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With the continuous improvement in China’s economy, the construction industry has developed and rampantly progressed.
Besides the wastage of resources and energy, the development has caused serious pollution to the environment.  is makes the
construction industry a high energy-consuming and highly polluting industry.  ere is a pressing need to reduce the wastage of
resources and to adequately manage consumption of energy throughout the life cycle of buildings. is paper explores an e�ective
method of building life cycle energy management by appropriately utilizing information system and the emerging deep learning
technology. To achieve energy saving in buildings, a feasible model is proposed for predicting, analyzing, and building energy
consumption based on neural networks. By analyzing the massive data stored in the building information system, the operation of
each subsystem in the building is guided and regulated to achieve energy deployment and build energy optimization. Focusing the
key meters, the average generalization ability of the proposed model (R-Squared� 1.9, MSE� 1.02) is better than the other
contemporarily used models, LightGBM, LSTM, and SVR. Moreover, the method can e�ectively predict the energy consumption
of the whole life cycle of the building and has higher prediction accuracy.  e method proposed has great signi�cance in research
related with improving building energy performance and designing decision support tool.

1. Introduction

In recent years, with strong advocacy and active promotion
of the Ministry of Housing and Construction and local
building energy e�ciency authorities, constructions of large
public buildings are increasing adamantly [1–3]. Buildings
are the major energy consumers, and many buildings in
China are high energy-consuming buildings, which impose a
heavy energy burden on society [4–6].  e annual energy
consumption of public and civil buildings is also increasing
with the passage of time. According to a recent research [7],
the energy consumed by buildings accounts for 40% of the
whole energy consumption, causing a major chunk of at-
mospheric emissions (40%) and greenhouse gas emission
(33%).

However, building energy management is a systematic
project, and the actual energy consumption after the
building is put into operation may be reduced. By extending

building energy management to multiple stages, such as
project, design, construction and operation, and covering
the whole life cycle of the building, can achieve the goal of
controlling and saving energy.  e goal is put into practice
through the promotion of energy-saving indicators and
technical measures at each stage. E�ective management of
energy consumption during the whole life cycle of a building
is just getting started in China.  e information on energy
consumption during each construction phase is distributed
among di�erent departments for apt compliance. However,
the collection of relevant data and the standards of infor-
mation system construction are yet to be established.

At present, people mainly focus on the improvement and
optimization of energy consumption during building use,
including energy consumption in heating, air conditioning,
lighting, household appliances, and cooking utensils. In fact,
each stage of the building life cycle, from design to con-
struction completion, delivery, and use until demolition, is
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constantly consuming energy. Moreover, with the contin-
uous emergence of new materials, technologies, and tech-
niques, the proportion of energy consumed in the building
materials and construction process is relatively higher.
*erefore, it is not enough to consider only the energy
consumption in the operation phase of a building but the
energy consumption in the whole life cycle of a building
should be systematically considered. According to the life
cycle theory of buildings, the life cycle of a building includes
five stages: the preparation stage of building materials, the
building construction stage, the building use stage, the
building demolition stage, and the disposal stage of used
building materials, see Figure 1.

Systems engineering is a dedicated domain which deals
with materials, construction techniques, and other factors of
construction. Systems engineering requires a system per-
spective, focuses on the interconnectedness, interaction, and
mutual constraints between the whole and its parts, and
between the whole and the outside [8–12]. *e openness,
relevance, and dynamics of building systems determine that
energy saving in building systems must consider the whole
process from energy and resource acquisition to transmis-
sion and distribution. For example, double-glazed windows
are better insulated than ordinary wood windows and doors,
but double-glazed windows consume more energy in the
production process than the production of ordinary wood
windows and doors. *erefore, when choosing building
solutions, the energy consumption of the whole life cycle
should be considered from a system perspective.

Building information system is a digital technology to
simulate the real information of the building by con-
structing digital information system through information
technology. *e information description is to clearly and
intuitively obtain the energy consumption in different
seasons and to provide guidance for building construction
and environmental protection. *e information system
provides guidance for building construction and envi-
ronmental protection, thus controlling energy and resource
waste and saving construction costs, which is important for
the sustainable development of the construction industry
[13]. Moreover, the technology may be used to dynamically
reflect building information in real-time.*e application of
building information system for the whole life cycle of
building focuses on the continuity of information. *e
whole life cycle of building contains four stages such as
planning and design, construction, operation, and main-
tenance, and it is very important to keep the continuity and
connection of the four stages [14]. *e building informa-
tion system contains a lot of data and information related to
building performance, so the building information system
software needs to export the relevant data first and then
import them into the building information system database
for integration and analysis after conversion. Following
that, the indicators are integrated and adjusted to control
energy requirements of the building. *e data and
parameters related to energy consumption are imported
into the comprehensive database of the building infor-
mation system to form quantitative index parameters
[15–17].

