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Previous researches on accelerating remote sensing data processing are based on traditional von Neumann architecture, which
separates storage and computation. Under the architecture, data must be obtained from the storage device �rst and then
transmitted to Field Programmable Gate Array (FPGA) through the system bus.  e power consumption caused by the data
handling is huge, even exceeding the energy consumption required for data processing. In order to reduce the migration of remote
sensing data and alleviate the problems of storage wall and power wall under von Neumann architecture, we design a remote
sensing data processing platform based on the system architecture of computable storage, which uses Solid-State Disk (SSD) with
computing capability to process the remote sensing data and realize accelerated remote sensing data processing. Based on this
platform, applications related to remote sensing data processing such as compression, target detection, and image classi�cation are
deployed in SSD to improve the information acquisition rate in remote sensing data. Experimental results show that after
compression being o�oaded to SSD computing performance is improved by 2.27 times compared with the host CPU. Compared
with the host GPU, the target detection speed is improved by 6.25% and the power consumption is reduced by 66.7%. Compared
with the host, the detection speed of remote sensing image classi�cation is improved by 78.8%, the power consumption is reduced
by 70%, achieving the expected classi�cation e�ect.  e Remote Sensing data Processing Platform based on Computable Storage
(CSRSPP) distributes various computing tasks to the SSD for execution, which not only improves the processing speed of
computing tasks, but also greatly reduces the power consumption of the platform.

1. Introduction

With the continuous development of remote sensing plat-
forms and the enrichment of remote sensing means, the
capacity of remote sensing data is increasing geometrically,
reaching TB or even PB level, and the types and formats of
data also tend to be diversi�ed. Unstructured and massive
data bring a series of problems to storage, management, and
application [1]. Under the wave of explosive growth of re-
mote sensing data, how to extract the information in remote
sensing data quickly and e�ectively, reduce the redundancy
of information, so as to improve the utilization of infor-
mation is an urgent problem to be solved.  rough various
data processing methods such as remote sensing data

compression, remote sensing image classi�cation, and re-
mote sensing target detection, the de�ciency of insu¤cient
information in a single remote sensing image can be ef-
fectively compensated and the quality of remote sensing
application products can be improved [2]. Meanwhile,
storage devices supporting remote sensing data processing
are evolving into high-density, high-bandwidth, and low-
delay devices, providing high-quality data guarantee for
subsequent tasks such as image classi�cation, target rec-
ognition, and change detection. Compared with the tradi-
tional disks, SSDDs provide higher read/write performance
and storage density, with smaller volume, less static power
consumption, and better resistance to physical impact. As a
mainstream device for information storage, SSDs are widely
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used in disaster monitoring, urban planning, and resource
investigation, etc [3, 4].

With the development of storage and data processing
technology, computer architecture is constantly updated and
evolving under the von Neumann architecture. In this ar-
chitecture, computing, storage, control, and I/O devices are
the building blocks of a computer. Computing and storage
are separated, developed independently, and optimized
separately. Over the past 20 years, the performance of
processors used to perform computing functions has
maintained the development rate of Moore’s Law by relying
on process and multi-core technologies, while the im-
provement rate of memory performance has only main-
tained at about 7% per year [5], making the traditional von
Neumann architecture face great challenges. On the one
hand, the imbalance of performance improvement speed
between the current memory and the processor leads to the
limited memory bandwidth that cannot guarantee the high-
speed data transmission. And the processor is always in the
state of waiting for data, which further amplifies the storage
wall problem. On the other hand, in high-concurrency
computing scenarios such as big data and artificial intelli-
gence, data need to be frequently transported from un-
derlying devices to memory, resulting in serious
transmission power consumption [6]. *e power con-
sumption generated by data migration is even much greater
than that of data processing. Boroumand et al. [7] ran the
load of Google applications on user devices and found that
an average of 62.7% of the energy was spent on data
movement between memory and computing units [7].
When scrolling through Google Doc pages, data movement
accounts for up to 77% of the energy consumption.

