
Research Article
Research on Intelligent Vehicle Detection and Tracking Method
Based on Multivision Information Fusion

Caixia Lv , Jia Liu, and Xuejing Zhang

Smart City College, Beijing Union University, Beijing 100101, China

Correspondence should be addressed to Caixia Lv; xxtcaixia@buu.edu.cn

Received 25 March 2022; Revised 18 April 2022; Accepted 27 April 2022; Published 18 May 2022

Academic Editor: Chia-Huei Wu

Copyright © 2022 Caixia Lv et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of the world economy and the acceleration of the urbanization process, the automobile has brought great
convenience to people’s life and production activities and has become an essential means of transportation. Intelligent vehicles
have the significance of reducing traffic accidents and improving transportation capacity and broad market prospects and can
lead the development of the automotive industry in the future. Therefore, they have been widely concerned. In the existing
intelligent vehicle system, lidar has become the leading role due to its excellent speed and accuracy and is an indispensable
part of the realization of high-precision positioning. However, to some extent, the price is the main factor that hinders its
marketization. Compared with the lidar sensor, the vision sensor has the advantages of fast sampling rate, light weight, low
energy consumption, and low price; so, many domestic and foreign research institutions have listed it as the focus of research.
However, the current visual-based intelligent vehicle environment perception technology is still prone to be affected by factors
such as illumination, climate, and road type, resulting in the lack of accuracy and real-time performance of the algorithm. In
this paper, the environment perception of intelligent vehicles is taken as the research object, and the problems existing in the
existing road recognition and obstacle detection algorithms are deeply studied. Firstly, due to the complexity of texture feature
extraction and voting calculation process of existing detection methods, and the influence of local strong texture feature
interference inconsistent with road direction, a road image vanishing point detection algorithm based on combined 4-direction
Gabor filter and particle filter technology was proposed. Then, aiming at the problem that the existing road image
segmentation methods based on vanishing point constraint are too dependent on the edge features of road, which leads to
oversegmentation easily, a method is proposed to improve the segmentation accuracy of road image by integrating road
texture, road surface, and nonroad surface color features. Finally, the application of 3D reconstruction of road scene and
obstacle detection technology based on binocular vision and visual navigation algorithm in intelligent vehicle trajectory
tracking control is studied. Results show that the visual navigation algorithm can guide the vehicle routes along the road
without a barrier, and compared with Wang Ren and two kinds of algorithm, the results show that this control algorithm
effectively solves the traditional sliding mode control that is chattering phenomenon, overcomes the model matching, and does
not match the interference problems, if used in the intelligent vehicle systems, it can reduce the thermal loss of electronic
components and wear of actuator parts and improve the tracking accuracy.

1. Introduction

With the development of the world economy and the accel-
eration of urbanization, cars have become an indispensable
means of transportation in people’s life and production
activities. However, with the increase of car ownership, traf-
fic accidents occur frequently, causing huge losses to peo-
ple’s personal and property safety, making driving a boring
and dangerous activity [1]. At present, many domestic and

foreign enterprises and scientific research institutions have
begun to use scientific and technological means to improve
the safety of vehicles, such as fatigue warning and safe driv-
ing assistance system. Although the current level of vehicle
intelligence has been very high, people are still not satisfied
with the status quo, hope to develop a fully automated driv-
ing function of the vehicle, and make travel more safe and
comfortable [2]. Intelligent vehicle is a comprehensive sys-
tem integrating artificial intelligence, automatic control,
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signal processing and other interdisciplinary knowledge of
computer, automation and electronics, considering the inte-
gration of vehicles and roads, and coordinating planning. It
is a typical high-tech complex, and its goal is to be able to
drive completely autonomously. The research on intelligent
vehicles has the significance of reducing traffic accidents
and improving traffic transportation capacity and broad
market prospects, which can lead the future development
of the automobile industry. Therefore, it has received great
attention [3, 4]. The autonomy of intelligent vehicle is
mainly reflected in the ability to automatically use sensors
to complete the perception and understanding of the sur-
rounding environment, plan the collision free path, and
drive according to the predetermined route, so that the vehi-
cle has full adaptive ability. In the intelligent vehicle system,
the ability of environmental perception and understanding is
the basis and premise. After the intelligent vehicle completes
the perception and understanding of the surrounding envi-
ronment, the environmental information can be provided
to the control system to complete the tasks of obstacle avoid-
ance and road tracking. Smart vehicles can sense their sur-
roundings through sensors such as lidar, sonar, and
cameras. In the existing intelligent vehicle system, lidar has
become an indispensable part of high precision positioning
due to its excellent speed and accuracy, but it has the prob-
lem of high cost. More than 90 percent of the information
humans get when driving a vehicle comes from the visual
system, which allows them to establish a relationship with
their surroundings.