In 2012, in the deep learning (DL) technology, con-
volutional neural network (CNN) emerged in the field of
image recognition that attracted the attention of research
scholars all over the world. *e CNN technology has a wide
range of applications in the field of computer vision, natural
language processing, and other research fields. Compared
with ordinary neural network technology, CNN has pow-
erful data feature extraction ability with convolutional layers
and has better generalization ability. *e model proposed in
this paper for the whole-life energy consumption manage-
ment is based on CNN.*e aim behind the research study is
to provide preliminary findings and relevant technology
preparation for further research and practice in the field of
construction. To realize the whole-life energy consumption
management of buildings, firstly, it is necessary to determine
themonitoring target, i.e., to split the comprehensive control
target of the whole-life energy consumption of buildings into
several implementable, measurable, and controllable indi-
cators, to choose a suitable management stage, and then to
refine and decompose each of the indicators. Secondly, it is
necessary to determine the implementation path, integrate
requirements of energy consumption, and design a suitable
energy consumption management process.

In this paper, we sort out the logical relationships among
the monitoring objects, implementation paths, and expected
results of energy consumption in the whole life cycle. A
model for energy consumption management for the whole
life cycle of buildings is proposed to provide guidance for the
development of information systems. *e model con-
struction schematic is shown in Figure 2.

2. Related Work

Building construction is a compound process encompassing
various phases and plans [18]. Energy consumption control
requirements in the preproject stage and indexes in the
project planning stage are used as the baselines for the design
stage. *e data linkage with the building energy con-
sumption control requirements is established during the
project planning phase. Moreover, analysis about invest-
ment, sales, social benefit analysis, risk, project investment,
and financing are also performed in the planning phase. In
the design phase, dedicated software technology, compre-
hensive database, and system model are used to improve the
efficiency of related building energy consumption, green
building, and other analysis tools and also to reduce the huge
workload during the whole process. Moreover, the building
information system is used to achieve dynamic output of
building energy analysis such as electromechanics, archi-
tecture, Heating, Ventilation, and Air Conditioning
(HVAC), and curtain wall and to provide a basis for
parametric design. Quantitative indicators in the informa-
tion system like system indicators, equipment parameters,
and operation parameters are helpful to integrate and adjust
the energy consumption of a building [19–24].

*e construction phase is an important stage where
design of the building energy management is meticulously
brought into actuality. Integration and adjustment may be
performed in the comprehensive database of the building
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information system. However, special attention is paid to
include the comparison of equipment parameters binding
indexes with actual procurement according to the com-
parison, actual installation, piping, and construction
drawings. At the same time, since a project may undergo
relevant changes due to uncontrollable factors such as
equipment manufacturers, construction environment, and
building layout, the energy consumption and control pa-
rameters are kept adjustable [25–28]. *e key inputs (or
constraints) in the construction phase include various pa-
rameters of electromechanical equipment (performance,
equipment life, and index), installation location, supplier
information, operation monitoring and control index, the
correlation of electromechanical systems (piping diagram,
logic of the cooling, heat source system and air conditioning
system), variable air volume (VAV) system, and area space
layout.

*e operation phase is the phase to test the results of
building energy management and to adjust and optimize

building energy management in conjunction with other
information about building operation. On the basis of real-
time collection of dynamic data information such as human
flow, environment, and operation of facilities and equip-
ment, it integrates real-time data and historical data of
various types of energy consumption in the building, ex-
tracts relevant information from the building information
system model. Data simulation and analysis techniques may
be used to carry out simulation estimation of operational
energy consumption under various conditions. After the
building operation is stabilized (generally two heating and
cooling cycles), the building energy management system
collects dynamic data such as the optimal performance curve
of equipment operation, the optimal life curve of equipment
operation, and the monitoring data of the operating
equipment [26].