In order to meet the remote sensing data platform with
strict requirements on power consumption and size, and
accelerate the data processing of remote sensing applica-
tions, FPGAs with outstanding features such as low power
consumption, low latency, high performance, small size, and
reconfiguration have begun to replace GPUs. It is increas-
ingly used in edge-embedded devices to accelerate the in-
ference process of remote sensing data processing
algorithms. González et al. [8] proposed an algorithm based
on FPGA for automatically detecting targets to address the
challenge of poor instantaneity of target detection in
hyperspectral remote sensing images [8]. Shimoda et al. [9]
proposed a sparse fully convolutional network based on
FPGA for semantic segmentation, and adopted a fully
pipelined architecture in hardware implementation [9].
Boskovic et al. [10] implemented a multi-mode hyper-
spectral image target detection system based on FPGA [10],
which could switch between three different target detection
algorithms freely. However, these studies are based on the
traditional von Neumann architecture, and a large amount
of data needs to be transported from the underlying storage
device to the memory of the host, which causes the problem
of storage wall and power wall.

In order to solve the storage wall and power wall
problems of the von Neumann architecture, the concept of
transferring computation to memory has gained extensive
attention in the academic community and is broadly

referred to as near data processing method [11]. *e
memory includes internal memory and external memory
[12]. *e internal memory can be accessed in bytes.
However, the external memory has a large capacity and
cannot be accessed at the granularity of byte addressing.
Near data processing seeks to minimize data movement by
finding the most appropriate location in the hierarchy for
computation [13], taking into account the location of data
and information that needs to be extracted from the data.
In near data processing, computation can be performed in
external memory devices, or in cache, main memory, and
persistent storage, as opposed to the traditional way in
which data is moved to the CPU and computed within the
CPU. *e fifth generation (5G) communication has the
potential to achieve ubiquitous positioning when inte-
grated with a global navigation satellite system (GNSS).
Computable storage is crucial to the construction and
development of 5G.

As a system architecture for near data processing,
computable storage migrates computation to internal
storage devices for execution to reduce data interaction
between hosts and peripherals. At present, IBM embeds Blue
Gene high-performance computing chips inside storage
devices in the data center to create storage nodes with
computing capabilities [14]. Samsung launches SmartSSD to
deal with workload related to data analysis and storage
transactions in storage devices [15]. Eideticom has devel-
oped NoLoad, which offloads storage functions such as
compression onto the accelerator. Alibaba unloads the da-
tabase scanning and compression operations into storage
devices and applies them to the cloud-native relational
database PolarDB [16].

In order to speed up the data processing of remote
sensing applications and quickly extract effective informa-
tion from massive remote sensing data, CSRSPP is designed
in this paper, which uses storage devices to accelerate the
remote sensing data processing, so as to alleviate the
problems of storage wall and power wall in the von Neu-
mann architecture. After the remote sensing data processing
is unloaded to the storage device, the application perfor-
mance is improved and the power consumption is greatly
reduced.

2. Design of Remote Sensing Data Processing
Platform Based on Computable Storage

CSRSPP includes two parts: the host drive and the SSD, and
its overall architecture is shown in Figure 1.

*e host is equipped with a block device driver to deliver
special computing tasks. SSD consists of multiple inde-
pendent channels which contribute to high parallelism and
rich I/O resources. So it can cope with the problems of large
single file, large number of files, and low storage efficiency.
Five sub-modules are designed in the SSD to support real-
time processing of remote sensing data, including command
parser, task scheduler, block device driver, application
manager, and acceleration module. *ere are computing
devices inside the SSD, which can process the remote sensing
data.
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3. Operation Principle of SSD

As shown in Figure 2, the SSD consists of host interface logic
units, master control chips, Dynamic Random-Access
Memory (DRAM) caches, and multiple flash memory chips.
*e host interface shields the operation on flash memory
chips inside the SSD to help the upper-layer storage system
seamlessly read and write SSDs. Commonly used interfaces
include PCIe, SATA, etc. *e main control chip includes
processor, memory controller, flash controller, cache
manager, providing various methods for processing oper-
ations, memory management and organization, and man-
agement of flash memory chips. DRAM caches inside the
SSD serve to buffer data and accelerate data reading. If the
data to be read by the host is in DRAM, there is no need to
access the flash memory chips. Instead, the data in DRAM is
directly transferred to the host through the Direct Memory
Access (DMA) controller. Flash memory chips are used to
store data and mounted on different channels. *e different
channels are connected side by side to the flash controller,
enabling parallel access to the SSD.

