anomalies in dynamic data streams,
which is efficient in processing vast amounts of data streams
and suitable for high-dimensional data [11]. It can effectively

reduce the effect of unrelated dimensions by removing
duplicates and near-duplicates from the time-series data
when constructing the forest, thus avoiding hiding the ex-
istence of a group abnormal value, and using statistically
significant anomaly scoring indicators to assess anomaly
values.

By using a sketch to construct summaries of time-series
data, constructing an integration of spatially divided binary
trees on a set of points, and then calculating anomaly scores
based on the effect of insertion or deletion of each point on
the remaining data, the RRCF algorithm can effectively
detect anomalies on stream data, while adapting to changes
in input data and handling collusive outliers. A robust
random cut tree (RRCT) on point set S is generated as
follows:

Cloud computing later

Edge computing later

Smart perception layer
TE TE

PIPI

Figure 1: Overview of collaborative edge-cloud Industrial Internet-of-(ings (IIoT) system architecture.
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Figure 2: Functional view of edge computing.
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(1) Choose a random dimension proportional to li/􏽐jlj,
where li � maxx∈Sxi − minx∈Sxi.

(2) Choose Xi ∼ Uniform[minx∈Sxi,maxx∈Sxi].
(3) Let Sl � x|x ∈ S, xi ≤Xi􏼈 􏼉, and Sr � S/Sl; recursive

execution on the left tree Sl and right tree Sr, re-
spectively, builds a binary tree.

(4) Calculate anomaly scores based on the changes in
model complexity due to the insertion or deletion of
each input data point.

(e algorithm of constructing RRCT is provided in
Algorithm 1.

(e RRCF can construct a set of independent random
cut trees according to the aforementioned steps. (e tree
model complexity of the rest of the data caused by the in-
sertion and deletion of data points is assessed to detect
anomalous changes. Given a set of points Z and a point
y ∈ Z, let f(y, Z, T) be the depth of y in the tree T. (e
model complexity is denoted as follows:

|M(T)| � 􏽘
y∈Z

f(y, Z, T).
(1)

If we were to remove x, the new model complexity is

M T′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
y∈Z− x{ }

f y, Z − x{ }, T′( 􏼁,
(2)

where T′ � T(Z − x{ }) is a tree over set points Z − x{ }. (e
displacement of a point x is defined as an increase in the
model complexity of all other points for a set Z and can be
denoted as follows:

DISP(x, Z) � 􏽘
T,y∈Z− x{ }

Pr[T] f(y, Z, T) − f y, Z − x{ }, T′( 􏼁( 􏼁, (3)

where Pr[T] is the probability of a change in the depth of the
sibling node of the leaf node containing x in tree T due to
insertion or deletion at point x. (e expected displacement
associated with a point x is simply equal to the number of
leaves in the subtree beneath the sibling node of x.

(e displacement of a point is easy to find from the
aforementioned formula. Moreover, when the anomalous
data points are repeated in a small area, the displacement of
the anomalies is very small. (is phenomenon is known as
outlier masking. Duplicates and near-duplicates are natural
phenomena; anomaly detection must remove duplicates and
near-duplicates. (erefore, we define “collusive” displace-
ment as follows:

CODISP(x, Z, |S|) � ES⊆Z,T maxx∈C⊆S
1

|C|
􏽘

y∈S− C

f(y, S, T) − f y, S − C, T″( 􏼁( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (4)

where C is the set of “collusive” points to be removed
alongside point x, S is a true subset of Z in a streaming
choice of the C set, and T″ � T(Z − C) is a tree over a set
points T(Z − C). (e outliers correspond to large CODISP
values. See [25] where the algorithm is detailed.

4.2. Isolation Forest Method. (e isolation forest algorithm
randomly samples the dataset and constructs a random
binary tree, called an isolation tree (iTree), with either two
children per node or a leaf node with no children. Subse-
quently, the method integrates multiple iTrees into a forest,
called an isolated forest (i Forest), and transverses the input
data through the nodes of each tree to detect whether it is an
anomaly according to the average path depth. Each iTree is
constructed as follows [26]:

(1) Choose ψ sample points randomly as subsamples
from a given dataset and construct an initial iTree.

(2) For a list of attributes in the input dataset, randomly
select an attribute q and randomly select a split point
p between the max and min values of the attribute q.

(3) Based on the value of p, classify each record; place
the record value< p in the left node and record the
records with values ≥ p value in the right node.