Environment perception is an important part of autono-
mous driving of intelligent vehicles. Although the research at
home and abroad has achieved fruitful results, the research
of visual environment perception technology is not mature
enough. In this regard, this paper conducts in-depth
research on the existing problems in the road recognition
and obstacle detection algorithms of intelligent vehicles
based on vision, in order to improve their accuracy, real-
time performance, anti-interference ability, and adaptability
to various road types. Data fusion based on visual sensors
can not only obtain the road image ahead but also obtain
rich three-dimensional road information in the road detec-
tion of intelligent driving vehicles [5]. The fusion of multi-
sensor information can effectively improve the cognitive
level of intelligent driving vehicles on the road environment.
Therefore, information interaction and data fusion of vari-
ous sensors in the environment perception system are essen-
tial, and data fusion based on visual sensors has always been
a popular research direction for intelligent driving vehicles
to achieve efficient and reliable environment perception.
Multisensor information fusion is an information processing
technology that contains multiple or multiple sensors at dif-
ferent positions. The information is processed by standard
criteria to explain the environment-specific characterization.
The method of multisensor information fusion can achieve
better results under the condition of more diverse driving
environment and has a qualitative improvement of the
robustness of the system. Multisensor data fusion system
and all of the single sensor signal processing or lower levels
of multisensor signal processing way, compared to single

sensor signal processing or lower levels of multisensor signal
processing, are a low level of brain information processing
imitation, unlike multisensory data fusion system, they can-
not use the multisensory resource effectively. More than 90
percent of the information humans get when driving a vehi-
cle comes from the visual system, which allows them to
establish a relationship with their surroundings [6].

It is found from the research at home and abroad that
the fast and practical video image vehicle detection and
tracking technology is the key to the further development
of intelligent transportation. According to different data
sources, vehicle detection and tracking methods based on
machine vision can be divided into monocular vision, stereo
vision, color image, and fusion of vision and other sensors.
At present, vehicle detection technology based on monocu-
lar vision and gray image has been widely promoted and
applied in the field of intelligent transportation due to its
advantages such as reasonable price of sensor hardware,
strong real-time performance, and mature technology. Vehi-
cle detection system based on monocular vision is usually
composed of detection module and tracking module [7].
The vehicle detection module uses digital image processing
algorithm and machine vision algorithm to detect the vehicle
target in the image to be detected and obtain the location
information of the vehicle target in the image. In the process
of acquiring vehicle target, detection windows of different
scales are usually used to scan the original image so as to
determine whether it is a vehicle target at every possible
position of the image. Therefore, the time complexity of
the detection algorithm is generally high. The tracking mod-
ule obtains the tracking target and initializes the tracking
information according to the vehicle target obtained by the
detection module and then restricts the search area to a cer-
tain range by using spatial constraints. Therefore, the intro-
duction of tracking module can solve the problem of poor
real-time performance of the detection module to a large
extent. Because it is outdoor scene, rain, snow, and windy
trees caused by shaking or bad weather will produce all kinds
of noise in the picture; in addition to light conditions,
change can also lead to different images, and the influence
of shadow, and part of the mobile vehicle obscured that
has made the extraction of target is becoming more difficult.
At present, the target extraction mainly includes difference
method, optical flow method, and energy function based
method. The commonly used moving vehicle extraction
methods include threshold processing algorithm and bound-
ary tracking and region marking algorithm. The commonly
used global threshold method based on image element gray
level includes automatic threshold method of category vari-
ance, automatic threshold method of optimal entropy, auto-
matic threshold method of moment invariance, and
automatic threshold method of minimal error. These
methods have their own advantages, but they are not well
qualified for the task of rapid vehicle segmentation in traffic
scenes. Low reliability and accuracy of vehicle tracking is as
follows: reliability and accuracy are two important indexes in
tracking [8–10]. In the long distance, when the target area is
small and the mobility is not strong, the filtering tracking
method is usually used to improve the tracking accuracy.
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In short range, when the target has a certain area and the jit-
ter between frames is large, the matching tracking method or
the window centroid tracking method is generally adopted
to keep the tracking stability and accuracy. In practical
application, intelligent vehicle tracking based on visual sen-
sor information fusion still faces severe challenges in road
recognition and obstacle detection.