We use OpenSSD [17] that is an FPGA-based SSD de-
velopment platform. OpenSSD provides the required IP and
basic firmware control logic for the SSD to achieve re-
peatable programming.

4. Design of Computable Storage System

4.1. Design of Command Parser. *e host interacts with the
SSD through the NVMe protocol [18]. *e NVMe protocol
uses multi-queue technology, which can allocate different
queues according to task types and scheduling priorities.
Each CPU has its own queue to achieve high-performance
storage. Each queue of the NVMe protocol is a FIFO pipe
that connects the host to the device. *e command pipeline
sent from the host to the device is called the Submission
Queue (SQ), and the command pipeline sent from the device
to the host is called the Completion Queue (CQ). *e
process of an I/O request is that the host first assembles

NVMe commands and establishes DMA mappings for
transferring data, and then sends the request to the device
through SQ. After receiving the request, the device records
the corresponding completion result into the I/O comple-
tion request, and finally returns the completion result to the
host through CQ.

*e NVMe protocol uses the doorbell mechanism to
inform the SSD controller’s CQ whether there is a new
request. Each NVMe queue has a doorbell pointer. For SQ,
this pointer is the queue tail pointer. After the host submits
an I/O request to the SQ, it updates the doorbell pointer in
the device register space with the value of the SQ tail pointer.
At this point, the SSD controller is notified of a new request
and needs to move the NVMe command from the SQ to the
command parser for further execution.

After receiving the NVMe command, the command
parser needs to parse it. *e specific format of the NVMe
command is shown in Figure 3. Usually the last 4 fields of the
protocol package are not used and can be customized by the
user. *e 10th and 11th fields are often used, as defined as
logical block addresses in read/write commands.

*e size of the NVMe command is 64 B, and opcodes
larger than 0× 80 are reserved options for manufacturers. To
support computing tasks of remote sensing data processing,
add the following commands: (1) Linux for Remote Sensing
Data Processing (LRSDP) heartbeat detection, (2) LRSDP
off, LRSDP on, and (3) Computing task delivery. Among
them, LRSDP heartbeat detection commands are used to
obtain the real-time load of LRSDP in the SSD, LRSDP on
and off commands are used to control the startup and
shutdown of LRSDP, and computing task delivery com-
mands are used to issue the computing tasks that need to be
executed in the SSD.

4.2. Design of Task Scheduler. For the smooth operation of
LRSDP, the computing tasks delivered by the host cannot be
run directly. On the one hand, the computing tasks delivered
by the host may become a system bottleneck due to the time-
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consuming process. On the other hand, the programs ex-
ecuted in the LRSDP may have design flaws, which increase
the long-tail latency of the computable storage system.
*erefore, the task scheduler is required to schedule the
computing tasks delivered by the host. *e main job of the
task scheduler is to estimate the waiting time of a task. If the
expected waiting time is long, the host executes the task or
waits for a period of time before delivering the task.

After receiving the request, the task scheduler firstly
checks whether the LRSDP has been started. If the LRSDP is
not started, the task will be returned to the host. If the
LRSDP is started, the depth of the waiting queue of the task
and the real-time load of the LRSDP will be evaluated. *e
real-time load of the LRSDP is obtained through the
heartbeat mechanism. *e LRSDP periodically informs the
task scheduler with the current system information, such as
the memory usage and CPU usage. If the queue depth ex-
ceeds the threshold or the LRSDP load is heavy, the task is
pushed back to the host for processing. Otherwise, the task is
inserted into the waiting queue of the task manager, and
then sent to the LRSDP for processing.

4.3. Design of BlockDeviceDriver. As shown in Figure 4, it is
assumed that there are four processing cores inside the SSD,
two of which are used to run firmware and the other two for
running LRSDP.*e core running the firmware and the core
running the LRSDP share the DRAM memory inside the
SSD, and they have a different range of physical memory
addresses available. Assuming that the low address space is
allocated to firmware and the high address space is allocated
to LRSDP. *e LRSDP block device driver needs to interact
with the Flash Translation Layer (FTL) of the firmware
through inter-core communication to read and write flash
memory information. *erefore, the core of the LRSDP
block device driver lies in the inter-core communication.