(4) Perform steps 2 and 3 recursively, and construct new
tree nodes until there is only one data in the sub-
sampled dataset that can no longer be split, or until

the tree height has reached the initially defined
limits.

Isolation forest is an ensemble of iTrees, using random
partition to iteratively isolate every data point to create each
iTree. (e algorithm is recommended in Algorithm 2.

For a test data point x, iterate through each iTree and
calculate the depth at which x falls on each tree.(e length of
the path from the leaf node to the root node is recorded as
h(x) to determine whether a record x is an anomaly. (e
average of all h(x) is E(h(x)) and gives the average path
length of the binary search tree in i Forest as c(ψ).

c(ψ) � 2H(ψ − 1) − [2(ψ − 1)/ψ], (5)

where H(i) is the harmonic number, which can be estimated
by ln(i) + 0.5772156649 (Euler’s constant). As c(ψ) is the
average of h(x) given ψ, we use it to normalize h(x).

We use the anomaly scores s(x,ψ) to assess whether a
data point is anomalous. If instances return values of s(x,ψ)

very close to unity, then they are anomalies. By contrast, if
instances return values that are much smaller than 0.5, they
are considered as normal instances.

s(x,ψ) � 2− E(h(x))/c(ψ)
, (6)

where E(h(x)) is the expected path length of h(x) from a
collection of iTrees. Using the isolation forest and random
cut forest algorithm to detect anomalous changes in time-
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series data, the anomaly score was calculated according to
the average path and the collusive displacement, respec-
tively. (e comparative analysis result of the anomaly scores
after normalization is shown in Figure 3.

(e time-series data curves of the oil-well pipeline
pressure collected by our proposed system are shown in
Figure 4. (ere are approximately nine anomalies in total,
which are manually labeled with the green vertical line. A
two-dimensional time-series of 5370 data points of pipeline
pressure were tested, and an abnormal score was rendered to
evaluate the efficiency and accuracy of anomalous change
detection with random cut forest and isolation forest al-
gorithms. As shown in Figure 3, the isolation forest

algorithm can monitor a higher number of anomalous data
values than the random cut forest method; however, these
results may lead to an increase in false alarm alerts. (e
efficiency and sensitivity of the anomaly scores are illustrated
in Figure 4. (e random cut forest is more robust than the
isolation forest algorithm; however, the latter has higher
sensitivity and has a response time ahead of the random cut
forest method; thus, the combination of the two algorithms
can respond to production anomalies better.

To evaluate the time efficiency of the anomaly detection
algorithms, we use a slice of the pressure data (approxi-
mately 6300 data points) onto an oil-well to test for the edge
and the cloud. (e comparison results are shown in Table 2.

Precondition: S R , unlabeled set of point in which to find anomalies
(1) function Initializer RRCT(S)
(2) xl

i ← minx∈Sxi

(3) xh
i ← maxx∈Sxi

(4) B(S) ← [xl
1, xh

1] × [xl
2, xh

2] × · · · × [xl
d, xh

d] △ minimal bounding box
(5) if |S|� 1 then
(6) cl ← None △ left child is empty
(7) cr ← None △ right child is empty
(8) return External node of only S
(9) else
(10) Choose a dimension, i, proportional to li/􏽐

d
j lj

(11) Choose a cut C ∼ Uniform[xl
i, xh

i ]
(12) Sl ← x|x ∈ S, xi ≤C􏼈 􏼉 △ left child tree
(13) Sr ← S/Sl △ right child tree
(14) cl ← Initialize RRCT(Sl) △ recurse on left
(15) cr ← Initialize RRCT(Sr) △ recurse on right
(16) return Internal node
(17) end if
(18) end function

ALGORITHM 1: Setting up a robust random cut tree

Precondition: ψ R , unlabeled set of point in which to find anomalies; H is the height limit specified; h is the current depth,
which is initially equal to zero

(1) function Initializer IT(S, h)
(2) if |S|� 1 or h�H then △ a point has been isolated
(3) count ← |S|
(4) cl ← None △ left child is empty
(5) cr ← None △ right child is empty
(6) return External node of only S
(7) else
(8) Choose a dimension, q ∼ Uniform[1, p]
(9) xl ← minx∈Sxq

(10) xh ← maxx∈Sxq

(11) Choose a cut C ∼ Uniform[xl, xh]
(12) Sl ← x|x ∈ S, xq ≤C􏽮 􏽯 △ left child tree
(13) Sr ← S/Sl △ right child tree
(14) cl ← Initialize IT(Sl, h + 1) △ recurse on left
(15) cr ← Initialize IT(Sr, h + 1) △ recurse on right
(16) return Internal node
(17) end if
(18) end function