2. Vehicle Intelligent Tracking Algorithm
and Model

For the transformation of rich road environment, driving
routes, and other information, visual sensors can be very
effective acquisition. Generally, the information in the pro-
cess of vehicle driving, such as the road surrounding envi-
ronment information, vehicle information in front, and
traffic signal information, can be processed as visual infor-
mation. A vehicle detection and tracking system usually
includes three stages: moving area detection, target classifi-
cation (vehicle identification) and vehicle tracking [11].
Firstly, sequence images are captured by the camera. Then,
motion region is extracted from sequential images. The
extracted moving area is sent to the vehicle detection module
to identify the vehicle according to certain judgment criteria;
in the tracking module, the track sequence of each vehicle is
established to achieve tracking. One of the most important
factors for vehicle detection in front is the way of image
acquisition, which focuses on the selection of visual sensors.
With the continuous optimization of algorithm perfor-
mance, the field of target tracking has also made great prog-
ress. Although single target tracking can achieve satisfactory
results, due to the complexity of multitarget tracking task,
there are still some problems such as target occlusion, target
color similarity, background complexity, and rerecognition
of disappearing target [12]. In addition, in the process of
driving, unmanned vehicles not only need to perceive the
surrounding environment through sensor data but also need
to combine high-precision map to plan the driving path in
real time and make control decisions; so, the real-time
requirements are high. Therefore, while ensuring the stabil-
ity of the algorithm, how to reduce the computation of the
algorithm and build a lightweight multivehicle tracking algo-
rithm is of great significance to the environment awareness
technology of unmanned vehicles.

In vehicle tracing aspect, the existing tracking algorithm
in dealing with a simple background situations when the
movement of the vehicle tracking problem has good effect,
but because of the complexity of the target motion and target
characteristic of timeliness, shade, rotation, and scale
changes when tracking the target and the background inter-
ference, it is difficult to adapt to changes in the environment,
the tracking effect is very poor, and it is difficult to obtain a
more robust tracking results [13]. Then, the data fusion
module can fuse the information of multiple vision sensors
and output it to the image display module. There are mainly
the following methods for image collection:

(1) USB camera: light signals can be converted into dig-
ital images by photosensitive sensors, which can then

be processed. USB camera is simple and clever, but it
is difficult to meet the high demand for real-time
engineering

(2) Analog camera and image acquisition card: the
image obtained by the analog camera is transferred
to the digital image acquisition card for signal con-
version and processing. However, its low resolution
cannot meet the requirements of high quality

(3) Stereo camera: multiple driving assistance func-
tions with improved safety and comfort can be
realized by using stereo cameras [14]. The stereo
camera provides an extensible platform that com-
bines the proven capabilities of a monochrome
camera with the advantages of stereo technology
for 3D environment detection. With a powerful
lens system, the camera detects a horizontal line-
of-sight range of 45 degrees and provides a 3D
measurement range of more than 50 meters.
Now, for stereo cameras, research is still in its
infancy, and the costs are high

(4) Digital camera: the digital camera can capture the
image and convert it into a continuous picture. Dig-
ital camera is generally integrated with a charge
coupled device (CCD) sensor with high resolution
and a digital signal processor (DSP) with fast opera-
tion, which can instantly digitally transform the
acquired image and transfer it to the computer for
timely processing. Its real-time performance is
strong and processing for digital signals; so, the elec-
tromagnetic interference is small. Nowadays, digital
cameras are used for vehicle detection. Intelligent
vehicle tracking model algorithm framework is
shown in Figure 1

The principle of camera internal parameter calibration is
equivalent to placing the projection screen in front of the
pinhole and realizing the transformation from the objective
world to the digital image through a set of known world
coordinates and camera pixel coordinates [15]. Let the object
P be the rigid point, and the transformation between its
world coordinates XW , YW , and ZW is
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where R is the 3 × 3 orthogonal identity matrix, T is the
three-dimensional translation vector, and M is the 4 × 4
matrix.

Any pointPðXc, Yc, ZcÞin space is connected to the cam-
eraOandOPthe focal point of the image plane and the
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projection positionpðx, yÞ. Using the geometric relationship
of central keyhole imaging, the following proportional rela-
tionship can be obtained:

x = f Xc
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: ð2Þ

The homogeneous coordinates and matrix can be
expressed as
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The formula for transforming image plane coordinates
into pixel coordinates is

x

y

1

2
664

3
775 =

dx 0 −u0dx

0 dy −v0dy

0 0 1

2
664

3
775

u

v

1

2
664

3
775, ð4Þ

where u0 and v0 are the coordinates of the origin O1 of
the coordinate system uO0v, and the physical dimensions
of each pixel in the x axial and y axial directions are dx
and dy.

The formula for converting world coordinates to pixel
coordinates is
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where ax = f /dx, ay = f /dy, M1 is the internal parameter, M2
is the external parameter, andM is the projection parameter.