In a multi-core system, the interrupt controller allows
the hardware thread of one CPU to interrupt the hardware
thread of other CPUs. *is method is called Inter-Processor
Interrupt (IPI).*e implementation of IPI is based onmulti-
CPU memory sharing. Using IPI can reduce CPU overload
and improve system efficiency effectively. In addition, CPUs
in the SSD are generally ARM cores, and the Generic In-
terrupt Controller (GIC) controller supporting IPI is usually
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configured in the ARM core [19]. *erefore, the IPI between
the LRSDP core and the firmware core can be used to
communicate and complete data interaction in the com-
putational storage system.

*e communication process between firmware core and
LRSDP core is shown in Figure 5. *e LRSDP core sends
packet A to the firmware core, and usually the message
length transmitted by the data register is limited. So the valid
content sent by LRSDP contains a magic number and the
physical address of the actual packet B. *e IPI of the
firmware core is then triggered to check the validity of packet
A’s contents. First determine whether the bytes of the packet
header match the magic number, if so, continue to read the
contents of the packet B corresponding to the physical
address. *e header of package B contains the opcode and
the array length N, followed by the array’s content—
— [[LBA1, physical address x1, sector number y1], [LBA2,
physical address x2, sector number y2], . . ., [LBAN, physical
address xn, sector number yN]]. Each element of the array
consists of the logical block address, the physical address of
data read/write, and the number of read/write sectors. *e
firmware core submits these requests to the FTL I/O queue
one by one, and sends an IPI to LRSDP after all I/O requests
are completed at the FTL. Finally, the LRSDP core receives
the IPI and notifies the file system or application that the I/O
is completed.

4.4. Design of Application Manager. *e application man-
ager is responsible for the management of LRSDP appli-
cations, including the execution of life cycle processes such
as saving, starting and stopping applications, and reasonable
resource allocation of processes or threads corresponding to
computing tasks to prevent a process or thread from
blocking the entire system [20].

4.4.1. Application Registration/Saving. *e host can register
applications with LRSDP, such as issuing script files or
executable files. First, the application manager needs to
perform trusted code detection on the delivered files to
determine whether there is any code that maliciously attacks
the operating system or file data. *en, the application
manager checks whether the task type delivered by the host
already exists in the current system. Finally, the application
manager checks whether some parameters given are valid. If
all of the above conditions are met, the application manager
records the application name and its invocation rules, and
saves the application to the root file system of LRSDP for
later invocation.

4.4.2. Application Startup and Shutdown. *e application
starts when a computation task is received from the task
scheduler module. First, the application manager creates a
process or thread of the corresponding task, and the process/
thread enters the running state. After calculating the task
result, the process/thread notifies the final processing result
to the application manager. *e processing results can be
recorded in shared memory or files. After the application
manager obtains the results, the application is closed and the
firmware is notified that the task is completed.

4.4.3. Application Resource Allocation. Although the task
scheduler has some control over the computing tasks, the
tasks with long waiting time can be directly returned to the
host. However, after LRSDP is enabled, measures should be
taken when multiple applications preempt the computing
resources, memory resources, and I/O resources of the
computable storage system. In addition, an application may
occupy most of the memory of the computable storage
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Figure 5: Inter-core communication flow between firmware core and LRSDP core.
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system or occupy the CPU or I/O channel for a long time.
*erefore, it is necessary to control the resources occupied
by the application.

*e host can specify the priority of certain tasks explicitly
or adjust the priority of the LRSDP process during the real-
time running. In addition, it is also possible to avoid dis-
orderly and unfair resource grabs for the computational
storage system by explicitly setting the maximum memory
and I/O resources available to a certain application. If there
is an abnormal application state, the application manager
should end it.

4.5. Design of Application Manager. In the computable
storage system, the host can specify remote sensing data
processing tasks for acceleration. After the application is
started, requests for acceleration tasks are submitted to the
acceleration module. *e acceleration module completes
convolution calculation of all layers in the network model
for remote sensing data processing, and its working principle
is shown in Figure 6. According to the principle of con-
volution operation, a feature map vector is convolved with
multiple convolution kernel vectors, and the output feature
map vector is obtained through the pooling layer [21]. *e
data input of multiple parallel computing core modules
adopts a daisy-chain method, and the feature map vector
and convolution kernel vector flow through multiple
computing core modules in turn. *erefore, the acceleration
module opens up double buffer for this purpose. When the
serial number of the convolution kernel vector matches the
serial number of the current computing core module, the
computing core module caches the vector accordingly, and
finally the nth computing core module stores all the weights
of the nth convolution kernel. It is used for the calculation of
the current batch, and the weight of the nth convolution
kernel of the next batch is pre-read, thereby improving the
computing performance of the accelerator.