With the development of information technology, a huge
amount of complicated information is flooded around all the
time. However, the information that human beings can
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Figure 1: Energy consumption in all phases of the building life cycle.
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Figure 2: Schematic of the building life cycle energy management models.
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receive is limited, and researchers have discovered that the
human visual system has a huge visual information pro-
cessing capacity with a limited field of view [27–29].
Mimicking the human visual system, researchers have de-
veloped the idea of attentional mechanisms. *e core idea of
the attention mechanism is to obtain the importance of each
feature map by certain means and devote more computa-
tional resources of the neural network to more important
tasks and use the results of the tasks to guide the update of
weights of the feature maps so that the corresponding tasks
can be completed efficiently and quickly [30].

Convolutional neural network (CNN) is a widely used
model in deep learning, which is an important part of target
detection algorithm and plays the role of feature extractor in
target detection algorithm mainly completing the feature ex-
traction task and outputting the feature map containing rich
feature information, which lays the foundation for the sub-
sequent classification and regression tasks in target detection.
In 2012, theAlexNet networkwas proposed to focus research in
the field of computer vision on convolutional neural networks
and deep learning. With the emergence of various advanced
frameworks in 2014, improved AlexNet and ZFNet were in-
troduced [31–33]. In the same year, RepVGG, which consists of
only 3× 3 convolutions with ReLU activation functions further
enhances the feature extraction performance of the VGG
network through a simple branchless structure [34–36]. To
realize the deployment of CNNmodels in miniaturized mobile
and embedded platforms, scholars have also conducted in-
depth research on how to reduce the number of CNN model
parameters and the complexity of CNN structures. Among
them, SqueezeNet utilizes many 1× 1 convolutional kernels to
replace 3× 3 convolutional kernels while reducing the number
of channels of 3× 3 convolutional kernels to reduce the
number of parameters.

3. Methods

Machine learning models work as a black box discovering
the relation between various features of building and gen-
erate outputs about the energy performance. In this paper,
the supervised ML approach used adequate data about
building to predict targets for unseen samples.

3.1. Model Architecture. As any ML model works on data,
initially, the historical number of buildings and meteoro-
logical data are collected to have a dataset for the model
training. *e algorithm is used to identify the building run
cycles as the time steps of the model. Finally, the hybrid
model is trained based on the convolutional neural network
algorithm. *e optimal hyperparameters of the hybrid
model are found using the grid search algorithm. *e
structure of the proposed model is shown in Figure 3.

3.2. Big Data Information System. With the continuous de-
velopment and wide application of big data technology, the
platform architecture of big data is extending. *e architecture
is divided into two basic types: (1)master-slave and (2) P2P.*e
former storage architecture is developed by Google and

represented by GFS and BigTable. *e main representative of
master-slave is Hadoop. *e later storage architecture is de-
veloped byAmazonwhereas itsmain representative is Dynamo.
*e Hadoop master-slave architecture is mainly reflected in the
architecture design of HDFS (Hadoop Distributed File System).

3.3. Feature Embedding. Word embedding refers to a kind of
word representation where words with similar meaning have a
similar representation. Word embedding is normally used in
natural language processing. *e embedding layer maps sparse
word vectors to a low-dimensional and compact feature space.
*e vectors in this feature space can be used to measure the
similarity between features by computing their relative distance.
Since the feature space is a feature compression of the original
vector space, its dimensionality is much smaller than that of the
original vector space. Hence, the complexity of distance cal-
culation can be greatly reduced. Moreover, the undesirable
effects of expanded feature vectors are avoided.

In the N-dimensional word vector space VERX, the
relationship between its features can be expressed in terms of
conditional probabilities as

p v1, v2, · · · , vn ∣ vi(  � 
N

j≠ i

p vj ∣ vi , (1)

where viis the target feature and vj is the other features in the
feature space. In the neural network, p(vj ∣ vi) can be
expressed as

p vj ∣ vi  �
exp sj


M
j′�1 exp sj′

, (2)

where H is the hidden layer, M is the dimension of the
original N-dimensional feature mapping to the feature space
S, sj is the j-th component of the weight W of the hidden
layer H to the feature mapping space S, and h and W is the
weight of the original feature input to the hidden layer H.
*erefore, given the target feature vi, the loss function of the
network can be obtained as

L � − 

N

i�1
ln p v1, v2, · · · , vN ∣ vi( 

� −ln 
exp sj


M
j′�1 exp sj′

� − 
N

j�1
sj + N ln 

M

j′�1

expj′ .