In each simulation, the actual trajectory and reference
trajectory of the vehicle are sampled at 50Hz frequency
[16]. Since the dimensions of transverse position and yaw
angle are inconsistent, the following formula is used to nor-
malize the two tracking quantities:

x∗ij =
xij − �xj

sj
: ð6Þ

Then, the average tracking error of the whole track can
be calculated by taking the two norm of the error of each
sampling point and denoted as

error = 1
N
〠
N
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The performance of the proposed algorithm should be
measured from two aspects: tracking accuracy and real-
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Figure 1: Intelligent vehicle tracking model algorithm framework.
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time performance [17]. Therefore, the following perfor-
mance indicators can be defined:

index = k1 errorj j + k2 Tsimj j, ð8Þ

where error is the standardized tracking error, Tsim is the
calculation time of the standardized algorithm, and k1 and
k2 are, respectively, the weights of the tracking error and
algorithm calculation time, which mainly depend on
whether we want the algorithm to provide higher accuracy
or faster response in practice. Note that the smaller the cal-
culated performance indicator is, the better the performance
of the selected threshold is [18].

When the sensor detects that the distance from the
obstacle in front is less than the safe distance, the obstacle
avoidance decision will be triggered. The safe distance can
be calculated by the following formula:

D = v2x
2amax

−
v2abs

2amax,abs
+ vxt1 + d0, ð9Þ

where vx is the longitudinal speed of the vehicle, vabs is the
speed of the obstacle vehicle, amax is the maximum deceler-
ation of the vehicle, amax,abs is the maximum deceleration
of the obstacle vehicle, t1 is the detection and response time,
and d0 is the minimum distance between two vehicles [19].
The vehicle acceleration threshold is also considered in the
setting of safe distance.

A monocular camera is mounted on the front end of the
smart vehicle. The general idea is to have as many objects of
interest in the field of view as possible and as few back-
ground areas as possible. The intelligent vehicle runs at a
certain speed and hopes that the road in the front view will
be as long as possible, so as to have enough time to judge
the road situation ahead, which requires that the height of
the camera installation should not be too low, and the
depression angle should not be too large [20]. However, at
the same time, if the vision is too far, there will be many
interferences (such as sky, trees, and ditches) in the distance
of the road and on both sides of the road, making it difficult
to extract navigation information. On the other hand, the
near field of view of the intelligent vehicle should not be
too far away; otherwise, it will not be able to deal with the
situation that appears temporarily in front of the intelligent
vehicle, which requires that the depression angle of the cam-
era installed should not be too small. Therefore, it is neces-
sary to carry out the preprocessing operation of the
original image, which can be divided into three steps: gray
histogram and its correction, edge enhancement, and image
segmentation [21].

At present, the research on target tracking algorithm has
been quite thorough, but the tracking effect is often not ideal
if only using the existing target tracking algorithm to track
the vehicle without considering the characteristics of the
vehicle target [22]. Due to the vehicle target in the process
of driving will encounter such conditions as weather
changes, video acquisition equipment jitter, vehicle target
mutual occlusion, and angle of view changes frequently,

resulting in the collected information noise distortion
greatly, resulting in a sharp increase in the difficulty of track-
ing the vehicle target; therefore, when designing the tracking
algorithm, the characteristics of vehicle targets should be
taken into account, and the algorithm structure should be
constructed accordingly. At present, researchers have carried
out a large number of studies on vehicle trajectory tracking,
but there are still several difficulties in the following aspects:

(1) Tracking accuracy and stability of trajectory track-
ing: in low speed and small curvature conditions,
the controller can generally ensure good tracking
accuracy and stability, but in medium-high speed
and road curvature and other harsh conditions, the
system reliability is poor, and intelligent vehicles will
appear unstable or out of control phenomenon [23]

(2) Real-time control algorithm: vehicle is a system with
high real-time requirements, especially in high-speed
conditions, and only high real-time control algo-
rithm can make the vehicle have a higher safety
[24]. However, the general automatic data acquisi-
tion system (ADAS) driving assistance function is
based on the vehicle controller, and the computing
platform is often embedded single chip microcom-
puter. Therefore, how to ensure the real-time com-
puting is the control algorithm design needs to
consider

(3) Obstacle avoidance in complex environment: in a
higher level of intelligent driving, the actual vehicle
trajectory tracking problem should not only be lim-
ited to fixed roads but also make accurate and safe
obstacle avoidance for surrounding vehicles, so as
to achieve higher intelligence