*e structure of Convolutional Neural Network (CNN)
is getting larger and larger. Due to the resource limitation of
FPGA devices, complex CNN models such as Fast R-CNN
[22] and ResNet [23], cannot be fully unrolled on hardware,
and sometimes even a single convolutional layer cannot be

expanded. To solve this problem, the main approach is to
map a limited number of processing elements on the FPGA.
*ese processing elements are reused by temporarily iter-
ating over the data. Optimization strategies such as data
parallelism, memory access optimization, computational
communication overlap, and pipeline optimization are used
to maximize the performance of target detection or image
classification performed on OpenSSD hardware. In hard-
ware implementation, we use CNN with a simple structure.

5. Experimental Setup

5.1. Experimental Platform. We use the Cosmos plus
OpenSSD platform which consists of an XC7Z045 FPGA
chip, an Ethernet interface, 1 GB DRAM, an 8-way NAND
flash interface, and a PCIe Gen2 8-lane interface. *e
physical map of the hardware platform is shown in Figure 7.

5.2. Experimental Parameter Settings. *e basic parameters
of the OpenSSD used in the experiment are shown in Table 1.
*e flash page size is 16KB and the logical volume is 1 TB.
*e read latency of the flash page is 70 μs and the write read
latency is 200 μs.

5.3. Experimental Process. Firstly, we create a partition in
OpenSSD, and then format it with ext4 file system. Finally,
we mount the partition in the host and copy remote sensing
data into OpenSSD’s NAND flash.

After the remote sensing data is saved to the flash
memory, the host initializes the development board with
bitstream. After the bitstream initializes the acceleration
module on the development board, the host sends a special
NVMe command to start LRSDP. After LRSDP is started,
the host can continue to issue different types of computing
tasks to LRSDP through custom NVMe commands.

When LRSDP receives a computing task, it will con-
tinuously transfer data to Remote Sensing Data Processing
Accelerator (RSDPA). RSDPA calls the corresponding
hardware resources for calculation according to the specific
type of computing task. After calculation, the data is stored
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in Block Random Access Memory (BRAM) of the FPGA,
and LRSDP can copy and read the execution results in
BRAM toDRAMof OpenSSD. An end signal is sent to notify
the host that the computing task is completed. After re-
ceiving the end signal, the host can actively read the pro-
cessing result of the task through the PCIe interface, and
read the final data processing through the DMA controller.

6. Results and Discussion

*is section comprehensively evaluates the feasibility of
CSRSPP proposed in this paper through experiments. Based
on different large-scale remote sensing datasets, we design
remote sensing data processing tasks by computational
storage, and observe the efficiency of the platform in remote
sensing data compression, target detection, and image
classification. *e accuracy rate and the resource utilization
rate of the platform are tested to verify the effectiveness of
CSRSPP, and compared with the power consumption under
the traditional von Neumann architecture.

7. Data Compression

*is section explores the performance gains of compressed
applications using computable storage technology at dif-
ferent in-disk bandwidths, i.e., testing 3 different channel
counts (2, 4, and 8) [24]. *e remote sensing images based
on BMP format were converted into jpeg format images to
reduce the storage overhead of remote sensing data.

*e size of the compression experiment test set is about
20.5GB, all of which are images in BMP format. *e ex-
periment was based on the assumption of low time locality of
data. Data needed to be read from the flash memory in the
SSD each time, and the compressed result was directly stored
on the flash memory. *e execution time of compression

application consists of I/O time and computation time. *e
shorter the application execution time, the better the
compression performance. Table 2 describes the perfor-
mance of data compression applications at different channel
numbers.

*e results of the performance comparison between the
host and the CSRSPP performing data compression tasks
under different channels are shown in Figure 8.