(3)

As clear from the equation, after the word embedding
layer, the relevance of the classification features can be fully
extracted, and the new features are embedded in a layer of
network. *is reduces the dimensionality of the input data,
and the layer may be used for solving the problem of feature
discretization. *ere are categorical features in building
metainformation, such as features related with the use and
location of buildings. *ough the features have obvious
effects on the energy consumption of the building, they do
not exist in numerical form. If the categorical features are
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coded with the unique thermal coding, it will lead to too
large data dimensionality. For this reason, the fusion neural
network established in this study introduces an embedding
layer, which is used to compute the embedding of discrete
classification signals, thus mapping the discrete classification
features to a continuous word embedding space enabling the
fusion of discrete features with numerical features. At the
same time, the word embedding layer reduces the data
dimensionality and reduces the training time of the network.

3.4. Convolutional Layer. *e convolutional neural network
is selected to perform regression on the data. Convolution is
a mathematical operation in which the process is to take a
tensor, matrix, or vector and pass it through the convolution
operation of a convolution kernel to obtain a tensor of
smaller dimension containing feature information. Deep
convolutional neural networks based on two-dimensional
convolutional kernels have made significant breakthroughs
in image recognition in recent years. However, the two-
dimensional convolution kernel operates on two dimensions
of image data, namely, length and width. Considering that
the dimension of time-series data is only one-dimensional,
this study selects one-dimensional convolution to extract
time-series features from the data. *e one-dimensional
convolution kernel convolves the time-series data on the
time series.

By inputting the input of the network into k branches,
the input of each cardinal, where R represents the number of
branches after split in each cardinal, k represents the k-th
cardinal, and U represents the input of each branch after

split. *e output of each cardinal module, V, represents the
output of cardinal with channel weights, a(c) is the weight
calculated by SoftMax, and G represents the weight of each
split. *e final k outputs are stitched after the cardinal
module combine the information of the k cardinal outputs
and the stitched outputs are element-wise summation with
the original inputs to obtain the final output.

U
k

� 
Rk

i�R(k−1)+1
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k
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1
, V

2
, · · · , V

k
 .

(4)

3.5.Model Training. As a first step, preprocessing of various
types of data involved in building energy consumption is
performed. Particularly data dissimilar in scales are pre-
processed to avoid computational cost. *ere are various
types of data such as pressure, temperature, voltage, current,
and flow. Abnormalities of various forms may occur in the

 Building Energy
Monitoring

CNN

Prediction
Category

Softmax

Figure 3: Structure of the proposed model.
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data due to many reasons, including change in the envi-
ronment. *erefore, it is needed to normalize data so that it
is not affected by various types of magnitudes. In this paper,
the maximum-minimum normalization method is used to
reduce abnormalities in data.

xnom �
x − Amin

Amax − Amin
. (5)

*e mean absolute percentage error (MAPE) is used as
the evaluation criterion for the outcome error as follows.

MAPE � 
N

i�1

yi − yi

yi





100
N

, (6)

where N is the total number of prediction experiments, yi is
the true value, yi is the predicted value.*e smaller the value
of MAPE, the smaller the difference between the predicted
value and the true value.

4. Experiments and Results

To design a suitable energy consumption management
process, it is necessary to integrate requirements of energy
consumption, after preprocessing and appropriate analysis of
enough volume of data. *erefore, the CNN-based model
proposed in this paper is trained by a dataset of 800,000
samples.

4.1. Experimental Setup. *e experimental configuration
environment is Ubuntu 18.04LTS with 32G RAM, Intel
Corei7-7700 CPU and Nvidia GTX-1070Ti GPU, and Keras
deep learning framework and TensorFlow as Backend. *e
data used in this study come from the internal nonpublic
data of a Chinese construction company, and the historical
data of different buildings in different places for one year are
collected. *e main information contained in the data in-
clude meter (electricity meter, cooling meter, steam meter,
and heat meter) readings, building metainformation (e.g.,
usage, commissioning time, number of floors, building lo-
cation) and meteorological information (e.g., air tempera-
ture, cloud cover, dew point temperature, air pressure, and
wind speed). Correspondingly, there are test datasets in the
data that have the same structure as the training dataset. For
the training data selection, the original data, after the
missing value processing, have 11714696 items, containing
27 temporal features and 3 classification features. *is study
divided the data into training set and test set according to the
ratio of 4 :1; however, in the process of training the model,
the author found that the training speed of SVR and LSTM
on large datasets was too slow; therefore, for the above two
models, this study only selected 800,000 of these samples as
the dataset for training the model and also divided the
training set and test set according to the ratio of 4 :1. In this
study, the early stopping strategy is used to stop the training
to prevent overfitting of the models. Also, k-fold cross-
validation is used for all algorithms, and the k-value is set to
6, and the results are averaged over six times. *e model
parameters were set as shown in Table 1.