3. Information Fusion Method

Multisensor information fusion is a common basic function
in human and other logic systems. Data fusion methods are
divided into prefusion and postfusion. The prefusion is to
fuse the original signals received by various sensors together
through a fusion method and then extract the target location
and speed information. After fusion, each sensor processes
its own original data and extracts the target location and
speed information and then fuses the characteristic data
extracted by different sensors through the fusion system
[25–27]. Data fusion can also be divided into series fusion,
parallel fusion, and hybrid fusion according to the way of
information interaction. In series fusion, each level of sensor
needs to obtain the output information from the previous
level of sensor, and all the perceptual information will be
successively transmitted to the last sensor and integrated.
In parallel fusion, each sensor directly sends its own output
results to the sensor fusion center for data synthesis. The
information does not pass through other sensors in the
transmission process, and the output information of sensors
does not affect each other. Hybrid fusion is the combination
of series fusion structure and parallel fusion structure.
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In fact, multisensor information fusion is a universal and
common basic function in nature. Since people’s different sen-
sory organs have different functions and sensory characteris-
tics, they can feel the simultaneous situation in different
places. This process is fast, difficult to measure, and also adap-
tive. Make full use of multiple sensor multisensory informa-
tion fusion of different information, and redundancy and
complementary information on space and time are combined
according to certain standards; in order to obtain the observa-
tion environment fusion reasoning that is the core of the mul-
tisensor information fusion system, the problem is how to
time-varying dynamic characteristics for a complex environ-
ment and target [28]. On the premise of difficult to obtain
prior knowledge, the environment model of target aircraft
with good robustness and adaptive ability is established.
How to effectively control the recursive estimation and how
to construct the model of uncertainty are the central problems
to be further solved when seeking the general design method
and developing the actual system.

Information fusion in general integration is to build a deci-
sion system with certain intelligence based on the information
obtained from various information sources in the distributed
computer system [29]. In information fusion when analyzing
and processing the information in the comprehensive integra-
tion, the following tasks shall be completed in sequence:

(1) Information collection: according to the scope of the
field in which the problem is analyzed, the relevant
information items are widely collected and extracted
from the distributed network database, and the for-
mat is converted

(2) Information identification: identify the extracted
information, remove the false and retain the true,
and determine the credibility

(3) Correlation processing: it requires quantitative anal-
ysis of the correlation of multiple information source
data and divides the data into different sets accord-
ing to certain discrimination principles, and the data
in each set are associated with the same source

(4) Fusion processing: deciding the choice of informa-
tion obtained from information sources; verify and
modify each information item with reference to
other information sources; verify and analyze, sup-
plement and synthesize, coordinate and modify,
and estimate the information of different informa-
tion sources; analyze and synthesize the informa-
tion provided in real time; generate
comprehensive information through analysis and
judgment

(5) Establish work information database: generate work
information database for the use of analysis models
and experts in various fields and establish links
between work information base and information
source

In order to determine whether the vehicle passes through
the detection area, and then establish the corresponding
tracking target, vehicle speed, vehicle track, and other vehi-
cle information should be obtained, through which the video
vehicle can be efficiently detected and tracked [30]. How-
ever, because of the shadow of the video vehicle, the influ-
ence of complex background, and the factors such as the
camera shake, to video vehicle detection accuracy, algorithm
and real-time tracking the amount of calculation in the pro-
cess of some interference and influence, therefore, the
genetic algorithm (GA) must fully study how to eliminate
the impact of these unfavorable factors.
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Figure 2: Functional model of multisource information fusion.

6 Mobile Information Systems



In essence, trajectory tracking of intelligent vehicles
means that when the controlled vehicle receives the refer-
ence path output from the path planning layer, it can track
safely, in real time and smoothly with the smallest tracking
error [31]. Vehicle is composed of multiple parts of highly
coupling complex system, and its ground movement process
is very complicated; so, it will encounter in the process of the
actual path tracking of nonlinear, multiobjective constraint.
It is necessary to minimize the difference between the output
of the vehicle in the predicted time domain and the 10000-
square meters data trace of the reference rail. The cost func-
tion is established:

J = 〠
Np

i=1
y k + ið Þ − yref k + ið Þ

��� ���2
Q
+ 〠

Np

i=1
U k + ið Þk k2R + 〠

Np

i=1
ΔU k + ið Þk k2R:

ð10Þ

Considering the influence of target vehicle’s speed and
penalty function on obstacle avoidance, the following obsta-
cle avoidance function is selected:

Jobs,i =
Sobsvi

xi − xoð Þ2 + yi − yoð Þ2 + ς
: ð11Þ

The objective of the upper trajectory planning controller
of the layered control system is to reduce the deviation
between the vehicle and the reference trajectory as much as
possible while avoiding obstacles smoothly. The functional
model of multisource information fusion is shown in
Figure 2. The penalty function is used to represent the obsta-
cle avoidance process, and the specific form of the upper
model predictive controller is as follows:

min 〠
Np

i=1
η t + i tjð Þ − ηref t + i tjð Þ
� ���� ���2

Q
+ Uik k2Q + Jobs,i,

s:t:Umin ≤Ut ≤Umax:

ð12Þ

4. Analysis and Discussion of
Calculation Results

The traditional Camshift is a tracking algorithm using color
information [32]. It adopts the “peak value” tracking idea
and finds the most similar area through continuous itera-
tion. It has strong practical and real-time performance.
However, Camshift only adopts color feature, which is not
enough to distinguish the jamming target and background
with similar color to the target. In this paper, the color and
length between perpendicular (LBP) texture characteristics
are fused to improve the tracking accuracy and stability to
a certain extent. However, in different scenarios, the accu-
racy and stability of tracking cannot be well solved only by
improving the characteristics of moving vehicles. Therefore,
the accuracy and stability of vehicle tracking in different
scenes can be ensured by using the probability information
of vehicle space movement on the basis of color and texture

features. Since the movement track of the tracking target is
from far to near and the speed of movement is fast, infinitely
variable transmission (IVT) is greatly affected. In the second
half of the video, the repetition rate of Online AdaBoost
(OAB) decreases, and there are illumination changes. The
method in this paper has affine invariance and has little
influence on the environment. Expressway vehicle detection
results are shown in Figure 3.

Experimental results show that the visual navigation
algorithm presented in this paper can correctly guide vehi-
cles along the road and successfully avoid obstacles on the
road. In addition, while three kinds of control algorithm
can effectively overcome the interference of model matching
and does not match, the vehicle lateral displacement and
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angular error can be asymptotically stable convergence to
the steady state and ensure that the vehicle can accurately
track the given reference trajectory. If applied to intelligent
vehicle system in practice, it can reduce the heat loss of elec-
tronic components and wear of executive parts and improve
the tracking accuracy and other functions (wear of brush
and other parts will directly lead to the output of moving
parts that is inconsistent with the expected value, resulting
in tracking accuracy reduction, and even system collapse).
Proved through the experiment in this paper, the visual nav-
igation algorithm can guide the vehicle routes along the road
without a barrier, and the proposed control algorithm can
effectively solve the problem of traditional chattering of the
sliding mode control algorithm, make the control input sig-
nal smooth, and at the same time, effectively overcome the
model matching and does not match the interference prob-
lems, and ensure that vehicles were able to properly track
the reference trajectory visual navigation. Freeway video
algorithm tracking results are shown in Figure 4.

Real-time schematic diagram of high-speed vehicle run-
ning is shown in Figure 5. As we can see, for obstacle avoid-
ance decision-making figure, at the beginning of the obstacle
avoidance decision-making set to 1, obstacle avoidance con-
trol below for the sensor measures the distance of the car
and, as can be seen from the diagram, the relative distance
of vehicles has been reduced, between 12 s to 15 s of some
mutations, and this is because the accused of lane changing
vehicle is conducted to avoid obstacles. The detection range
of the sensor changes, so that the sensor cannot detect obsta-

cles in front when the vehicle heading angle is large; so, the
output of the sensor has some mutations. After 14.5 s, the
output of the sensor remains 0, indicating that the controlled
vehicle has completed obstacle avoidance and overtaking of
the vehicle with obstacles. In addition, under the condition
of low relative speed, the controlled vehicle made obstacle
avoidance decision when it was 23.36m away from the vehi-
cle in front in order to obtain better driving efficiency. The
average normalized Euclidean distance error of the proposed
algorithm is reduced by 0.0102, 0.0127, and 0.0235, and the
computational efficiency is improved by 64, 79, and 273
times, respectively. The tracking effect of the proposed algo-
rithm is more stable and has higher robustness.

Based on the linear road model with vanishing point
constraint, road segmentation is transformed into a Bayesian
posterior probability density estimation problem. The tex-
ture feature of road is described by the proportion of direc-
tion consistency. The similarity between image pixels and
“road surface” pixels is calculated using nonlinear transfor-
mation function and self-supervision strategy, which is used
as the probabilistic prototype for measuring visual features
of road surface and nonroad surface. Finally, according to
the Bayesian principle, the above three visual features are
fused together to segment the road surface by maximizing
the Bayesian posterior probability density estimation. Com-
pared with Rasmussen and Kong, the most representative
methods in the field of unsupervised or semisupervised road
segmentation, the experimental results show that the accu-
racy of the proposed algorithm is improved by 3.73% and
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7.48%, respectively. The average position error of the pro-
posed method is only 4.30 pixels, which is far less than the
tracking error of the IVT tracking algorithm and OAB track-
ing method, and the overlap rate is 89.83%, which is also
much higher than that of the IVT tracking algorithm and
OAB tracking algorithm, and has good robustness. Track
of a moving vehicle is shown in Figure 6.