Combined with the test results in Table 2 and Figure 8, it
can be seen that under different channels, the I/O rate of
CSRSPP in-disk image reading is 1.7%∼ 3.5% faster than
that of off-disk image reading on the host, which makes in-
disk I/O process more streamlined than off-disk. *e
computation speed of CSRSPP in-disk image compression is
2.11∼ 2.35 times faster than that of off-disk reading on the
host. *is is because the parallel computing resources of
FPGA are utilized, and the pixels of multiple different blocks
can be rapidly compressed in parallel.

8. Target Detection

We used the hardware resources of OpenSSD to process
CNN in parallel to finish object detection in remote sensing
images. *e GPU also used the same neural network for
object detection.

8.1.VisualizationofDetectionResults. In the experiment, the
dataset for object detection in aerial images DOTA-1.0
published byWuhan University [25] and the high resolution
ship dataset HRSC2016 published by Northwestern

Table 2:*e execution time of compression application at different
channels.

Platform Channel number I/O time (s) Computation time (s)

HOST
2 36.75 204.25
4 21.63 209
8 12.2136 200.9643

CSRSPP
2 36.12 60.8
4 21.21 62.7
8 11.7936 64.6

I/Q time

Computation time
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Figure 8: Data compression performance under different channels.

Figure 7: OpenSSD hardware platform.

Table 1: Detailed parameters of SSD.

Parameters Configuration
Flash page size 16KB
Page number in flash block 256
Number of flash channels 8
Logical volume 1TB
Read latency of flash page 70 μs
Write latency of flash page 200 μs
Erasure delay of flash block 2ms
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Figure 9: Target detection visualization results based on DOTA-1.0 and HRSC2016 datasets.

8 Mobile Information Systems



Polytechnical University were used [26]. DOTA-1.0 con-
tains a total of 2806 aerial images containing objects of
various scales, orientations, and shapes in 15 common
categories for training and testing. HRSC2016 has a total
of 1079 images, and the only marked target is the ship,
which is used for the test of platform detection
performance.

*e visualization results are shown in Figure 9, where
Figures 9(a)–9(c) are generated by DOTA-1.0 dataset, and
Figures 9(d)–9(f) are generated by HRSC2016 dataset. It can
be seen that the target detection performance of the platform
performs well on different datasets.

8.2. Detection Efficiency Test. In this experiment, we tested
the target detection effect under the DOTA-1.0 and
HRSC2016 datasets to verify the effectiveness and univer-
sality of the platform for detection tasks. *e mean Average
Precision (mAP) and Frames Per Second (FPS) are selected
as objective evaluation indicators. *e detection results are
shown in Table 3.

It can be seen from the objective index results in Table 3
that the accuracy and detection efficiency of the two datasets
are both good when CSRSPP accelerators are used to per-
form target detection, indicating that the platform is effective
and universal for target detection tasks. *e mAP of DOTA-
1.0 dataset is smaller than that of HRSC2016 dataset, because
DOTA-1.0 dataset has more image types than HRSC2016
dataset.

8.3. Comparison on Detection Speed. As a comparative ex-
periment, the GPU system used 16 bit floating-point nu-
merical precision on the multiply-accumulate setting and 32
bit floating-point numerical precision on RSDPA. *e
power measurement included the CPU and other periph-
erals in the FPGA and GPU, which were measured under
load. For comparison, we used full-resolution images for the
GPU system as well as the FPGA system.

As shown in Table 4, our FPGA system achieves 34FPS
on images with 500× 500 resolution, especially with only a
0.4% loss in accuracy and a power consumption of only
20W. *e GTX 1080Ti dedicated accelerator achieves
32 FPS under the condition of 60W power consumption.
Compared with the full-resolution system on GPU, the
power consumption of our system is 66.7% lower. For the
detection speed of images with 500×500 resolution, the
power consumption performance is improved by 2.21 times.
Meanwhile, the architecture of computable storage also has
better performance by using RSDPA compared with GPU
processing. In general, the remote sensing data processing
platform based on OpenSSD greatly reduces the power
consumption of the entire system on the basis of a slight
reduction in speed.

9. Image Classification

In order to verify the information extraction and acceler-
ation effect of CSRSPP on remote sensing data information,

CNN was also used to realize remote sensing image
classification.

9.1. Visualization of Classification Results. *e remote
sensing data adopted was from the downloaded Landsat-8.
*e dataset containing 800 remote sensing images was
obtained by cropping and sorting, with a total amount of
22.9 GB, and all images were in JPG format. 640 images
were used for training and 160 images were used for testing.
*e visual result of image classification is shown in
Figure 10.