ALGORITHM 2: Setting up an isolation tree
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AMOXA UC-8410A embedded computer has customized a
Freescale Cortex-A7 dual-core 1GHz central processing unit
(CPU) and 1GB synchronous dynamic random access
memory to run application software. A HUAWEI RH5885
v4 high-performance server uses an Intel Xeon E7 2.0GHz
CPU and 512GB dual-inline memory module memory to
run the most computationally intensive parts. (e average
time for detecting a slice of data anomaly at the edge is
approximately seconds; thus, the algorithms provide a time-
efficient manner for production applications. Uploading
only anomaly data and alarm rules for the cloud can also
reduce network transmission costs.

5. Time-Series Data Future Trend Prediction

5.1. Time-Series Data Prediction Using LSTM. Using a series
of historical data to predict future trends and complete
missing data requires a large amount of computing and

storage resources, which have to be inevitably implemented
in the cloud. In this section, we use an extensively applied
LSTM to perform time-series data analysis, which can both
predict trends and fill in missing data [20, 21]. (e LSTM
introduces a called gate structure for each self-looping cell
that mimics the information conduction pattern of bio-
logical neurons, storing long-term sequence information
without any additional adjustment.

(e LSTM architecture consists of a series of neuronal
cells, wherein each cell contains three gates, a forget gate ft,
an input gate it, an output gate ot, and one tanh layer, as

–1.0 –0.5 0.0 0.5
1.0 –1.0

–0.5
0.0

0.5
1.0

0.0
0.2
0.4

0.6

0.8

1.0

Robust random cut forest vs Isolation forest

0.25 0.50 0.75 1.00
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Table 2: Anomaly detection runtime comparison.

Edge/cloud Robust random cut forest
(s)

Isolation forest
(s)

MOXA UC-8410A 5.26 0.554
HUAWEI RH5885 v4 0.613 0.065
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shown in Figure 5. (e neuron cell state is the crucial
variable that carries information from the previous step. (e
gate in the interaction layer can partially remove the state of
the previous step and add new information to the current
step based on the hidden state of the previous step and the
input of the current step.

(e first interaction layer, called the forget gate, deter-
mines which part of the information from the previous step
should be removed and passed down from the cell state. (e
forget gate is described by

ft � σ wf · ht− 1, xt􏼂 􏼃 + bf􏼐 􏼑 , (7)

it � σ wi · ht− 1, xt􏼂 􏼃 + bi( 􏼁, (8)

􏽥ct � tanh wc · ht− 1, xt􏼂 􏼃 + bc( 􏼁 , (9)

ct � ft ∗ ct− 1 + it × 􏽥ct, (10)

ot � σ wo · ht− 1, xt􏼂 􏼃 + bo( 􏼁, (11)

ht � ot × tanh ct( 􏼁. (12)

(e output ft of this layer is between zero and one. (e
second interaction layer, called the input gate, determines
what new information should be added to the cell state. (e
input gate is described by (8). (e output of this layer de-
termines which information is retained and updated. (e
third interaction layer corresponds to the tanh layer, which
creates a new candidate value that can be added to the cell
state, as described by (9). (e symbol ft from the forget
layer determines the type of information which is forgotten
in ct− 1, whereas ct− 1 of the old cell state carrying the memory

information is combined with the result of the input value it
multiplied by the candidate value 􏽥ct containing the new
information. Subsequently, ct is obtained, as shown in (10).
(e final layer is the output gate layer, which generates the
output value ht of the neuron cell by joining the information
from current cell states, as shown in (12).(ese three control
gates allow the LSTM network to learn long-term temporal
dynamics from the input time-series data, thus predicting
future trends and substituting missing data.

5.2. LSTM Model Structure and Training. (e proposed
scheme using the LSTM recurrent neural network algorithm
is implemented using Python 3.6 and TensorFlow 2.0. (e
LSTM network structure is built with three hidden layers
and one dense fully connected layer.(e hidden state in each
memory layer has 64 neurons and is fully connected to the
output layer, yielding single sequential values to predict
future data trends. A three-dimensional vector with a batch
size of 60 is used as an input to the model and is transmitted
to the output dense layer to generate the final results, which
represent the predicted future value. To prevent overfitting, a
dropout layer is added behind the hidden layers for regu-
larization. After repeated testing, it is found that the ac-
curacy of the training set is the highest when the dropout is
equal to 0.20. (e adopted LSTM model used to predict the
future data trend is shown in Figure 6. It mainly includes
data preprocessing, data normalization, data division, pre-
diction model establishment and evaluation, and the pre-
dicted results.