Experimental results proved that the visual navigation
algorithms can guide the vehicle routes along the road with-
out a barrier; the traditional sliding mode control is chatter-
ing phenomenon, overcomes the model matching, and does
not match the interference problems, if used in the intelli-
gent vehicle systems, it can reduce the thermal loss of elec-
tronic components and wear of actuator parts and improve
the tracking accuracy. This article system in the resolution
of 600∗1200 average on the gray image detection time is
0.8 s, and the original parts of deformation model resolution
on this average detection time are more than 8 s; you can see
in this paper that the vehicle detection scheme not only on
the real-time deformation model is superior to the parts
and can still maintain a relatively good accuracy. The results
show that the MOTP of the proposed DBMoT algorithm
reaches 97.61% under different frames, which is 2.89%
higher than the other three algorithms on average. The
tracking accuracy of DBMoT is higher, and the target drift
and error matching problems are solved at the same time.
Vehicle tracking results are shown in Figure 7.

The whole sample space includes 572 image samples
containing 3000 vehicles and negative samples of various
scenes without vehicles. The vehicles are marked by hand.
Positive samples are rear images of various models, includ-
ing sedans, SUVs, and minivans. The angle of view also
includes three angles, namely, front rear, left rear, and right

rear. Negative samples include freeway scene and street
scene. Lane detection results under different road conditions
are shown in Figure 8, and the intelligent car first stops in
place, starts to accelerate to about 18 s, then keeps at about
60 km/h, and then begins to decelerate. The relative distance
with the vehicle in front keeps increasing at first, which is
why the white vehicle in front accelerates from stopping to
30 km/h, while the vehicle stops at the same place. When
the distance reaches a certain value, the vehicle accelerates
and catches up with the vehicle. Therefore, the distance
starts to decrease, and the obstacle avoidance decision is
made when the distance is detected at about 26 s. The syn-
chronous trajectory tracking and obstacle avoidance control
algorithm based on model predictive control starts to plan
the trajectory and solve the control quantity. At about 30 s,
the distance becomes 0, because at this time, the vehicle in
front is beyond the detection range of millimeter wave radar.
In addition, Gaussian difference graph weakens the photo-
sensitivity of the image, which makes the algorithm in this
paper have good robustness to the change of illumination.
The multivirtual trigger area multitarget tracking is shown
in Figure 9.

One is to track the vehicle in front of the vehicle in the
same lane, which is simple. The other is the vehicle lane
change and then redetects and tracks the vehicle in the lane.
The algorithm in this paper focuses on the construction of
multiscale space, and Gaussian difference maps are all
single-channel grayscale maps with simple data structure.
Through observation, it can be seen that at the speed of
72 km/h, the designed model predictive controllers (MPC)
have appeared obvious tracking error, and at the point of
55m to 75m and 100m to 120m large curvature, the lateral
position tracking error once reached 1m, in the structured
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road, and is about to pull out of the current lane. Test results
under different weather and road conditions are shown in
Figure 10. As can be seen from the yaw velocity diagram,
the amplitude of yaw velocity is close to 30°/s at high speed,
and the frequency is very high, which affects the stability of
the car body on the one hand and greatly affects the ride

experience on the other hand. However, under the rolling
optimization of model predictive control, the controller
can finally converge to the reference trajectory.

Results of tracking vehicles in a specific lane are shown
in Figure 11. The number of FP and FN, especially FN,
decreased significantly after adding a scale. The number of
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FP decreased from 265 to 148, and the number of FN
decreased from 325 to 179. The accuracy of the original
model is 94.61%, and the recall rate is 89.56%. After increas-
ing the scale, the accuracy of the model test was 97.05% and
the recall rate was 94.16%. Although the accuracy of the
model is not improved much, which is because the residual
network has a good ability to extract image features, the
recall rate of the model is greatly improved after scale opti-
mization, and the model is also increased from 0.8796 to
0.9366 after scaling. Therefore, the target vehicle is in a sta-
ble state in the whole obstacle avoidance process and meets
all constraints of safe driving, indicating that the layered

controller has good real-time performance, which enables
the target vehicle to achieve smooth obstacle avoidance,
adapt to the change of speed, and has high accuracy and
reliability.