*e training process performance enhancement and loss
convergence are shown in Figures 4 and 5.

4.2. Experimental Results and Analysis. To evaluate the
prediction performance of the proposed models, LightGBM,
CatBoost, support vector machine regression, and long
short-term memory (LSTM) network were selected as the
cross-sectional comparison models. LightGBM and Cat-
Boost algorithms are both improvements of the gradient
boosted decision tree (GBDT) algorithm. Compared to the
GBDT algorithm, which slices features at each level, the
LightGBM algorithm slices features directly at the leaf nodes
of the tree and introduces histogram optimization without
sorting each feature, resulting in a significant speedup
compared to the GBDT algorithm. Both the integrated
learning algorithms are widely used in the field of data
mining. Meanwhile, in order to verify that the one-di-
mensional convolutional neural network (Conv1D) has the
performance of extracting temporal features in temporal
order, a long- and short-term memory network is selected
for comparison.

From the results in Figures 6, 7, and 8, the model
proposed in this study possesses high performance in terms
of accuracy and model interpretation, which is only slightly
lower than the LightGBM algorithm and better than other
integrated learning algorithms and neural networks. *e
model in this study consumes more time in convergence,
which is caused by the search of hyperparameters for more
iterations of training. Compared with the LSTM model, the
LIGHTGBM model has higher prediction accuracy, and
compared with SVR and GA algorithms, TSA has better
merit-seeking ability and convergence in optimizing the
LSTM model, indicating that the TSA algorithm is suitable
for parameter optimization of the LSTM model. Compared
with the three single neural network models LSTM,
LIGHTGBM, and LSTM, the LIGHTGBM-LSTMmodel has
better prediction accuracy and robustness and has stronger
generalization ability. *is indicates that the hybrid pre-
diction model proposed makes full use of the advantages of
different neural networks and has better prediction per-
formance. As the model meets the practical engineering
needs, it provides effective data support for the power system
of buildings.

In order to verify the generalization ability of the model,
regression prediction is performed for each of the other
three measures in the paper, and the LightGBM algorithm is
used to compare with the model proposed in this study. In
the LightGBM algorithm, the parameters are set in the same
way as those for the meter prediction. For the parameters of
the model in this study, the parameters of the electricity

Table 1: *e model parameters setting.

Predictive models Parameter name Parameters

CNN

Number of hidden layer neurons 100
Dropout 0.2

Learning rate 0.001
Optimization algorithm Adam
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Figure 4: Schematic diagram of training process performance improvement.
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consumption prediction model were still used as the basis
for parameter setting, and the TPE algorithm was not used
for the superparameter search. *e experimental results are
shown in Tables 2 and 3. As seen in Tables 2 and 3, the
performance of the model proposed in this study is close to
or even better than that of the LightGBM algorithm.

It can be seen that the model proposed in this study has
good generalization ability and is not only suitable for
prediction of building electricity consumption but also can
get good results when predicting energy consumption such
as building cooling and heat.

5. Conclusion

With this research work, the building information system
based on convolutional neural network is proposed to an-
alyze building energy consumption of the four cycles-
planning, design, construction, and operation-cum-main-
tenance. *e key elements of building construction with the
findings observed are summarized. Information integrity,
significance, and correlation of the building information
system are discussed. In the proposed model, regardless of
the quantitative data and correlation rules, features are
passed through the comprehensive database of the building
information system after digitization and quantification.*e
building information system can simulate and predict the
operation energy consumption in the visualized parameter
environment and provide guidance for energy consumption

management in the initial operation stage of different
buildings. In short, the application of building information
system is clearly and intuitively analyzed in terms of the
building energy consumption of the whole building cycle
and provides a basis for the development of scientific energy
consumption management schemes. *e efficient general-
ization ability of the proposed model suits it well in the
designing of decision support tools and to improve building
energy performance. With the advent of Big Data and In-
ternet of *ings, advance sensors and energy meters are
required in buildings. In future, the method will be enhanced
to support the futuristic sensors and meters so as to meet the
requirements of the upcoming data processing systems.

Data Availability

*e datasets used during the current study are available from
the corresponding author on reasonable request.
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Cooling meters 0.859 0.878
Steam meters 0.833 0.840
Heat meters 0.828 0.825
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