(e training dataset of the model uses the first length of
50% of a slice of time-series data, approximately 3200 two-
dimensional data for model training, the middle 25% of the
data for testing, and the latter 25% slice for validation. (e
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ht

otft

σ σ σ

xt

c~tit

vector multiplication 

vector addition 

vector concatenation 

tanh

tanh

Figure 5: Long short-term memory (LSTM) cell structure.
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training sequence length was set to 200, which means that
the data of 200 time-steps before each sample point affects
the value of the current point. (e batch size was set to 200,
and the number of training epochs was set to 100. (us,
approximately 32 groups of training data were randomly
selected for each training session. In the validation process,
the predictions from the second-dimensional test data were
combined with the first-order difference data from the
original first-dimensional data for future trend prediction.

5.3. Predictions and Evaluation of Accuracy. Two time-series
datasets were used for model training and prediction to
evaluate the accuracy of future trend predictions. (e
datasets are composed of oil-well tubing and pipeline
pressure, using these two input variables and the first-order
difference of the tubing pressure data to predict the future
pipeline pressure trend. (e predicted results are shown in
Figure 7, wherein the blue and gray curves are the tubing and
pipeline pressures. (e orange curve is the predicted value
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Figure 6: Schematic of the LSTM-based pipeline pressure prediction process.
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Figure 7: Predicted future trends of time-series data using LSTM.
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based on the test data, and the green curve is the predicted
value based on the test data predictions joined with the
original tubing pressure. As observed from the figure, LSTM
can predict future trends. Moreover, the predicted value can
be used to solve the problem of missing data owing to device
failure or network interruptions.

A series of data from four additional wells were trained
using our proposed model to evaluate the accuracy of
predictions quantitatively. (e mean absolute error (MAE),
average relative error (ARE), and root-mean-square error
(RMSE) were calculated to validate the model feasibility by
comparing it with actual data. (e results of the model
accuracy assessment are presented in Table 2. We use the
expected ARE to measure the prediction accuracy of the
target actual data points in the experiment. As listed in
Table 3, the ARE values range between 5% and 11%, and the
RMSE values are generally sufficiently small. Hence, it can be
observed that the prediction accuracy can meet practical
requirements. It indicates that the proposed prediction
method can achieve better prediction accuracy on different
datasets.

6. Conclusions

In this study, we proposed the use of collaborative edge-
cloud computing technologies in the IIoT system for ef-
ficient time-series data analysis, concerned different tasks,
such as anomaly detection, time-series data future trend
prediction, and missing data replacement. First, we
adopted the use of machine learning algorithms—RRCF
and isolation forest—to detect abnormal data point
changes at the edge and prompt managers to pay attention
to anomaly events. (e random cut forest algorithm is
more robust than the isolation forest algorithm. However,
the latter has a higher sensitivity and more timely re-
sponse time; thus, the combination of the two algorithms
can deal more efficiently with anomaly situations. Second,
the LSTM recurrent neural network algorithm was used in
the cloud for future trend prediction and missing data
replacement based on historical data. (e differences
between the predicted and the actual data values were
compared using the RMSE to evaluate the accuracy of the
predictions. (e experimental results showed that the
accuracy of predictions using the LSTM algorithm could
fulfill practical applications.

(ere are still some limitations that need to be addressed
and ongoing work for the RRCF algorithm and LSTM
prediction model structure. At present, the simulations of
the time complexity of the RRCF algorithm need to be
improved. We will improve the simulation process of tree

generation to adapt to deploy at the edge in future work.
Besides, the stacked LSTMmodel for trend prediction in the
cloud needs to be optimized and combined with a con-
volutional neural network to improve runtime efficiency and
increase the prediction accuracy by 5%.

Future research can focus on the deployment of a
lightweight database at the edge to expand local data
storage and processing capabilities, increasing multi-
source heterogeneous data access capabilities at the edge
that can quickly parse data packets from the sensor layer
to achieve remote management and predictive mainte-
nance of devices, and on the improvement of the deep
learning model and exploring integrated analysis and
prediction using multiparametric data in the cloud to tap
the value of time-series data.
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