The vehicle detection and tracking system implemented
in this paper can detect, track, and count multilane vehicles
simultaneously. In this paper, multiple traffic passing videos
were used to test, and the detection and tracking effects were
summarized. The test data mainly included detection rate,
tracking rate, detection accuracy, and tracking accuracy.
Detection accuracy and tracking accuracy are subjective. If
the detection coverage of the vehicle target is less than
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60%, we believe that a detection error has occurred. If there
is an obvious mid-term target loss or only less than 60% of
the vehicle body and more than 150% of the vehicle body
surrounding area in the tracking process, it is judged as a
tracking error. In the test of this paper, a total of 542 vehicles
from three videos were counted, and the detection rate
reached more than 92%. The follow-up rate was 87%. The
detection accuracy and tracking accuracy are lower than
the detection rate and tracking rate, respectively, which are
86% and 84%, mainly because the detection is incomplete
after the trigger, and the tracking is lost during the process.
The rendering of the improved single Gaussian background
modeling algorithm is shown in Figure 12.

5. Conclusion

With the rapid development of economy, the number of cars
has exploded, bringing convenience to people as well as
many traffic problems. It has brought good news to solve
traffic system problems. How to recognize and track a spe-
cific target on a complex road and in a large number of vehi-
cles is crucial in the development of intelligent
transportation in the future. How to adaptively carry out
real-time and accurate vehicle tracking for various actual
scenes has always been a difficulty in academic research.
The main research achievements of this paper include the
following:

(1) Based on the visual sensor information fusion model,
train network to detect vehicles in the picture. Aim-
ing at the poor detection effect of tiny network, two
lightweight models, DarkNet-19 and ResNet-18,
were used to replace original feature extraction net-
work, respectively, and the detection accuracy of

ResNet-18 for feature extraction increased from
79.57% to 87.96%. Aiming at the problem that the
optimized network is still poor in detecting small
objects, this paper proposes to increase the predic-
tion scale to solve this problem. The detection accu-
racy of the vehicle detection network trained by
secondary optimization is 14.09%

(2) Finally, the whole scheme is deployed on the video
big data processing platform combining Hadoop
with Storm, which has fast running speed and high
data processing ability, to ensure the real-time per-
formance of vehicle tracking. Different from the tra-
ditional image feature information tracking scheme,
this scheme uses deep learning to achieve. In order
to verify the feasibility and portability of the scheme,
the vehicle tracking scheme is transplanted into the
development board

(3) Proposed a multivehicle vision tracking algorithm
based on neural network. Different from other deep
learning networks, neural network can better learn
advanced deep hierarchical features by minimizing
reconstruction errors and double-layer networks.
Through learning strategy, the proposed multivehi-
cle visual tracking algorithm can effectively solve
the problem of error matching. For the problem of
target drift, the paper introduces time information
to calculate the dynamic duration to update the
appearance model in real time

(4) Establish corresponding observation model based on
fusion features. The vehicle features were extracted
by perceptual features and principal component
analysis to build a fusion feature model, which was
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integrated into the vehicle tracking framework based
on particle filter. The proposed algorithm improves
the real-time performance of multitarget tracking.
The results show that robustness of the proposed
algorithm is improved, and it can provide continu-
ous and reliable positioning information for intelli-
gent vehicles. It has the characteristics of low cost
and can basically solve the lighting, occlusion, loss,
and congestion in target tracking

In this paper, the laser radar and cameras and data
fusion of lane detection, the model has good performance
in structured road test, but in practical applications, the traf-
fic condition is complicated, and the accuracy and real-time
detection model of the road is a big challenge; so, how to
automatically drive vehicle in complex environments accu-
rately extracts the lane region. At the same time, to ensure
the real-time lane detection, we need to solve the problem.
Therefore, there are still many problems in this subject that
need further discussion, mainly in the following aspects:

(1) Laser radar in direct detection of lane edge and aux-
iliary lane detection area in the parallel data fusion
process: all is the use of grid method and the
DBSCAN algorithm of point target detection area
and road edge detection; therefore, depth study of
point cloud data available for training and the road
edge points existing in point cloud data is extracted.
More lidar scanning layers can be used to obtain
road edge data, and then the lane edge can be fitted
by spline curve or Bessel curve fitting method, so as
to realize the detection of curves and other complex
roads, and improve the accuracy of lidar auxiliary
detection of curves and other complex road areas
in parallel data fusion

(2) In the process of tandem data fusion lane detection,
this paper uses the traditional method Hough trans-
form to detect lane edges. Although the accuracy of
lane detection in complex background environment
is improved by dividing precise regions of interest,
it is difficult to adapt to the complex and changeable
lane environment. Therefore, the positive and nega-
tive samples in the image information can be auto-
matically obtained by the region of interest, and
then the machine learning SVM is trained to realize
the real-time detection of different lane areas
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