Based on the observation of the visualized classification
results of remote sensing image classification in Zhengzhou,
CSRSPP achieves a good classification effect for remote
sensing images on the five basic categories of mountain,
construction land, water Body, green land, and bare land.

9.2. Classification Efficiency Test. In order to test the ac-
celeration effect of the platform on remote sensing clas-
sification, 16 bit floating-point numerical accuracy was
used on the multiplication-accumulation settings of the
GPU system and 32 bit floating-point numerical accuracy
was used on RSDPA. *e power measurement included
CPU and other peripheral devices in FPGA and GPU,
which were measured under load. Overall Accuracy (OA)
and Kappa coefficient were tested. *e test results are
shown in Table 5.

Table 5 shows that OA and Kappa are slightly lower than
GPU due to limited floating-point accuracy calculation in
image classification under the OpenSSD platform. However,
the classification speed of RSDPA is 78.8% higher than that
of GPU, and the system power consumption of OpenSSD is
70.0% lower than that of GPU. *e amount of data returned
by the OpenSSD platform based on computable storage is
also greatly reduced. In the traditional von Neumann ar-
chitecture, 4.58GB of data needs to be returned to the
memory. However, the OpenSSD platform based on com-
putable storage only needs to transfer 0.77GB of data, which

Table 3: Target detection effects under different datasets.

Dataset mAP (%) FPS
DOTA-1.0 74.62 56.7
HRSC2016 83.17 52.3

Table 4: Comparison between two platforms on target detection.

Platform CPU+OpenSSD CPU+GPU
(GTX 1080Ti)

Freq.[H2] 100 1481
Frame resolution 500× 500 500× 500
Tile size 250× 250 250× 250
Precision (MACs) INT8 FP16
Precision (BNs) Fixed (32 and 16 bit) FP32
Precision (%) 97.9 98.3
Speed (FPS) 34 32
Power (W) 20 60
Efficiency (FPS/W) 1.70 0.53
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decreases by 83.2% and further reduces the power con-
sumption of CSRSPP.

10. Resource Utilization of the Platform

*e placement and routing were completed with Vivado
2018.3. Table 6 shows the hardware utilization of CSRSPP. It
reports the resources overhead of the flash controller, NVMe
controller, and the RSDPA accelerator module.

However, CSRSPP is more energy-efficient (QPS/Watt)
than a GPU-integrated system by 6.56 times. More im-
portantly, the CSRSPP is implemented with FPGA and the
operating frequency is only 100MHz, which can greatly
facilitate the construction of 5G. *e performance will be
further improved if the CSRSPP is implemented with es-
calated operating frequency or ASIC.

11. Conclusions

In this paper, we design a remote sensing data processing
platform based on computable storage, which can proac-
tively perform various remote sensing image processing
tasks with low delay, low power consumption, and high
precision inside SSD. Based on the OpenSSD platform, we

design and implement remote sensing data compression,
remote sensing image classification, remote sensing target
detection, and other applications inside SSD. Our prototype
shows that in the practice of remote sensing data com-
pression, the calculation speed of image compression in
CSRSPP is 2.11∼ 2.35 times faster than that of off-disk
reading on host. In the application of target detection,
CSRSPP reduces latency by an average of 6.25% and saves
power consumption by 66.7% compared to GPU. For remote
sensing image classification applications, the detection ac-
curacy under CSRSPP decreases slightly, but the average
delay is reduced by 78.8%. CSRSPP distributes various
computing tasks to the SSD for execution, which not only
improves the speed of information extraction on remote
sensing data, but also greatly reduces the power con-
sumption of data migration.
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Figure 10: Image classification visualization results based on Landsat-8 dataset.

Table 5: Objective indicator results of image classification.

Index OpenSSD GPU
Classification time (s) 468 837
Power 18W 60W
OA (%) 84.52 86.44
Kappa 0.81 0.83

Table 6: Comparison on resource utilization of different modules.

Module # LUT FF BRAM DSP
Flash controller 8 11031 7539 21 0
NVMe interface 1 8586 11455 28 0
RSDPA 1 76344 19144 157 235
Total 1 212099 152908 384 235
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